Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (1) : 183-194    https://doi.org/10.1007/s11707-015-0501-z
RESEARCH ARTICLE
Ground-penetrating radar study of beach-ridge deposits in Huangqihai Lake, North China: the imprint of washover processes
Xin SHAN1,2,Xinghe YU1,*(),Peter D. CLIFT2,Chengpeng TAN1,Shunli LI1,Zhixing WANG1,Dongxu SU1
1. School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
2. Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA 70803, USA
 Download: PDF(3564 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Determining the origin of beach ridges in lacustrine basins can often be problematic. The sedimentary processes responsible for formation of beach ridges on the north shore of Huangqihai Lake were investigated by using ground penetrating radar (GPR). A 400 MHz GPR antenna was used to achieve a high vertical resolution of 0.04–0.08 m. The radar stratigraphy was then determined using principles of seismic stratigraphy. The radar facies (RF) were determined by analyzing internal configuration and continuity of reflections, as well as reflection termination patterns.

The identified RF fall into three groups (inclined, horizontal and irregular). The inclined group consists of RF that display inclined reflections. The horizontal group consists of RF that exhibit predominantly horizontal reflections. In the irregular group, the reflections are typically weak. RF with reflections with gently landward dips in the shore-normal profile are interpreted as washover sheet deposits. RF with steeply landward-dipping and imbricated reflections are interpreted as washover lobes. Washover sheets develop when overwash fails to enter a significant body of water and sedimentation takes place entirely on the relatively flattened topography. Washover lobe development occurs when overwash enters a region in which topography dips steeply landward, and sedimentation takes place on the surface of washover sheets or previous washover lobes. The beach-ridge deposits are interpreted as being formed entirely from vertically and laterally stacked washover sheets and washover lobes. They were formed by wave-dominated processes and secondary overwash processes supplemented by longshore currents.

Keywords beach-ridge      ground penetrating radar      radar facies      radar stratigraphy      washover process     
Corresponding Author(s): Xinghe YU   
Just Accepted Date: 08 April 2015   Online First Date: 20 May 2015    Issue Date: 25 December 2015
 Cite this article:   
Xin SHAN,Xinghe YU,Peter D. CLIFT, et al. Ground-penetrating radar study of beach-ridge deposits in Huangqihai Lake, North China: the imprint of washover processes[J]. Front. Earth Sci., 2016, 10(1): 183-194.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0501-z
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I1/183
Fig.1  Study site and location. (a) A GMT topographic map with the Huangqihai area highlighted within a square. Data is from SRTM (Shuttle Radar Monitoring Mission). (b) Bathymetry map of the dried out Huangqihai Lake in May, 2012. Depths were mapped by GPS as part of this study. (c) Planform map of the study beach ridge system in May 2012 with the locations of the 400 MHz GPR profiles and Trenches T1, T2 and T3. (d) Aerial photograph in May 2012 of the beach ridge system taken from the north.
Fig.2  A 400 MHz GPR survey collected by a TerraSIRch SIR 3000 (profile A; 80 m length) with (a) the processed GPR profile, (b) the subsurface radar stratigraphy based on the GPR data, and (c) the sedimentological interpretation based on internal reflection characteristics. The dashed lines represent boundaries between different radar facies. ws= washover sheet, wl= washover lobe. T1 shows the location of Trench 1.
RF Radar surface Sedimentary origin Dip Continuity Amplitude
A1 A-a Beach deposits Gently landward-dipping Continuous Middle
A2 A-a, A-b , A-c Washover sheet Gently landward-dipping Discontinuous Low-middle
A3 A-c, A-d Washover sheet Gently landward-dipping Discontinuous Low-middle
A4 A-b, A-c, A-d Washover sheet Gently landward-dipping Discontinuous Low-middle
A5 A-d, A-e Washover lobe Steeply landward-dipping Discontinuous Middle
A6 A-e , A-f, A-h Washover sheet orswash lamination? Lakeward-dipping Discontinuous Middle
A7 A-f, A-h Washover lobe Steeply landward-dipping Discontinuous Middle-high
A8 A-g, A-h Washover sheet Gently landward-dipping Discontinuous Middle
A9 A-h Soil ? (System noise) Continuous Middle-high
Tab.1  Characteristics of reflections of different radar facies within Profile A.
Fig.3  Trench 1, with interpretation of radar stratigraphy and radar facies on the photo with (a) the lower part of the trench and (b) the upper part. The boundaries (Surfaces A-a, A-b, A-d, A-e, A-f and A-h) and sedimentary units (A-1, A-2, A-4, A-5, A-6, A-7 and A-9) can be correlated well with corresponding radar surfaces and radar facies in Profile A. Sedimentary units A-5 and A-7 display landward-dipping lamination. Note the white arrow which is the same marker in each photograph.
Fig.4  A 400 MHz GPR survey collected by a TerraSIRch SIR 3000 (Profile B; 85 m length) with (a) the processed GPR profile, (b) the subsurface radar stratigraphy based on the GPR data, and (c) the sedimentological interpretation based on internal reflection characteristics. The dashed lines represent boundaries between different radar facies. ws= washover sheet, wl= washover lobe. T2 shows the location of Trench 2.
RF Radar surface Sedimenrary origin Dip Continuity Amplitude
B1 B-a Beach deposits Gently landward-dipping Sub-continuous Middle
B2 B-a, B-b Washover sheet Gently landward-dipping Discontinuous High
B3 B-b, B-c Washover lobe Steeply landward-dipping Discontinuous High
B4 B-c, B-d Washover lobe Steeply landward-dipping Discontinuous Low-middle
B5 , B-d, B-e Washover sheet Gently landward-dipping Discontinuous Middle
B6 B-e, B-f Washover sheet Landward-dipping Discontinuous Middle-high
B7 B-f, B-g Washover sheet Gently landward-dipping Discontinuous High
B8 B-g Immature soil System noise Continuous High
Tab.2  Characteristics of reflections of different radar facies within Profile B.
Fig.5  Trench 2 and Trench 3, with interpretation of radar stratigraphy and radar facies on the photo with (a) Trench 2 with depth of 1.7 m and (b) Trench 3 with depth of 1 m. The boundaries and sedimentary units can be correlated well with corresponding radar surfaces and radar facies in profile B and C.
Fig.6  A 400 MHz GPR survey collected by a TerraSIRch SIR 3000 (Profile C; 80 m length) with (a) the processed GPR profile, (b) the subsurface radar stratigraphy based on the GPR data, and (c) the sedimentological interpretation based on internal reflection characteristics. The dashed lines represent boundaries between different radar facies. ws= washover sheet. T3 shows the location of Trench 3.
RF Radar surface Sedimentary origin Continuity Amplitude
C1 Ca and C-b Beach deposits Continuous Middle
C2 C-a, C-c Washover sheet Discontinuous Middle-high
C3 C-b, C-c Washover sheet Continuous Middle-high
C4 C-c, C-d Washover sheet Discontinuous Low-middle
C5 C-c, C-d, C-f Washover sheet Discontinuous Middle
C6 C-e , C-g Washover sheet Discontinuous Middle-strong
C7 C-f, C-g Washover sheet Discontinuous Middle-strong
C8 C-g, C-h Washover sheet Discontinuous Middle
C9 C-h Soil Continuous High
Tab.3  The characteristic of reflections of different radar facies on Profile C.
Fig.7  Radar facies identified in the radar sections. Based on reflection characteristics, the radar facies were divided into three categories: inclined reflections, horizontal reflections and irregular reflections.
1 Anthony  E J (1995). Beach-ridge development and sediment supply: examples from West Africa. Mar Geol, 129(1−2): 175–186
https://doi.org/10.1016/0025-3227(95)00111-5
2 Bennett  M R, Cassidy  N J, Pile  J (2009). Internal structure of a barrier beach as revealed by ground penetrating radar (GPR): Chesil beach, UK. Geomorphology, 104(3−4): 218–229
https://doi.org/10.1016/j.geomorph.2008.08.015
3 Best  J L, Ashworth  P J, Bristow  C S, Roden  J (2003). Three-dimensional sedimentary architecture of a large, mid-channel sand braid bar, Jamuna River, Bangladesh. J Sediment Res, 73(4): 516–530
https://doi.org/10.1306/010603730516
4 Bristow  C (2009). Ground penetrating radar in Aeolian dune sands. In: Harry  M J, ed. Ground Penetrating Radar Theory and Applications. Amsterdam: Elsevier, 274–295
5 Corbeanu  R M, Soegaard  K, Szerbiak  R B, John  B T, George  A M, Wang  D M, Steven  S, Craig  B F, Ari  M (2001). Detailed internal architecture of a fuvial channel sandstone determined from outcrop, cores, and 3-D ground-penetrating radar: example from the Middle Cretaceous Ferron Sandstone, East-Central Utah. AAPG Bull, 85: 1583–1608
6 Deng  H W, Xiao  Y, Ma  L X, Jiang  Z L (2011). Genetic type, distribution patterns and controlling factors of beach and bars in the second member of the Shahejie formation in the Dawangbei Sag, Bohai Bay, China. Geol J, 46(4): 380–389
https://doi.org/10.1002/gj.1290
7 Drake  N, Bristow  C (2006). Shorelines in the Sahara: geomorphological evidence for an enhanced monsoon from palaeolake Megachad. Holocene, 16(6): 901–911
https://doi.org/10.1191/0959683606hol981rr
8 Harvey  N (2006). Holocene coastal evolution: barriers, beach ridges, and tidal flats of South Australia. J Coast Res, 22(1): 90–99
https://doi.org/10.2112/05A-0008.1
9 Jiang  Z X, Liu  H, Zhang  S W, Su  X, Jiang  Z L (2011). Sedimentary characteristics of large-scale lacustrine beach-bars and their formation in the Eocene Boxing Sag of Bohai Bay Basin, East China. Sedimentology, 58(5): 1087–1112
https://doi.org/10.1111/j.1365-3091.2010.01196.x
10 Jol  H M, Bristow  C S (2003). GPR in sediments: advice on data collection, basic processing and interpretation, a good practice guide. In: Bristow  C S, Jol  H M, eds. Ground Penetrating Radar in Sediments. Geol Soc London Spec Publ, 211: 9–27
11 Lee  K, Gani  M R, McMechan  G A, Bhattacharya  J P, Nyman  S L, Zeng  X (2007). Three-dimensional facies architecture and three-dimensional calcite concretion distributions in a tide-influenced delta front, Wall Creek Member, Frontier Formation, Wyoming. AAPG Bull, 91(2): 191–214
https://doi.org/10.1306/08310605114
12 Leeder  M (2011). Sedimentology and Sedimentary Basins: from Turbulence to Tectonics (2nd ed). Oxford: Wiley-Blackwell, 319–343
13 Matias  A, Ferreira  Ó, Vila-Concejo  A, Garcia  T, Dias  J A (2008). Classification of washover dynamics in barrier islands. Geomorphology, 97(3−4): 655–674
https://doi.org/10.1016/j.geomorph.2007.09.010
14 Miall  A D (1988). Architectural elements and bounding surfaces in fluvial deposits: anatomy of the Kayenta Formation (Lower Jurassic), Southwest Colorado. Sediment Geol, 55(3−4): 233–262
https://doi.org/10.1016/0037-0738(88)90133-9
15 Morton  R A, Gonzalez  J L, Lopez  G I, Correa  I D (2000). Frequent non-storm washover of barrier islands, Pacific Coast of Colombia. J Coast Res, 16(1): 82–87
16 Neal  A (2004). Ground-penetrating radar and its use in sedimentology: principles, problems and progress. Earth Sci Rev, 66(3−4): 261–330
https://doi.org/10.1016/j.earscirev.2004.01.004
17 Neal  A, Pontee  N I, Pye  K, Richards  J (2002). Internal structure of mixed-sand-and-gravel beach deposits revealed using ground-penetrating radar. Sedimentology, 49(4): 789–804
https://doi.org/10.1046/j.1365-3091.2002.00468.x
18 Neal  A, Richards  J, Pye  K (2003). Sedimentology of coarse-clastic beach-ridge deposits, Essex, southeast England. Sediment Geol, 162(3−4): 167–198
https://doi.org/10.1016/S0037-0738(03)00136-2
19 Nichol  S L (2002). Morphology, stratigraphy and origin of last intergacial beach ridges at bream bay, New Zealand. J Coast Res, 18: 149–159
20 Nichols  G (2009). Sedimentology and Stratigraphy. Oxford: Wiley-Blackwell, 151–161
21 Nielsen  L, Clemmensen  L B (2009). Sea-level markers identified in ground-penetrating radar data collected across a modern beach ridge system in a microtidal regime. Terra Nova, 21(6): 474–479
https://doi.org/10.1111/j.1365-3121.2009.00904.x
22 Otvos  E G (2000). Beach ridges—Definitions and significance. Geomorphology, 32(1−2): 83–108
https://doi.org/10.1016/S0169-555X(99)00075-6
23 Scholz  C A, Rosendahl  B R, Scott  D L (1990). Development of coarse-grained facies in lacustrine rift basins: examples from East Africa. Geology, 18(2): 140–144
https://doi.org/10.1130/0091-7613(1990)018<0140:DOCGFI>2.3.CO;2
24 Sebastian  L, Christian  B, Christian  H (2008). The sedimentary architecture of a Holocene barrier spit (Sylt, German Bight): swash-bar accretion and storm erosion. Sedimentary geolology, 206: 1–16
25 Talbot  M R, Allen  P A (1996). Lakes. In: Reading  H G, ed. Sedimentary Environments: Processes, Facies and Stratigraphy. Oxford: Blackwell, 89–91
26 Tamura  T, Murakami  F, Nanayama  F, Watanabe  K, Saito  Y (2008). Ground-penetrating radar profiles of Holocene raised-beach deposits in the Kujukuri strand plain, Pacific coast of eastern Japan. Mar Geol, 248(1−2): 11–27
https://doi.org/10.1016/j.margeo.2007.10.002
27 Yu  X H, Li  S L, Chen  B T, Tan  C P, Xie  J, Hu  X N (2012). Interaction between downslope and along slope processes on the margins of Daihai Lake, North China: implication for deltaic sedimentation models of lacustrine rift basin. Acta Geol Sin, 86(4): 932–948
https://doi.org/10.1111/j.1755-6724.2012.00718.x
28 Zhang  J R, Jia  Y L, Lai  Z P, Long  H, Yang  L H (2011). Holocene evolution of Huangqihai Lake in semi-arid northern China based on sedimentology and luminescence dating. Holocene, 21(8): 1261–1268
https://doi.org/10.1177/0959683611405232
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed