|
|
|
Quality control of specific humidity from surface stations based on EOF and FFT—Case study |
Hong ZHAO1,Xiaolei ZOU2,*( ),Zhengkun QIN1 |
1. Center of Data Assimilation for Research and Application, Nanjing University of Information Science & Technology, Nanjing 210044, China 2. Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740-3823, USA |
|
|
|
|
Abstract Comparisons between observations and background fields indicate that amplitude and phase differences in oscillations result in a non-Gaussian distribution in observation minus background vectors (OMB). Empirical Orthogonal Function (EOF) quality control (QC) and Fast Fourier Transform (FFT) quality control are proposed from the perspective of data assimilation and are applied to the surface specific humidity from ground-based stations. The QC results indicate that the standard deviation between observations and background is reduced effectively, and the frequency distribution for the observation increment is closer to a normal distribution. The specific humidity outliers occur primarily in mountainous and coastal regions. Comparing the two QC methods, it is found that the EOF QC performs better than the FFT QC as it can keep large scale of fluctuation information from the original field, preventing these waves from entering into the residual field and being removed by the QC process.
|
| Keywords
specific humidity
quality control
EOF
FFT
|
|
Corresponding Author(s):
Xiaolei ZOU
|
|
Just Accepted Date: 26 September 2014
Issue Date: 20 July 2015
|
|
| 1 |
Anderson E, J?rvinen H (1999). Variational quality control. Q J R Meteorol Soc, 125(554): 697–722
https://doi.org/10.1002/qj.49712555416
|
| 2 |
Baker N L (1992). Quality control for the Navy operational atmospheric database. Weather Forecast, 7(2): 250–261
https://doi.org/10.1175/1520-0434(1992)007<0250:QCFTNO>2.0.CO;2
|
| 3 |
Chen Q Y, Guan C G, Yao M M, Tong H, Mariano H, Li Z C (2007). Development of key techniques and experiments in global model upgrading. Acta Meteorologica Sinica, 65(4): 478–492 (in Chinese)
|
| 4 |
Cooley J W, Tukey O W (1965). An algorithm for the machine calculation of complex Fourier series. Math Comput, 19(90): 297–301
https://doi.org/10.1090/S0025-5718-1965-0178586-1
|
| 5 |
Eischeid J K, Bruce Baker C, Karl T R, Diaz H F (1995). The quality control of long-term climatological data using objective data analysis. J Appl Meteorol, 34(12): 2787–2795
https://doi.org/10.1175/1520-0450(1995)034<2787:TQCOLT>2.0.CO;2
|
| 6 |
Fan S Y, Zhang C L (2006). Numerical assessing experiments on individual component impact of the meteorological observation network on the “July 2000” torrential rain in Beijing. Acta Meteorologica Sinica, 20(4): 389–401 (in Chinese)
|
| 7 |
Feng S, Hu Q, Qian W (2004). Quality control of daily meteorological data in China, 1951–2000: a new dataset. Int J Climatol, 24(7): 853–870
https://doi.org/10.1002/joc.1047
|
| 8 |
Gandin L S (1988). Complex quality control of meteorological observations. Mon Weather Rev, 116(5): 1137–1156
https://doi.org/10.1175/1520-0493(1988)116<1137:CQCOMO>2.0.CO;2
|
| 9 |
Ghil M, Malanotte-Rizzoli P (1991). Data assimilation in meteorology and oceanography. Adv Geophys, 33: 151?156
https://doi.org/10.1016/S0065-2687(08)60442-2
|
| 10 |
Guo Y R, Shin D H, Lee J H, Xiao Q N, Barker D M, Kuo Y H (2002). Application of the MM5 3DVAR system for a heavy rain case over the Korean Peninsula. In: Proccedings: the Twelfth PSU/NCAR Mesoscale Model Users’ Workshop NCAR, Boulder, 24–25
|
| 11 |
Ha K J, Jeon E H, Oh H M (2007). Spatial and temporal characteristics of precipitation using an extensive network of ground gauge in the Korean Peninsula. Atmos Res, 86(3–4): 330–339
https://doi.org/10.1016/j.atmosres.2007.07.002
|
| 12 |
Hong S Y, Pan H L (1996). Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon Weather Rev, 124(10): 2322–2339
https://doi.org/10.1175/1520-0493(1996)124<2322:NBLVDI>2.0.CO;2
|
| 13 |
Hubbard K G, You J (2005). Sensitivity analysis of quality assurance using the spatial regression approach—A case study of the maximum/minimum air temperature. J Atmos Ocean Technol, 22(10): 1520–1530
https://doi.org/10.1175/JTECH1790.1
|
| 14 |
Ingleby N B, Lorenc A C (1993). Bayesian quality control using multivariate normal distributions. Q J R Meteorol Soc, 119(513): 1195–1225
https://doi.org/10.1002/qj.49711951316
|
| 15 |
Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woolen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Jenne R, Joseph D (1996). The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc, 77(3): 437–471
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
|
| 16 |
Lanzante J R (1996). Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data. Int J Climatol, 16(11): 1197–1226
https://doi.org/10.1002/(SICI)1097-0088(199611)16:11<1197::AID-JOC89>3.0.CO;2-L
|
| 17 |
Li L, Njoku E G, Im E, Chang P S, Germain K S (2004). A preliminary survey of radio-frequency interference over the US in Aqua AMSR-E data. Geoscience and Remote Sensing. IEEE Transactions on, 42(2): 380–390
|
| 18 |
Lorenc A C, Hammon O (1988). Objective quality control of observations using Bayesian methods. Theory, and a practical implementation. Q J R Meteorol Soc, 114(480): 515–543
https://doi.org/10.1002/qj.49711448012
|
| 19 |
Lorenz E N (1956). Empirical orthogonal functions and statistical weather prediction, scientific Report No. 1, Statistical Forecasting Project. Massachusetts Institute of Technology department of meteorology
|
| 20 |
Mardia K V (1970). Measures of multivariate skewness and kurtosis with applications. Biometrika, 57(3): 519–530
https://doi.org/10.1093/biomet/57.3.519
|
| 21 |
Mohanty U C, Kasahara A, Errico R (1986). The impact of diabatic heating on the initialization of a global forecast model. J Meteorol Soc Jpn, 64(6): 805–817
|
| 22 |
Onogi K, Tsutsui J, Koide H, Sakamoto M, Kobayashi S, Hatsushika H, Matsumoto T, Yamazaki N, Kamahori H, Takahashi K, Kadokura S, Wada K, Kato K, Oyama R, Ose T, Mannoji N, Taira R (2007). The JRA-25 reanalysis. J Meteorol Soc Jpn, 85(3): 369–432
https://doi.org/10.2151/jmsj.85.369
|
| 23 |
Qin Z K, Zou X L, Li G, Ma X L (2010). Quality control of surface station temperature data with non-Gaussian observation-minus-background distributions. J Geophys Res, 115(D16): D16312
https://doi.org/10.1029/2009JD013695
|
| 24 |
Ramanathan V, Barkstrom B R, Harrison E F (1989). Climate and the earth’s radiation budget. Phys Today, 42(5): 22–32
https://doi.org/10.1063/1.881167
|
| 25 |
Reek T, Doty S R, Owen T W (1992). A deterministic approach to the validation of historical daily temperature and precipitation data from the cooperative network. Bull Am Meteorol Soc, 73(6): 753–762
https://doi.org/10.1175/1520-0477(1992)073<0753:ADATTV>2.0.CO;2
|
| 26 |
Sasaki Y (1970). Some basic formalisms in numerical variational analysis. Mon Weather Rev, 98(12): 875–883
https://doi.org/10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2
|
| 27 |
Shafer M A, Fiebrich C A, Arndt D S, , Fredrickson S E, Hughes T W (2000). Quality assurance procedures in the Oklahoma Mesonetwork. J Atmos Ocean Technol, 17(4): 474–494
https://doi.org/10.1175/1520-0426(2000)017<0474:QAPITO>2.0.CO;2
|
| 28 |
Simmons A, Uppala S, Dee D, Kobayashi S (2007). ERA-Interim: new ECMWF reanalysis products from 1989 onwards. ECMWF newsletter, 110(110): 25–35
|
| 29 |
Torrence C, Compo G P (1998). A practical guide to wavelet analysis. Bull Am Meteorol Soc, 79(1): 61–78
https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
|
| 30 |
Wade C G (1987). A quality control program for surface mesometeorological data. J Atmos Ocean Technol, 4(3): 435–453
https://doi.org/10.1175/1520-0426(1987)004<0435:AQCPFS>2.0.CO;2
|
| 31 |
Wang Y, Xu Z F, Fan G Z (2013). Research of quality control based on EOF for 2m temperature. Plateau Meteorology, 32(2): 564–574 (in Chinese)
|
| 32 |
Wei F Y (2007). Statisticial Diagnosis and Prediction for Modern Climate. Beijing: China Meteorological Press, 71–76 (in Chinese)
|
| 33 |
Zhao J, Zou X L, Weng F Z (2013). WindSat radio-frequency interference signature and its identification over Greenland and Antarctic. IEEE Trans Geosci Rem Sens, 51(9): 4830–4839
https://doi.org/10.1109/TGRS.2012.2230634
|
| 34 |
Zou X L (2009). Theories and Applications for Data Assimilation (I). Beijing: China Meteorological Press (in Chinese)
|
| 35 |
Zou X L, Ma Y, Qin Z K (2012). Fengyun-3B microwave humidity sounder (MWHS) data noise characterization and filtering using principle component analysis. IEEE Trans Geosci Rem Sens, 50(12): 4892–4902
https://doi.org/10.1109/TGRS.2012.2202122
|
| 36 |
Zou X L, Qin Z K (2010). Time zone dependence of diurnal cycle errors in surface temperature analyses. Mon Weather Rev, 138(6): 2469–2475
https://doi.org/10.1175/2010MWR3248.1
|
| 37 |
Zou X L, Zeng Z (2006). A quality control procedure for GPS radio occultation data. J Geophys Res, 111: D02112
https://doi.org/10.1029/2005JD005846
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|