Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (3) : 432-443    https://doi.org/10.1007/s11707-015-0535-2
RESEARCH ARTICLE
A one-way coupled atmospheric-hydrological modeling system with combination of high-resolution and ensemble precipitation forecasting
Zhiyong WU1, Juan WU1,2(), Guihua LU1
1. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
2. Bureau of Hydrology Information Center of Taihu Basin Authority, Shanghai 200434, China
 Download: PDF(1641 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Coupled hydrological and atmospheric modeling is an effective tool for providing advanced flood forecasting. However, the uncertainties in precipitation forecasts are still considerable. To address uncertainties, a one-way coupled atmospheric-hydrological modeling system, with a combination of high-resolution and ensemble precipitation forecasting, has been developed. It consists of three high-resolution single models and four sets of ensemble forecasts from the THORPEX Interactive Grande Global Ensemble database. The former provides higher forecasting accuracy, while the latter provides the range of forecasts. The combined precipitation forecasting was then implemented to drive the Chinese National Flood Forecasting System in the 2007 and 2008 Huai River flood hindcast analysis. The encouraging results demonstrated that the system can clearly give a set of forecasting hydrographs for a flood event and has a promising relative stability in discharge peaks and timing for warning purposes. It not only gives a deterministic prediction, but also generates probability forecasts. Even though the signal was not persistent until four days before the peak discharge was observed in the 2007 flood event, the visualization based on threshold exceedance provided clear and concise essential warning information at an early stage. Forecasters could better prepare for the possibility of a flood at an early stage, and then issue an actual warning if the signal strengthened. This process may provide decision support for civil protection authorities. In future studies, different weather forecasts will be assigned various weight coefficients to represent the covariance of predictors and the extremes of distributions.

Keywords one-way coupled hydrological and atmospheric modeling      flood forecast      high-resolution precipitation forecasting      ensemble prediction     
Corresponding Author(s): Juan WU   
Just Accepted Date: 10 October 2015   Online First Date: 23 November 2015    Issue Date: 20 June 2016
 Cite this article:   
Zhiyong WU,Juan WU,Guihua LU. A one-way coupled atmospheric-hydrological modeling system with combination of high-resolution and ensemble precipitation forecasting[J]. Front. Earth Sci., 2016, 10(3): 432-443.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0535-2
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I3/432
1 H J Bao, L N Zhao, Y He, Z J Li, F Wetterhall, H L Cloke, F Pappenberger, D Manful (2011). Coupling ensemble weather predictions based on TIGGE database with Grid-Xinanjiang model for flood forecast. Adv Geosci, 29: 61–67
https://doi.org/10.5194/adgeo-29-61-2011
2 J Bartholmes, J Thielen, M Ramos, S Gentilini (2008). The European Flood Alert System EFAS−Part 2: statistical skill assessment of probabilistic and deterministic operational forecasts. Hydrol Earth Syst Sci Discuss, 5(1): 289–322
https://doi.org/10.5194/hessd-5-289-2008
3 R Benoit, M Desgagné, P Pellerin, S Pellerin, Y Chartier, S Desjardins (1997). A semi-lagrangian, semi-implicit wide-band atmospheric model suited for fine scale process studies and simulation. Mon Weather Rev, 125(10): 2382–2415
https://doi.org/10.1175/1520-0493(1997)125<2382:TCMASL>2.0.CO;2
4 R Benoit, C Schär, P Binder, S Chamberland, H C Davies, M Desgagné, C Girard, C Keil, N Kouwen, D Lüthi, D Maric, E Müller, P Pellerin, J Schmidli, F Schubiger, C Schwierz, M Sprenger, A Walser, S Willemse, W Yu, E Zala (2001). The real-time ultrafine scale forecast support during the special observing period of the MAP. Bull Am Meteorol Soc, 83(1): 985–1009
5 C H Bishop, B J Etherton, S J Majumdar (2001). Adaptive sampling with the ensemble transform Kalman filter Part I: theoretical aspects. Mon Weather Rev, 129(3): 420–436
https://doi.org/10.1175/1520-0493(2001)129<0420:ASWTET>2.0.CO;2
6 W Bourke, R Buizza, M Naughton (2004). Performance of the ECMWF and the BoM ensemble prediction systems in the Southern Hemisphere. Mon Weather Rev, 132(10): 2338–2357
https://doi.org/10.1175/1520-0493(2004)132<2338:POTEAT>2.0.CO;2
7 Č Branković, T N Palmer, F Molteni, S Tibaldi, U Cubasch (1990). Extended-range predictions with ECMWF models: time-lagged ensemble forecasting. Q J R Meteorol Soc, 116(494): 867–912
https://doi.org/10.1002/qj.49711649405
8 R Buizza, T N Palmer (1995). The singular-vector structure of the atmospheric global circulation. J Atmos Sci, 52(9): 1434–1456
https://doi.org/10.1175/1520-0469(1995)052<1434:TSVSOT>2.0.CO;2
9 J Côté, S Gravel, A Méthot, A Patoine, M Roch, A Staniforth (1998). The operational CMC-MRB Global Environmental Multiscale (GEM) model Part I: design considerations and formulation. Mon Weather Rev, 126(6): 1373–1395
https://doi.org/10.1175/1520-0493(1998)126<1373:TOCMGE>2.0.CO;2
10 A Dalcher, E Kalnay, R N Hoffman (1988). Medium range lagged forecasts. Mon Weather Rev, 116(2): 402–416
https://doi.org/10.1175/1520-0493(1988)116<0402:MRLAF>2.0.CO;2
11 S Davolio, M M Miglietta, T Diomede, C Marsigli, A Montani (2012). A flood episode in Northern Italy: multi-model and single-model mesoscale meteorological ensembles for hydrological predictions. Hydrol Earth Syst Sci, 9(12): 13415–13450
https://doi.org/10.5194/hessd-9-13415-2012
12 S Davolio, M M Miglietta, T Diomede, C Marsigli, A Morgillo, A Moscatello (2008). A meteo-hydrological prediction system based on a multi-model approach for precipitation forecasting. Nat Hazards Earth Syst Sci, 8(1): 143–159
https://doi.org/10.5194/nhess-8-143-2008
13 T Diomede, S Davolio, C Marsigli, M M Miglietta, A Moscatello, P Papetti, T Paccagnella, A Buzzi, P Malguzzi (2008b). Discharge prediction based on multi-model precipitation forecasts. Meteorol Atmos Phys, 101(3−4): 245–265
https://doi.org/10.1007/s00703-007-0285-0
14 T Diomede, C Marsigli, F Nerozzi, P Papetti, T Paccagnella (2008a). Coupling high-resolution precipitation forecasts and discharge predictions to evaluate the impact of spatial uncertainty in numerical weather prediction model outputs. Meteorol Atmos Phys, 102(1−2): 37–62
https://doi.org/10.1007/s00703-008-0003-6
15 A Erfani, A Méthot, R Goodson, S Bélair, K S Yeh, J Côté, R Moffet (2003). Synoptic and mesoscale study of a severe convective outbreak with the nonhydrostatic Global Environmental Multiscale (GEM) model. Meteorol Atmos Phys, 82(1−4): 31–53
https://doi.org/10.1007/s00703-001-0585-8
16 L Froude (2010). TIGGE: comparison of the prediction of northern hemisphere extratropical cyclones by different ensemble prediction systems. Weather Forecast, 25(3): 819–836
https://doi.org/10.1175/2010WAF2222326.1
17 M A Gill (1978). Flood routing by the Muskingum method. J Hydrol (Amst), 36(3−4): 353–363
https://doi.org/10.1016/0022-1694(78)90153-1
18 F Habets, J Noilhan, C Golaz, J P Goutorbe, P Lacarrère, E Leblois, E Ledoux, E Martin, C Ottlé, D Vidal-Madjar (1999). The ISBA surface scheme in a macroscale hydrological model applied to the Hapex-Mobilhy area Part 1: model and database. J Hydrol (Amst), 217(1−2): 75–96
https://doi.org/10.1016/S0022-1694(99)00019-0
19 Y He, F Wetterhall, H L Cloke, F Pappenberger, M Wilson, J Freer, G McGregor (2009). Tracking the uncertainty in flood alerts driven by grand ensemble weather predictions. Meteorol Appl, 16(1): 91–101
https://doi.org/10.1002/met.132
20 R Krzysztofowicz (2001). The case for probabilistic forecasting in hydrology. J Hydrol (Amst), 249(1−4): 2–9
https://doi.org/10.1016/S0022-1694(01)00420-6
21 R Laprise, D Caya, G Bergeron, M Giguère (1997). The formulation of the Andre Robert MC2 (Mesoscale Compressible Community) model. Atmos-ocean, 35(S1): 195–220
https://doi.org/10.1080/07055900.1997.9687348
22 J Li, Z L Zou (2014). Impact of FY-3A MWTS radiances on prediction in GRAPES with comparison of two quality control schemes. Front Earth Sci, 8(2): 251–263
https://doi.org/10.1007/s11707-014-0405-3
23 S Liguori, M A Rico-Ramirez (2013). A practical approach to the assessment of probabilistic flow predictions. Hydrol Processes, 27(1): 18–32
https://doi.org/10.1002/hyp.9468
24 S Y Liu, W Gao, M Xu, X Y Wang, X Z Liang (2009). China summer precipitation simulations using an optimal ensemble of cumulus schemes. Front Earth Sci, 3(2): 248–257
https://doi.org/10.1007/s11707-009-0022-8
25 Y Liu, Q Duan, L Zhao, A Ye, Y Tao, C Miao, X Mu, J C Schaake (2013). Evaluating the predictive skill of post-processed NCEP GFS ensemble precipitation forecasts in China’s Huai River Basin. Hydrol Processes, 27(1): 57–74
https://doi.org/10.1002/hyp.9496
26 B K Luo, X W Qian (1987). Some problems with Muskingum method. Hydrological Sciences Journal, 32(4): 485–496
https://doi.org/10.1080/02626668709491207
27 S Ma, A Qu, Y Wang (2007). The performance of the new tropical cyclone track prediction system of the China National Meteorological Center. Meteorol Atmos Phys, 97(1−4): 29–39
https://doi.org/10.1007/s00703-006-0242-3
28 Z K Ma, Z W Fan, M Zhang, Y L Su (2014). Flood risk control of dams and dykes in middle reach of Huaihe River. Water Science and Engineering, 7(1): 17–31
29 J Noilhan, S Planton (1989). A simple parameterization of land surface processes for meteorological models. Mon Weather Rev, 117(3): 536–549
https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2
30 X D Pan, X Li, X K Shi, X J Han, L H Luo, L X Wang (2012). Dynamic downscaling of near-surface air temperature at the basin scale using WRF—A case study in the Heihe River Basin, China. Front Earth Sci, 6(3): 314–323
https://doi.org/10.1007/s11707-012-0306-2
31 F Pappenberger, J Bartholmes, J Thielen, H L Cloke, R Buizza, de A Roo (2008). New dimensions in early flood warning across the globe using grand-ensemble weather predictions. Geophys Res Lett, 35(10): L10404
https://doi.org/10.1029/2008GL033837
32 F Pappenberger, E Stephens, J Thielen, P Salamon, D Demeritt, van S J Andel, F Wetterhall, L Alfieri (2013). Visualizing probabilistic flood forecast information: expert preferences and perceptions of best practice in uncertainty communication. Hydrol Processes, 27(1): 132–146
https://doi.org/10.1002/hyp.9253
33 F Pappenberger, J Thielen, Del M Medico (2011). The impact of weather forecast improvements on large scale hydrology: analysing a decade of forecasts of the European Flood Alert System. Hydrol Processes, 25(7): 1091–1113
https://doi.org/10.1002/hyp.7772
34 Y Y Park, R Buizza, M Leutbecher (2008). TIGGE: preliminary results on comparing and combining ensembles. Q J R Meteorol Soc, 134(637): 2029–2050
https://doi.org/10.1002/qj.334
35 A Qaddouri, J Cote, M Valin (2000). A parallel direct 3D elliptic solver. International Series in Engineering and Computer Science, 541: 429–442
36 P J Roebber, D M Schultz, B A Colle, D J Stensrud (2004). Toward improved prediction: high-resolution and ensemble modeling systems in operation. Weather Forecast, 19(5): 936–949
https://doi.org/10.1175/1520-0434(2004)019<0936:TIPHAE>2.0.CO;2
37 A Rossa, K Liechti, M Zappa, M Bruen, U Germann, G Haase, C Keil, P Krahe (2011). The COST 731 action: a review on uncertainty propagation in advanced hydro-meteorological forecast systems. Atmos Res, 100(2−3): 150–167
https://doi.org/10.1016/j.atmosres.2010.11.016
38 D Si, Y H Ding, Y J Liu (2009). Decadal northward shift of the Meiyu belt and the possible cause. Chin Sci Bull, 54(24): 4742–4748
https://doi.org/10.1007/s11434-009-0385-y
39 D J Stensrud, H E Brooks, J Du, M S Tracton, E Rogers (1999). Using ensembles for short-range forecasting. Mon Weather Rev, 127(4): 433–446
https://doi.org/10.1175/1520-0493(1999)127<0433:UEFSRF>2.0.CO;2
40 M Tanguay, A Robert, R Laprise (1990). A semi-implicit semi-Lagrangian fully compressible regional forecast model. Mon Weather Rev, 118(10): 1970–1980
https://doi.org/10.1175/1520-0493(1990)118<1970:ASISLF>2.0.CO;2
41 J Thielen, J Bartholmes, M Ramos, A de Roo (2008). The European flood alert system−part 1: concept and development. Hydrol Earth Syst Sci Discuss, 5(1): 257–287
https://doi.org/10.5194/hessd-5-257-2008
42 S J Thomas, C Girard, R Benoit, M Desgané, P Pellerin (1998). A new adiabatic kernel for the MC2 model. Atmos-ocean, 36(3): 241–270
https://doi.org/10.1080/07055900.1998.9649613
43 E Todini (2004). Role and treatment of uncertainty in real-time flood forecasting. Hydrol Processes, 18(14): 2743–2746
https://doi.org/10.1002/hyp.5687
44 M Wei, Z Toth (2003). A new measure of ensemble performance: perturbation versus error correlation analysis (PECA). Mon Weather Rev, 131(8): 1549–1565
https://doi.org/10.1175//1520-0493(2003)131<1549:ANMOEP>2.0.CO;2
45 L Wen, W Yu, C A Lin, M Béland, R Benoit, Y Delage (2000). The role of land surface schemes in short-range, high spatial resolution forecast. Mon Weather Rev, 128(10): 3605–3617
https://doi.org/10.1175/1520-0493(2001)129<3605:TROLSS>2.0.CO;2
46 Y Xuan, D Cluckie, Y Wang (2009). Uncertainty analysis of hydrological ensemble forecasts in a distributed model utilising short-range rainfall prediction. Hydrol Earth Syst Sci, 13(3): 293–303
https://doi.org/10.5194/hess-13-293-2009
47 E Yakimiw, A Robert (1986). Accuracy and stability analysis of a fully implicit scheme for the shallow-water equations. Mon Weather Rev, 114(1): 240–244
https://doi.org/10.1175/1520-0493(1986)114<0240:AASAOA>2.0.CO;2
48 Z B Yu, T Yang, F W Schwartz (2014). Water issues and prospects for hydrological science in China. Water Science and Engineering, 7(1): 1–4
49 S L Zhang (2006). Interactive correct technology for flood forecasting. Shui Kexue Jinzhan, 17(5): 653–657 (in Chinese)
50 Y Y Zhang, Q X Shao, J Xia, S E Bunn, Q T Zuo (2011). Changes of flow regimes and precipitation in Huai River Basin in the last half century. Hydrol Processes, 25(2): 246–257
https://doi.org/10.1002/hyp.7853
51 L N Zhao, D Qi, F Y Tian, H Wu, J Y Di, Z Wang, A H Li (2012). Probabilistic flood prediction in the upper Huaihe catchment using TIGGE data. Acta Meteorol Sin, 26(1): 62–71
https://doi.org/10.1007/s13351-012-0106-3
52 R J Zhao (1992). The Xinanjiang model applied in China. J Hydrol (Amst), 135(1−4): 371–381
https://doi.org/10.1016/0022-1694(92)90096-E
[1] Linna ZHAO, Xuemei BAI, Dan QI, Cheng XING. BMA probability quantitative precipitation forecasting of land-falling typhoons in south-east China[J]. Front. Earth Sci., 2019, 13(4): 758-777.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed