|
|
|
Patterns of coccolithophore pigment change under global acidification conditions based on in-situobservations at BATS site between July 1990–Dec 2008 |
Jianhai LV1,4, Yaoqiu KUANG1, Hui ZHAO2,3( ), Andreas ANDERSSON2 |
1. Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China 2. Bermuda Institute of Ocean Sciences, Ferry Reach, St. Georges GE-01, Bermuda 3. Guangdong Ocean University, Zhanjiang 524088, China 4. Marine and Fishery Environment Monitoring Center of Guangzhou, Guangzhou 510235, China |
|
|
|
|
Abstract Coccolith production is an important part of the biogenic carbon cycle as the largest source of calcium carbonate on earth, accounting for about 75% of the deposition of carbon on the sea floor. Recent studies based on laboratory experiment results indicated that increasing anthropogenic CO2 in the atmosphere triggered global ocean acidification leading to a decrease of calcite or aragonite saturation and calcium carbonate, and to decreasing efficiency of carbon export/pumping to deep layers. In the present study, we analyzed about 20?years of field observations of coccolithophore pigment, dissolved inorganic carbon (DIC), nutrients, and temperatures from the Bermuda Atlantic Time-series Study (BATS) site and satellite remote sensing to investigate the variable tendency of the coccolithophore pigment, and to evaluate the influence of ocean acidification on coccolithophore biomass. The results indicated that there was a generally increasing tendency of coccolithophore pigment, coupled with increasing bicarbonate concentrations or decreasing carbonate ion concentration. The change of coccolithophore pigment was also closely associated with pH, nutrients, mixed layer depth (MLD), and temperature. Correlation analyses between coccolithophores and abiotic parameter imply that coccoliths production or coccolithophore pigment has increased with increasing acidification in the recent 20 y ears.
|
| Keywords
dissolved inorganic carbon
BATS
MLD
coccolithophore pigments
the Bermuda
|
|
Corresponding Author(s):
Hui ZHAO
|
|
Just Accepted Date: 08 May 2015
Online First Date: 18 June 2015
Issue Date: 19 May 2017
|
|
| 1 |
Bates N R, Takahashi T, Chipman D W , Knap A H (1998). Variability of pCO2 on diel to seasonal timescales in the Saragasso Sea near Bermuda. J Geophys Res, 103(C8): 15567–15585
https://doi.org/10.1029/98JC00247
|
| 2 |
Bijma J, Spero H J, Lea D W, Bemis B E (1999). Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results). In: Fischer G, Wefer G , eds. Use of Proxies in Paleoceanography: Examples from the South Atlantic. Berlin: Springer Science & Business Media, 489–512
|
| 3 |
Brown C W (2000). Spatial and temporal variability of Emiliania huxleyi blooms in Sea WiFS imagery. Paper presented at American Geophysical Union, Ocean Sciences Meeting, San Antonio, Texas (USA), January, 24–28
|
| 4 |
Crawford D, Purdie D (1997). Increase of pCO2 during blooms of Emiliania Huxleyi: theoretical considerations on the asymmetry between acquisition of HCO3− and respiration of free CO2. Limnol Oceanogr, 42(2): 365–372
https://doi.org/10.4319/lo.1997.42.2.0365
|
| 5 |
Cokacar T, Oguz T, Kubilay N (2004). Satellite-detected early summer coccolithophore blooms and their interannual variability in the Black Sea. Deep Sea Res Part I Oceanogr Res Pap, 51(8): 1017–1031
https://doi.org/10.1016/j.dsr.2004.03.007
|
| 6 |
Conte M H, Ralph N, Ross E H (2001). Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time Series (BATS) site in the western Sargasso Sea near Bermuda. Deep Sea Res Part II Top Stud Oceanogr, 48(8–9): 1471–1505
https://doi.org/10.1016/S0967-0645(00)00150-8
|
| 7 |
Delille B, Harlay J, Zondervan I , Jacquet S , Chou L, Wollast R, Bellerby R G J , Frankignoulle M , Borges A V , Riebesell U , Gattuso J P (2005). Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Global Biogeochem Cycles, 19(2): GB2023
https://doi.org/10.1029/2004GB002318
|
| 8 |
Dore J E, Houlihan T, Hebel D V , Tien G, Tupas L, Karl D M (1996). Freezing as a method of sample preservation for the analysis of dissolved inorganic nutrients in seawater. Mar Chem, 53(3–4): 173–185
https://doi.org/10.1016/0304-4203(96)00004-7
|
| 9 |
Gardner W D (1977). Incomplete extraction of rapidly settling particles from water samplers. Limnol Oceanogr, 22(4): 764–768
https://doi.org/10.4319/lo.1977.22.4.0764
|
| 10 |
Groom S B, Holligan P M (1987). Remote sensing of coccoltihophore blooms. Proceedings XXVI COSPAR Meeting, Toulouse, France
|
| 11 |
Haidar A T, Thierstein H R (2001). Coccolithophore dynamics of Bermuda (N. Atlantic). Deep Sea Res Part II Top Stud Oceanogr, 48(8–9): 1925–1956
https://doi.org/10.1016/S0967-0645(00)00169-7
|
| 12 |
Hansell D A, Carlson C A (2001). Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea: control by convective overturn. Deep Sea Res Part II Top Stud Oceanogr, 48(8–9): 1649–1667
https://doi.org/10.1016/S0967-0645(00)00153-3
|
| 13 |
Heimdal B R (1983). Phytoplankton and nutrients in the waters north-west of Spitsbergen in the autumn of 1979. J Plankton Res, 5(6), 901–918
https://doi.org/10.1093/plankt/5.6.901
|
| 14 |
Honjo S (1986). Oceanic particles and pelagic sedimentation in the western North Atlantic Ocean. The Geology of North America, 1000: 469–478
https://doi.org/10.1130/DNAG-GNA-M.469
|
| 15 |
Honjo S (1990). Particle fluxes between 47 N and 34 N 20 W stations between April 3 to September 26, 1989. EOS Trans AGU, 71: 81
|
| 16 |
Hulburt E M (1990). Description of phytoplankton and nutrient in spring in the western North Atlantic Ocean. J Plankton Res, 12(1): 1–28
https://doi.org/10.1093/plankt/12.1.1
|
| 17 |
Hulburt E M, Ryther J H, Guillard R (1960). The phytoplankton of the Sargasso Sea off Bermuda. Journal du Conseil, 25(2): 115–128
https://doi.org/10.1093/icesjms/25.2.115
|
| 18 |
Iglesias-Rodriguez M D , Halloran P R , Rickaby R E M , Hall I R , Colmenero-Hidalgo E , Gittins J R , Green D R H , Tyrrell T , Gibbs S J , von Dassow E , Rehm E, Armbrust E V, Boessenkool K P (2008). Phytoplankton calcification in a high-CO2 world. Science, 320(5874): 336–340
https://doi.org/10.1126/science.1154122
|
| 19 |
Jeffrey S W, Mantoura R F C, Bjørnland T (1997). Data for the identification of 47 key phytoplankton pigments. In: Jeffrey S W, Mantoura R F C, Wright S W, eds. Phytoplankton Pigments in Oceanography: Guidelines to Modern Methods. Unesco Monographs on Oceanographic Methodology, vol 10. UNESCO, Paris, 449–559
|
| 20 |
Joyce T M, Robbins P (1996). The long-term hydrographic record at Bermuda. J Clim, 9(12): 3121–3131
https://doi.org/10.1175/1520-0442(1996)009<3121:TLTHRA>2.0.CO;2
|
| 21 |
Kleypas J A, Buddemeier R W, Archer D, Gattuso J P , Langdon C , Opdyke B N (1999). Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science, 284(5411): 118–120
https://doi.org/10.1126/science.284.5411.118
|
| 22 |
Knap A H, Michaels A F, Dow R L, Johnson R J, Gundersen K, Sorensen J C , Close A R , Howse F , Hammer M , Bates N , Doyle A , Waterhouse T (1993). BATS Methods Manual, Version 3. U.S. JGOFS Planning O$ce, Woods Hole, MA
|
| 23 |
Knap A H, Michaels A F, Steinberg D, Bahr F , Bates N , Bell S, Countway P, Close A , Doyle A , Howse F , Gundersen K , Johnson R , Little R , Orcutt K , Parsons R , Rathbun C , Sanderson M , Michaels A F , Knap A H (1995). Overview of the U.S. JGOFS BATS and Hydrostation S program. Deep-Sea Res, 43(2–3): 157–198
|
| 24 |
Langer G, Geisen M, Baumann K H , Kläs J , Riebesell U , Thoms S , Young J R (2006). Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem Geophys Geosyst, 7(9): Q09006
https://doi.org/10.1029/2005GC001227
|
| 25 |
Lochhead V C, Lomas M W, Lethaby P J (2001). Long-term variability of phytoplankton community structure at the Bermuda Atlantic Time-series Study (BATS) site based on pigment analyses using the “CHEMTAX” matrix (Abstract). Workshop “Pigments as a Tool to Estimate the Biomass of Different Phytoplankton Groups”. Barcelona, 2001. 25
|
| 26 |
Marshall H (1968). Coccolithophores in the northwest Sargasso Sea. Limnol Oceanogr, 13(2): 370–376
https://doi.org/10.4319/lo.1968.13.2.0370
|
| 27 |
Michaels A F (1995). Ocean time series research near Bermuda: the Hydrostation S time series and the Bermuda Atlantic time series study (BATS). In: Powell T M , Steele J H , eds. Ecological Time Series. New York: Chapman and Hall, 181–208
|
| 28 |
Nimer N A, Merrett M J (1992). Calcification and utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi Lohmann. New phytol, 121(2): 173–177
https://doi.org/10.1111/j.1469-8137.1992.tb01102.x
|
| 29 |
Oguz T, Ediger D (2006). Comparision of in situ and satellite-derived chlorophyll pigment concentrations, and impact of phytoplankton bloom on the suboxic layer structure in the western Black Sea during May–June 2001. Deep Sea Res Part II Top Stud Oceanogr, 53(17–19): 1923–1933
https://doi.org/10.1016/j.dsr2.2006.07.001
|
| 30 |
Riebesell U, Zondervan I, Rost B , Tortell P D , Zeebe R E , Morel F M (2000). Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature, 407: 365–367
|
| 31 |
Silva A, Brotas V, Valente A , Sá C , Diniz T , Patarra R F , Álvaro N V , Neto A I (2013). Coccolithophore species as indicators of surface oceanographic conditions in the vicinity of Azores islands. Estuar Coast Shelf Sci, 118: 50–59
https://doi.org/10.1016/j.ecss.2012.12.010
|
| 32 |
Sprengel C, Baumann K H, Henderiks J, Henrich R , Neuer S (2002). Modern coccolithophore and carbonate sedimentations along a productivity gradient in the Canary Islands region: seasonal export production and surface accumulation rate. Deep Sea Res Part II Top Stud Oceanogr, 49(17): 3577–3598
https://doi.org/10.1016/S0967-0645(02)00099-1
|
| 33 |
Steinberg D K , Carlson C A , Bates N R , Johnson R J , Michaels A F , Knap A H (2001). Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr, 48(8–9): 1405–1447
https://doi.org/10.1016/S0967-0645(00)00148-X
|
| 34 |
Strong A E, Eadie B J (1978). Satellite observations of calcium carbonate precipitations in the Great Lakes. Limnol Oceanogr, 23(5): 877–887
https://doi.org/10.4319/lo.1978.23.5.0877
|
| 35 |
Trimborn S, Langer G, Rost B (2007). Effect of varying calcium concentrations and light intensities on calcification and photosynthesis in Emiliania huxleyi. Limnol Oceanogr, 52(5): 2285–2293
https://doi.org/10.4319/lo.2007.52.5.2285
|
| 36 |
Westbroek P, Jong V D, Walder P V, Borman A H, Vrind J P (1985). Biopolymer-mediatedcalcium and manganese accumulation and biomineralization. Geol Mijnb, 64: 5–15
|
| 37 |
Zeebe R E, Zachos J C, Caldeira K, Tyrrell T (2008). Oceans: carbon emissions and acidification. Science, 321(5885): 51–52
https://doi.org/10.1126/science.1159124
|
| 38 |
Zondervan I, Zeebe R E, Rost B, Riebesell U (2001). Decreasing marine biogenic calcification: a negative feedback on rising atmospheric pCO2. Global Biogeochem Cycles, 15(2): 507–516
https://doi.org/10.1029/2000GB001321
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|