Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (1) : 49-62    https://doi.org/10.1007/s11707-015-0518-3
RESEARCH ARTICLE
Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China
Cui JIN1(), Xiangming XIAO1,2, Jinwei DONG1, Yuanwei QIN1, Zongming WANG3
1. Department of Microbiology and Plant Biology, Center for Spatial Analysis, University of Oklahoma, Norman, OK 73019, USA
2. Institute of Biodiversity Sciences, Fudan University, Shanghai 200433, China
3. Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun 130102, China
 Download: PDF(3887 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Information of paddy rice distribution is essential for food production and methane emission calculation. Phenology-based algorithms have been utilized in the mapping of paddy rice fields by identifying the unique flooding and seedling transplanting phases using multi-temporal moderate resolution (500 m to 1 km) images. In this study, we developed simple algorithms to identify paddy rice at a fine resolution at the regional scale using multi-temporal Landsat imagery. Sixteen Landsat images from 2010–2012 were used to generate the 30 m paddy rice map in the Sanjiang Plain, northeast China—one of the major paddy rice cultivation regions in China. Three vegetation indices, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), and Land Surface Water Index (LSWI), were used to identify rice fields during the flooding/transplanting and ripening phases. The user and producer accuracies of paddy rice on the resultant Landsat-based paddy rice map were 90% and 94%, respectively. The Landsat-based paddy rice map was an improvement over the paddy rice layer on the National Land Cover Dataset, which was generated through visual interpretation and digitalization on the fine-resolution images. The agricultural census data substantially underreported paddy rice area, raising serious concern about its use for studies on food security.

Keywords phenology      flooding      transplanting      ripening      land use     
Corresponding Author(s): Cui JIN   
Just Accepted Date: 26 May 2015   Online First Date: 29 July 2015    Issue Date: 25 December 2015
 Cite this article:   
Cui JIN,Xiangming XIAO,Jinwei DONG, et al. Mapping paddy rice distribution using multi-temporal Landsat imagery in the Sanjiang Plain, northeast China[J]. Front. Earth Sci., 2016, 10(1): 49-62.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0518-3
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I1/49
1 P Belder, B A M Bouman, R Cabangon, G Lu, E J P Quilang, Y H Li, J H J Spiertz, T P Tuong (2004). Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manage, 65(3): 193–210
https://doi.org/10.1016/j.agwat.2003.09.002
2 C M Biradar, X M Xiao (2011). Quantifying the area and spatial distribution of double- and triple-cropping croplands in India with multi-temporal MODIS imagery in 2005. Int J Remote Sens, 32(2): 367–386
https://doi.org/10.1080/01431160903464179
3 W B Cohen, Z G Yang, R Kennedy (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync- Tools for calibration and validation. Remote Sens Environ, 114(12): 2911–2924
https://doi.org/10.1016/j.rse.2010.07.010
4 R G Congalton (1991). A review of asessing the accuracy of classifications of remotely sensed data. Remote Sens Environ, 37(1): 35–46
https://doi.org/10.1016/0034-4257(91)90048-B
5 P Döll (2002). Impact of climate change and variability on irrigation requirements: a global perspective. Clim Change, 54(3): 269–293
https://doi.org/10.1023/A:1016124032231
6 J W Dong, X M Xiao, B Q Chen, N Torbick, C Jin, G L Zhang, C Biradar (2013). Mapping deciduous rubber plantations through integration of PALSAR and multi-temporal Landsat imagery. Remote Sens Environ, 134: 392–402
https://doi.org/10.1016/j.rse.2013.03.014
7 M C Hansen, P V Potapov, R Moore, M Hancher, S A Turubanova, A Tyukavina, D Thau, S V Stehman, S J Goetz, T R Loveland, A Kommareddy, A Egorov, L Chini, C O Justice, J R G Townshend (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160): 850–853
https://doi.org/10.1126/science.1244693
8 C Q Huang, S N Coward, J G Masek, N Thomas, Z L Zhu, J E Vogelmann (2010a). An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sens Environ, 114(1): 183–198
https://doi.org/10.1016/j.rse.2009.08.017
9 N Huang, Z M Wang, D W Liu, Z Niu (2010b). Selecting sites for converting farmlands to wetlands in the Sanjiang Plain, Northeast China, based on remote sensing and GIS. Environ Manage, 46(5): 790–800
https://doi.org/10.1007/s00267-010-9547-6
10 A Huete, K Didan, T Miura, E P Rodriguez, X Gao, L G Ferreira (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ, 83(1−2): 195–213
https://doi.org/10.1016/S0034-4257(02)00096-2
11 A R Huete, H Q Liu, K Batchily, W vanLeeuwen (1997). A comparison of vegetation indices global set of TM images for EOS-MODIS. Remote Sens Environ, 59(3): 440–451
https://doi.org/10.1016/S0034-4257(96)00112-5
12 R E Kennedy, Z G Yang, W B Cohen (2010). Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr- Temporal segmentation algorithms. Remote Sens Environ, 114(12): 2897–2910
https://doi.org/10.1016/j.rse.2010.07.008
13 C Kuenzer, K Knauer (2013). Remote sensing of rice crop areas. Int J Remote Sens, 34(6): 2101–2139
https://doi.org/10.1080/01431161.2012.738946
14 M Laba, S D Smith, S D Degloria (1997). Landsat-based land cover mapping in the lower Yuna River watershed in the Dominican Republic. Int J Remote Sens, 18(14): 3011–3025
https://doi.org/10.1080/014311697217170
15 C S Li, A Mosier, R Wassmann, Z C Cai, X H Zheng, Y Huang, H Tsuruta, J Boonjawat, R Lantin (2004). Modeling greenhouse gas emissions from rice-based production systems: sensitivity and upscaling. Global Biogeochem Cycles, 18(1): GB1043
https://doi.org/10.1029/2003GB002045
16 P Li, Z M Feng, L G Jiang, Y J Liu, X M Xiao (2012). Changes in rice cropping systems in the Poyang Lake Region, China during 2004‒2010. J Geogr Sci, 22(4): 653–668
https://doi.org/10.1007/s11442-012-0954-x
17 J Liu, M Liu, H Tian, D Zhuang, Z Zhang, W Zhang, X Tang, X Deng (2005). Spatial and temporal patterns of China's cropland during 1990−2000: an analysis based on Landsat TM data. Remote Sens Environ, 98(4): 442–456
https://doi.org/10.1016/j.rse.2005.08.012
18 J G Masek, C Q Huang, R Wolfe, W Cohen, F Hall, J Kutler, P Nelson (2008). North American forest disturbance mapped from a decadal Landsat record. Remote Sens Environ, 112(6): 2914–2926
https://doi.org/10.1016/j.rse.2008.02.010
19 K R McCloy, F R Smith, M R Robinson (1987). Monitoring rice areas using LANDSAT MSS data. Int J Remote Sens, 8(5): 741–749
https://doi.org/10.1080/01431168708948685
20 H Müller, P Rufin, P Griffiths, A J Barros Siqueira, P Hostert (2015). Mining dense Landsat time series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. Remote Sens Environ, 156: 490–499
https://doi.org/10.1016/j.rse.2014.10.014
21 K Okamoto, M Fukuhara (1996). Estimation of paddy field area using the area ratio of categories in each mixel of Landsat TM. Int J Remote Sens, 17(9): 1735–1749
https://doi.org/10.1080/01431169608948736
22 K Okamoto, S Yamakawa, H Kawashima (1998). Estimation of flood damage to rice production in North Korea in 1995. Int J Remote Sens, 19(2): 365–371
https://doi.org/10.1080/014311698216332
23 S Panigrahy, J S Parihar (1992). Role of middle infrared bands of Landsat Thematic Mapper in determining the classification accuracy of rice. Int J Remote Sens, 13(15): 2943–2949
https://doi.org/10.1080/01431169208904092
24 J Qiu, H Tang, S Frolking, S Boles, C Li, X Xiao, J Liu, Y Zhuang, X Qin (2003). Mapping single-, double-, and triple-crop agriculture in China at 0.5°×0.5° by combining county-scale census data with a remote sensing-derived land cover map. Geocarto Int, 18(2): 3–13
https://doi.org/10.1080/10106040308542268
25 P P N Rao, V R Rao (1987). Rice crop identification and area estimation using remotely-sensed data from Indian cropping patterns. Int J Remote Sens, 8(4): 639–650
https://doi.org/10.1080/01431168708948670
26 J A Richards eds (1999). Remote Sensing Digital Image Analysis. Berlin: Springer-Verlag
27 T Sakamoto, P van Cao, N van Nguyen, A Kotera, M Yokozawa (2009a). Agro-ecological interpretation of rice cropping systems in flood-prone areas using MODIS imagery. Photogramm Eng Remote Sensing, 75(4): 413–424
https://doi.org/10.14358/PERS.75.4.413
28 T Sakamoto, N Van Nguyen, H Ohno, N Ishitsuka, M Yokozawa (2006). Spatio−temporal distribution of rice phenology and cropping systems in the Mekong Delta with special reference to the seasonal water flow of the Mekong and Bassac rivers. Remote Sens Environ, 100(1): 1–16
https://doi.org/10.1016/j.rse.2005.09.007
29 T Sakamoto, C Van Phung, A Kotera, K D Van Nguyen, M Yokozawa (2009b). Analysis of rapid expansion of inland aquaculture and triple rice-cropping areas in a coastal area of the Vietnamese Mekong Delta using MODIS time-series imagery. Landsc Urban Plan, 92(1): 34–46
https://doi.org/10.1016/j.landurbplan.2009.02.002
30 A Shalaby, R Tateishi (2007). Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl Geogr, 27(1): 28–41
https://doi.org/10.1016/j.apgeog.2006.09.004
31 H Sun, J Huang, A R Huete, D Peng, F Zhang (2009). Mapping paddy rice with multi-date moderate-resolution imaging spectroradiometer (MODIS) data in China. Journal of Zhejiang University SCIENCE A, 10: 1509–1522
https://doi.org/10.1631/jzus.A0820536
32 C J Tucker (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens Environ, 8(2): 127–150
https://doi.org/10.1016/0034-4257(79)90013-0
33 M D Turner, R G Congalton (1998). Classification of multi-temporal SPOT-XS satellite data for mapping rice fields on a West African floodplain. Int J Remote Sens, 19(1): 21–41
https://doi.org/10.1080/014311698216404
34 N Van Nguyen, A Ferrero (2006). Meeting the challenges of global rice production. Paddy and Water Environment, 4(1): 1–9
https://doi.org/10.1007/s10333-005-0031-5
35 E F Vermote, N ElSaleous, C O Justice, Y J Kaufman, J L Privette, L Remer, J C Roger, D Tanre (1997). Atmospheric correction of visible to middle-infrared EOS-MODIS data over land surfaces: background, operational algorithm and validation. J Geophys Res, D, Atmospheres, 102(D14): 17131–17141
https://doi.org/10.1029/97JD00201
36 X M Xiao, S Boles, S Frolking, C S Li, J Y Babu, W Salas, B Moore III (2006). Mapping paddy rice agriculture in South and Southeast Asia using multi-temporal MODIS images. Remote Sens Environ, 100(1): 95–113
https://doi.org/10.1016/j.rse.2005.10.004
37 X M Xiao, S Boles, J Y Liu, D F Zhuang, S Frolking, C S Li, W Salas, B Moore III (2005). Mapping paddy rice agriculture in southern China using multi-temporal MODIS images. Remote Sens Environ, 95(4): 480–492
https://doi.org/10.1016/j.rse.2004.12.009
38 X M Xiao, Q Y Zhang, B Braswell, S Urbanski, S Boles, S Wofsy, M Berrien, D Ojima (2004). Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens Environ, 91(2): 256–270
https://doi.org/10.1016/j.rse.2004.03.010
39 J Xie (2013). Classification of wetlands using object-oriented method and multi-season remote sensing images in Sanjiang Plain. Dissertation for Master degree. Available from China knowledge Resource Integrated Database (in Chinese)
40 Y Zhang, Y Y Wang, S L Su, C S Li (2011). Quantifying methane emissions from rice paddies in Northeast China by integrating remote sensing mapping with a biogeochemical model. Biogeosciences, 8(5): 1225–1235
https://doi.org/10.5194/bg-8-1225-2011
41 L Zhong, P Gong, G S Biging (2014). Efficient corn and soybean mapping with temporal extendability: a multi-year experiment using Landsat imagery. Remote Sens Environ, 140: 1–13
https://doi.org/10.1016/j.rse.2013.08.023
42 Z Zhu, C E Woodcock (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens Environ, 118: 83–94
https://doi.org/10.1016/j.rse.2011.10.028
43 Z Zhu, C E Woodcock, P Olofsson (2012). Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sens Environ, 122: 75–91
https://doi.org/10.1016/j.rse.2011.10.030
[1] Jing YE, Zhijie HOU, Haiyan MING, Yehuai CHENG. Ecological security pattern-based simulation for land use structure change: a case study in Ezhou City, China[J]. Front. Earth Sci., 2021, 15(3): 526-542.
[2] Wanben WU, Wei WANG, Michael E. Meadows, Xinfeng YAO, Wei PENG. Cloud-based typhoon-derived paddy rice flooding and lodging detection using multi-temporal Sentinel-1&2[J]. Front. Earth Sci., 2019, 13(4): 682-694.
[3] Zhuokun PAN, Yueming HU, Guangxing WANG. Detection of short-term urban land use changes by combining SAR time series images and spectral angle mapping[J]. Front. Earth Sci., 2019, 13(3): 495-509.
[4] Ying XIONG, Fen PENG, Bin ZOU. Spatiotemporal influences of land use/cover changes on the heat island effect in rapid urbanization area[J]. Front. Earth Sci., 2019, 13(3): 614-627.
[5] Kun JIA, Jingcan LIU, Yixuan TU, Qiangzi LI, Zhiwei SUN, Xiangqin WEI, Yunjun YAO, Xiaotong ZHANG. Land use and land cover classification using Chinese GF-2 multispectral data in a region of the North China Plain[J]. Front. Earth Sci., 2019, 13(2): 327-335.
[6] Yongfeng WANG, Zhaohui XUE, Jun CHEN, Guangzhou CHEN. Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015[J]. Front. Earth Sci., 2019, 13(1): 92-110.
[7] Donal O’Leary III, Dorothy Hall, Michael Medler, Aquila Flower. Quantifying the early snowmelt event of 2015 in the Cascade Mountains, USA by developing and validating MODIS-based snowmelt timing maps[J]. Front. Earth Sci., 2018, 12(4): 693-710.
[8] Xiaoting WANG, Zhan’e YIN, Xuan WANG, Pengfei TIAN, Yonghua HUANG. A study on flooding scenario simulation of future extreme precipitation in Shanghai[J]. Front. Earth Sci., 2018, 12(4): 834-845.
[9] Jicai NING, Zhiqiang GAO, Ran MENG, Fuxiang XU, Meng GAO. Analysis of relationships between land surface temperature and land use changes in the Yellow River Delta[J]. Front. Earth Sci., 2018, 12(2): 444-456.
[10] Jianguo LI, Wenhui YANG, Qiang LI, Lijie PU, Yan XU, Zhongqi ZHANG, Lili LIU. Effect of reclamation on soil organic carbon pools in coastal areas of eastern China[J]. Front. Earth Sci., 2018, 12(2): 339-348.
[11] Ellen WOHL. The significance of small streams[J]. Front. Earth Sci., 2017, 11(3): 447-456.
[12] Chong PENG, Hao XIAO, Yu LIU, Jingjing ZHANG. Economic structure and environmental quality and their impact on changing land use efficiency in China[J]. Front. Earth Sci., 2017, 11(2): 372-384.
[13] Hui ZHANG, Qiao WANG, Guangyu LI, Hanpei ZHANG, Jue ZHANG. Losses of Ecosystem Service Values in the Taihu Lake Basin from 1979 to 2010[J]. Front. Earth Sci., 2017, 11(2): 310-320.
[14] Liliana ZAHARIA, Romulus COSTACHE, Remus PRĂVĂLIE, Gabriela IOANA-TOROIMAC. Mapping flood and flooding potential indices: a methodological approach to identifying areas susceptible to flood and flooding risk. Case study: the Prahova catchment (Romania)[J]. Front. Earth Sci., 2017, 11(2): 229-247.
[15] Haiguang HAO, Xiubin LI, Minghong TAN, Jiping ZHANG, Huiyuan ZHANG. Agricultural land use intensity and its determinants: A case study in Taibus Banner, Inner Mongolia, China[J]. Front. Earth Sci., 2015, 9(2): 308-318.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed