Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (1) : 145-158    https://doi.org/10.1007/s11707-015-0499-2
RESEARCH ARTICLE
Assimilation of Chinese Fengyun-3B Microwave Temperature Sounder radiances into the Global GRAPES system with an improved cloud detection threshold
Juan LI1,2,*(),Guiqing LIU1,2
1. Numerical Weather Prediction Center, China Meteorological Administration, Beijing 100081, China
2. National Meteorological Center, China Meteorological Administration, Beijing 100081, China
 Download: PDF(2688 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fengyun-3B (FY-3B) is the second polar-orbiting satellite in the new Fengyun-three series. This paper describes the assimilation of the FY-3B Microwave Temperature Sounder (MWTS) radiances in the Chinese Numerical Weather prediction system – the Global and Regional Assimilation and PrEdiction System (GRAPES). A quality control procedure for the assimilation of the FY-3B MWTS radiance was proposed. Extensive monitoring before assimilation shows that the observations of channel 4 are notably contaminated. Channels 2 and 3 are used in this research. A cloud detection algorithm with an improved cloud-detection threshold is determined and incorporated into the impact experiments. The clear field-of-view (FOV) percentage increased from 42% to 57% with the new threshold. In addition, the newly added FOVs are located in the clear region, as demonstrated by the cloud liquid water path data from NOAA-18. The impact of the MWTS radiances on the prediction of GRAPES was researched. The observation biases of FY-3B MWTS O-B (differences between satellite observations and model simulations) significantly decreased after an empirical bias correction procedure. After assimilation, the residual biases are small. The assimilation of the FY-3B MWTS radiances shows a positive impact in the Northern Hemisphere and a neutral impact in the Southern Hemisphere.

Keywords Fengyun-3B (FY-3B)      MWTS      quality control      GRAPES     
Corresponding Author(s): Juan LI   
Just Accepted Date: 29 May 2015   Online First Date: 23 June 2015    Issue Date: 25 December 2015
 Cite this article:   
Juan LI,Guiqing LIU. Assimilation of Chinese Fengyun-3B Microwave Temperature Sounder radiances into the Global GRAPES system with an improved cloud detection threshold[J]. Front. Earth Sci., 2016, 10(1): 145-158.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0499-2
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I1/145
Channel # Center frequency/GHz Peak weighting function height /hPa NEDT*/K
1 50.30 surface 0.5
2 53.596±0.115 700 0.4
3 54.94 300 0.4
4 57.29 70 0.4
Tab.1  Channel characteristics of FY-3B MWTS
Fig.1  Global distribution of O-B from (a) FY-3B MWTS channel 4 and (b) NOAA-18 AMSU-A channel 9 at 0300–1500 UTC 1 May 2013.
Fig.2  Daily variations of O-B (a) biases and (b) standard deviations of channel 4 from FY-3B MWTS (solid lines) and channel 9 from NOAA-18 AMSU-A (dashed lines) data in May 2013 over ocean (green), land (red), and both land and ocean (blue).
Fig.3  Latitudinal dependences of the global averaged O-B (a) biases and (b) STDs of channel 4 from MWTS (solid lines) and channel 9 from AMSU-A (dashed lines) data in May 2013.
Fig.4  (a) Global percentage number of MWTS FOVs (solid line), with the cloud fraction greater than fVIRR, and NOAA-18 AMSU-A FOVs (dashed line), with the LWP greater than fLWP for data in May 2013. (b) Daily variations of cloudy MWTS FOV number percentages when fVIRR is 76% (solid line) and cloudy AMSU-A FOV number percentages when fLWP is 0.03 kg·m?2 (dashed line).
Fig.5  Distribution of the MWTS clear pixels identified by cloud fraction less than 37% (green dots), between 37% and 76% (red dots) over the ocean during the period from 0300UTC to 0900UTC, May 30, 2013. NOAA-18 AMSU-A FOVs with LWP less than 0.03 kg·m?2 are shown in grey dots (the FOVs at the scan edge of AMSU-A are in black).
Fig.6  (a) Bias and (b) STD of brightness temperature differences between observations and model simulations from MWTS clear pixels identified by cloud fraction less than 37% (solid bars) or 76% (dashed bars) over the ocean during May 2013.
Fig.7  Distribution of the MWTS (a) channel 2 and (b) channel 3 outliers identified by land, coastal FOVs, sea ice, scan edge, terrain altitude greater than 500 m, cloud detection, and O-B biweighting check, as well as the remaining data on 0300 UTC?0900 UTC May 30, 2013.
Fig.8  Scatter plots of O-B vs. brightness temperature for the MWTS (a) channel 2 and (b) channel 3 outliers (black) and remaining data (green) during 1?5 May 2013.
Fig.9  (a) Percentages of the MWTS data that passed QC in May 2013; (b) global biases; and (c) standard deviations of brightness temperature differences between observations and model simulations before (solid bars) and after (dashed bars) quality control in May 2013.
Fig.10  Daily variations of global (a) mean bias and (b) RMS of O-B for MWTS channels 2 (black) and channel 3 (blue) before (solid lines) and after (dashed lines) bias correction during May 2013.
Fig.11  Distribution of O-B (left panels) and O-A (right panels) for MWTS (a)?(b) channel 2 and (c)?(d) channel 3 on 0300UTC?0900 UTC May 30, 2013.
Fig.12  Analysis temperature difference (contour, K) on model level 10 (about 700 hPa; left panels) and model level 19 (about 300 hPa; right panels) between EXP and CTRL experiments when assimilating only MWTS (a)?(b) channel 2, (c)?(d) only channel 3, (e)?(f) both channel 2 and channel 3 in EXP at 0600UTC on May 30, 2013.
Fig.13  (a) RMS of geopotential height from the analysis field (solid lines) and 6-hour forecast (dashed lines) difference between CTRL and NCEP (black), and EXP and NCEP (red) in the Northern Hemisphere from 1?31 May 2013. (b) Similar to (a) but for the bias of geopotential height. (c) Similar to (a) but for the Southern hemisphere. (d) Similar to (c) but for the bias of geopotential height.
Fig.14  Mean ACC (left panels) and RMS (right panels) of 500 hPa geopotential height of CTRL (dashed line) and EXP (solid line) experiments in (a?b) the Northern and (c?d) the Southern Hemispheres for the period from 1?31 May 2013.
1 Ahn  M H, Kim  M J, Chung  C Y, Suh  A S (2003). Operational implementation of the ATOVS processing procedure in KMA and its validation. Adv Atmos Sci, 20(3): 398–414
https://doi.org/10.1007/BF02690798
2 Andersson  E, Pailleux  J, Thepaut  J N, Eyre  J R, McNally  A P, Kelly  G A, Courtier  P (1994). Use of cloud-cleared radiances in three-four-dimensional variational data assimilation. Q J R Meteorol Soc, 120(517): 627–653
https://doi.org/10.1002/qj.49712051707
3 Baker  N L, Daley  R (2000). Observation and background adjoint sensitivity in the adaptive observation-targeting problem. Q J R Meteorol Soc, 126(565): 1431–1454
https://doi.org/10.1002/qj.49712656511
4 Bouttier  F, Kelly  G (2001). Observing-system experiments in the ECMWF 4D-Var data assimilation system. Q J R Meteorol Soc, 127(574): 1469–1488
https://doi.org/10.1002/qj.49712757419
5 Cardinali  C (2009). Monitoring observation impact on short-range forecast. Q J R Meteorol Soc, 135(638): 239–250
https://doi.org/10.1002/qj.366
6 Chen  D H, Xue  J S, Yang  X S, Zhang  H L, Shen  X S, Hu  J L, Wang  Y, Ji  L R, Chen  J B (2008). New generation of multi-scale NWP system (GRAPES): general scientific design. Chin Sci Bull, 53(22): 3433–3445
https://doi.org/10.1007/s11434-008-0494-z
7 Courtier  P, Thépaut  J N, Hollingsworth  A (1994). A strategy for operational implementation of 4D-Var using an incremental approach. Q J R Meteorol Soc, 120(519): 1367–1387
https://doi.org/10.1002/qj.49712051912
8 Courtier  P, Andersson  E, Heckley  W, Vasiljevic  D, Hamrud  M, Hollingsworth  A, Rabier  F, Fisher  M, Pailleux  J (1998). The ECMWF implementation of three-dimensional variational assimilation  (3D-Var).  I:  formulation.  Q  J  R  Meteorol  Soc,  124:  1783–1807<?Pub Caret?>
9 Derber  J C, Wu  W S (1998). The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon Weather Rev, 126(8): 2287–2299
https://doi.org/10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2
10 Dong  C H, Yang  J, Yang  Z D, Lu  N M, Shi  J M, Zhang  P, Liu  Y J, Cai  B, Zhang  W (2009). An overview of a new Chinese weather satellite FY-3A. Bull Am Meteorol Soc, 90(10): 1531–1544
https://doi.org/10.1175/2009BAMS2798.1
11 Du  M B, Yang  Y M, Yang  Y H, Zhang  J, Zhu  X (2012). Bias correction for FY-3A microwave sounding data with its application to typhoon track forecast. Journal of Applied Meteorological Science, 23(1): 89–95 (in Chinese)
12 English  S J, Renshaw  R J, Dibben  P C, Smith  A J, Rayer  P J, Poulsen  C, Saunders  F W, Eyre  J R (2000). A comparison of the impact of TOVS and ATOVS satellite sounding data on the accuracy of numerical weather forecasts. Q J R Meteorol Soc, 126(569): 2911–2931
13 Eyre  J R (1997). Variational assimilation of remotely-sensed observations of the atmosphere. J Meteorol Soc Jpn, 75(1b): 331–338
14 Ferraro  R R, Weng  F Z, Grody  N C, Zhao  L M, Meng  H, Kongoli  C, Pellegrino  P, Qiu  S, Dean  C (2005). NOAA operational hydrological products derived from the advanced microwave sounding unit. IEEE Trans Geosci Rem Sens, 43(5): 103 6–1049
https://doi.org/10.1109/TGRS.2004.843249
15 Fourrié  N, Doerenbecher  A, Bergot  T, Joly  A (2002). Adjoint sensitivity of the forecast to TOVS observations. Q J R Meteorol Soc, 128(586): 2759–2777
https://doi.org/10.1256/qj.01.167
16 Gelaro  R, Langland  R H, Pellerin  S, Todling  R (2010). The THORPEX observation impact intercomparison experiment. Mon Weather Rev, 138(11): 4009–4025
https://doi.org/10.1175/2010MWR3393.1
17 Grody  N, Zhao  J, Ferraro  R, Weng  F, Boers  R (2001). Determination of precipitable water and cloud liquid water over oceans from the NOAA 15 advanced microwave sounding unit. Journal of Geophysical Research: Atmospheres (1984–2012), 106(D3): 2943–2953
18 QSS  Group, Inc. (2005). Microwave Surface and Precipitation Products System (MSPPS) Users’ Manual (UM). NOAA, NESDIS. 28–29
19 Harris  B A, Kelly  G (2001). A satellite radiance-bias correction scheme for data assimilation. Q J R Meteorol Soc, 127(574): 1453–1468
https://doi.org/10.1002/qj.49712757418
20 Langland  R H, Baker  A L (2004). Estimation of observation impact using the NRL atmospheric variational data assimilation adjoint system. Tellus, Ser A, Dyn Meterol Oceanogr, 56(3): 189–201
https://doi.org/10.1111/j.1600-0870.2004.00056.x
21 Lansante  J R (1996). Resistant, robust and non-parametric techniques for the analysis of climate data: theory and examples, including applications to historical radiosonde station data. Int J Climatol, 16(11): 1197–1226
https://doi.org/10.1002/(SICI)1097-0088(199611)16:11<1197::AID-JOC89>3.0.CO;2-L
22 Li  J, Zou  X (2013). A quality control procedure for FY-3A MWTS measurements with emphasis on cloud detection using VIRR cloud fraction. J Atmos Ocean Technol, 30(8): 1704–1715
https://doi.org/10.1175/JTECH-D-12-00164.1
23 Li  J, Zou  X (2014). Impact of FY-3A MWTS radiances on prediction in GRAPES with comparison of two quality control schemes. Front Earth Sci, 8(2): 251–263
https://doi.org/10.1007/s11707-014-0405-3
24 Li  Y, Rong  Z, Zheng  Z, Liu  J, Zhang  L, Zhang  L, Hu  X, Zhang  Y, Sun  L (2009). Post launch site calibration of visible and near-infrared channels of FY-3A visible and infrared radiometers. Optics and precision engineering, 17(12): 2966–2974
25 Liu  R (2011). FY-3B Satellite Delivered to CMA. Aerospace China, 2: 10
26 Liu  Z Q, Zhang  F Y, Wu  X B, Xue  J S (2007). A regional ATOVS radiance-bias correction scheme for radiance assimilation. Acta Meteorologica Sinica, 65(1): 113–123 (in Chinese)
27 Lu  Q, Bell  W (2012). Evaluation of FY-3B data and an assessment of passband  shifts  in AMSU-A  and  MSU  during  the  period  1978‒2012. Interim report of Visiting Scientist mission NWP_11_05, Document NWPSAF-EC-VS-023, Version 0.1, 28
28 McNally  A P, Derber  J C, Wu  W, Katz  B B (2000). The use of TOVS level-1b radiances in the NCEP SSI analysis system. Q J R Meteorol Soc, 126(563): 689–724
https://doi.org/10.1002/qj.49712656315
29 Navon  I M, Legler  D M (1987). Conjugate gradient methods for large scale minimization in meteorology. Mon Weather Rev, 115(8): 1479–1502
https://doi.org/10.1175/1520-0493(1987)115<1479:CGMFLS>2.0.CO;2
30 Okamoto  K, Kazumori  M, Owada  H (2005). The assimilation of ATOVS radiances in the JMA global analysis system. J Meteorol Soc Jpn, 83(2): 201–217
https://doi.org/10.2151/jmsj.83.201
31 Parrish  D F, Derber  J C (1992). The National Meteorological Centers spectral statistical interpolation analysis system. Mon Weather Rev, 120(8): 1747–1763
https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
32 Saunders  R W, Matricardi  M, Brunel  P (1999). An improved fast radiative transfer model for assimilation of satellite radiance observations. Q J R Meteorol Soc, 125(556): 1407–1425
https://doi.org/10.1256/smsqj.55614
33 Van Delst  P (2011). CRTM: v2.0 User Guide. Joint Center for Satellite Data Assimilation, Camp Springs, Maryland, USA
34 Wang  X, Zou  X (2012). Quality assessments of Chinese FengYun-3B Microwave Temperature Sounder (MWTS) measurements. IEEE Trans Geosci Rem Sens, 50(12): 4875–4884
https://doi.org/10.1109/TGRS.2012.2196438
35 Weng  F, Grody  N C (1994). Retrieval of cloud liquid water using the special sensor microwave imager (SSM/I). J Geophys Res, 99(D12): 25535–25551
https://doi.org/10.1029/94JD02304
36 Wu  W S, Purser  R J, Parrish  D F (2002). Three-dimensional variational analysis with spatially inhomogeneous covariances. Mon Weather Rev, 130(12): 2905–2916
https://doi.org/10.1175/1520-0493(2002)130<2905:TDVAWS>2.0.CO;2
37 Xue  J S, Chen  D H (2008). Numerical Prediction System Design and Application  of  Science  GRAPES.  Beijing:  Science  Press  (in Chinese)
38 Xue  J S, Zhuang  S Y, Zhu  G F, Zhang  H, Liu  Z Q, Liu  Y, Zhuang  Z R (2008). Scientific design and preliminary results of three-dimensional variational data assimilation system of GRAPES. Chin Sci Bull, 53(22): 3446–3457
https://doi.org/10.1007/s11434-008-0416-0
39 Yang  J, Dong  C H, Lu  N M, Yang  Z D, Shi  J M, Zhang  P, Liu  Y J, Cai  B (2009). FY-3A: the new generation polar-orbiting meteorological satellite of China. Acta Meteorologica Sinica, 67(4): 501–509 (in Chinese)
40 Yang  Y M, Du  M B, Zhang  J (2013). FY-3A satellite microwave data assimilation experiments in tropical cyclone forecast. Journal of Tropical Meteorology, 19(3): 297–304   (in Chinese)
41 You  R, Gu  S Y, Guo  Y, Wu  X B, Yang  H, Chen  W X (2012). Long-term calibration and accuracy assessment of the FengYun-3 microwave temperature sounder radiance measurements. IEEE Trans Geosci Rem Sens, 50(12): 4854–4859
https://doi.org/10.1109/TGRS.2012.2200257
42 Zapotocny  T H, Jung  J A, Le Marshall  J F, Treadon  R E (2007). A two-season impact study of satellite and in situ data in the NCEP global data assimilation system. Weather Forecast, 22(4): 887–909
https://doi.org/10.1175/WAF1025.1
43 Zhang  P, Yang  J, Dong  C H, Lu  N M, Yang  Z D, Shi  J M (2009). General introduction on payloads, ground segment and data application of Fengyun 3A. Front Earth Sci, 3(3): 367–373
https://doi.org/10.1007/s11707-009-0036-2
44 Zou  X, Wang  X, Weng  F, Guan  L (2011). Assessments of Chinese FengYun Microwave Temperature Sounder (MWTS) measurements for weather and climate applications. J Atmos Ocean Technol, 28(10): 1206–1227
https://doi.org/10.1175/JTECH-D-11-00023.1
45 Zou  X, Zeng  Z (2006). A quality control procedure for GPS radio occultation data. J Geophys Res, 111(D2): D02112
https://doi.org/10.1029/2005JD005846
[1] Yin LIU,Xiaolei ZOU. Quality control of AIRS total column ozone data within tropical cyclones[J]. Front. Earth Sci., 2016, 10(2): 222-235.
[2] Hong ZHAO,Xiaolei ZOU,Zhengkun QIN. Quality control of specific humidity from surface stations based on EOF and FFT—Case study[J]. Front. Earth Sci., 2015, 9(3): 381-393.
[3] Juan LI,Xiaolei ZOU. Impact of FY-3A MWTS radiances on prediction in GRAPES with comparison of two quality control schemes[J]. Front. Earth Sci., 2014, 8(2): 251-263.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed