Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2015, Vol. 9 Issue (4) : 683-690    https://doi.org/10.1007/s11707-015-0537-0
RESEARCH ARTICLE
Observational evidence for atmospheric modulation of the Loop Current migrations
D. Lindo-Atichati1,*(),P. Sangrà2
1. Department of Engineering Science & Physics, College of Staten Island, City University of New York, Staten Island, NY 10314, USA
2. Instituto de Oceanografía y Cambio Global (IOCAG), Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
 Download: PDF(1002 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recent modeling studies on the shedding of Loop Current rings suggest that the intensification of the dominant zonal wind field delays the detachment of rings and affects the Loop Current migrations. The atmospheric modulation of the Loop Current migrations is analyzed here using reanalysis winds and altimetry-derived observations. A newly developed methodology is applied to locate the Loop Current front, and a wavelet-based semblance analysis is used to explore correlations with atmospheric forcing. The results show that weakening (intensification) of the zonal wind stress in the eastern Gulf of Mexico is related with the Loop Current excursions to the north (south). Semblance analyses confirm negative correlations between the zonal wind stress and the Loop Current migrations during the past 20 years. The intrusions of the Loop Current might involve an increase of the Yucatan Transport, which would balance the westward Rossby wave speed of a growing loop and delay the ring shedding. The results of this study have consequences for the interpretation of the chaotic processes of ring detachment and Loop Current intrusions, which might be modulated by wind stress.

Keywords Loop Current      wind stress      wavelet analysis      altimetry      air-sea interactions      Gulf of Mexico     
Corresponding Author(s): D. Lindo-Atichati   
Just Accepted Date: 17 June 2015   Online First Date: 08 July 2015    Issue Date: 30 October 2015
 Cite this article:   
D. Lindo-Atichati,P. Sangrà. Observational evidence for atmospheric modulation of the Loop Current migrations[J]. Front. Earth Sci., 2015, 9(4): 683-690.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0537-0
https://academic.hep.com.cn/fesci/EN/Y2015/V9/I4/683
Fig.1  Bottom topography of the Gulf of Mexico. Data retrieved from ETOPO1 1-minute Global Relief. The map illustrates the section A?B used to estimate differences in mean sea level pressure and differences in mean wind stress. Main geographical features and generalized flow of the Loop Current are marked.
Fig.2  Fields of altimetry-derived Sea Surface Height gradient [cm·deg−1] and Sea Surface Height contours [cm] in the Gulf of Mexico (GoM). Fields illustrate the detected LC front (grey contour) when the LC is located in (a) the northern and (b) the southern GoM. The northernmost and westernmost locations of the LC front are tagged with a square in both panels.
Fig.3  (a) Time series of monthly Loop Current Migration Anomalies (LCMA, black curve) and time series of monthly Sea Level Pressure Gradient (SLPG, grey curve) determined from the pressure difference between the mean northernmost and southernmost locations of the Loop Current front, from January 1993 to December 2012. (b) Real part of the complex Continuous Wavelet Transform (CWT) of LCMA time series. Bright red indicates large positive amplitude and dark blue indicates large negative amplitude. (c) Real part of the complex CWT of SLPG time series. Bright red indicates large positive amplitude and dark blue indicates large negative amplitude. (d) Semblance index, S. Bright red corresponds to a positive semblance and dark blue to a negative semblance. Wavelength ranges from zero to 36 weeks. Grey dashed lines highlight the periods of 12 weeks and 24 weeks, which are clear examples of periods with significant moderate to strong negative correlations.
Fig.4  (a) Time series of monthly Loop Current Migration Anomalies (LCMA) and time series of the monthly Wind Stress Gradient (WSG) averaged between northernmost and southernmost locations Loop Current, from January 1993 to December 2012. (b) Real part of the complex Continuous Wavelet Transform (CWT) of the LCMA time series. (c) Real part of the complex CWT of the WSG time series (d) Semblance index, S. Grey dashed lines highlight the periods of 12 weeks and 24 weeks, which are clear examples of periods with significant moderate to strong negative correlations.
1 Alvera-Azcárate  A, Barth  A, Weisberg  R H (2009). The surface circulation of the Caribbean Sea and the Gulf of Mexico as inferred from satellite altimetry. J Phys Oceanogr, 39(3): 640–657
https://doi.org/10.1175/2008JPO3765.1
2 Bunge  L, Ochoa  J, Badan  A, Candela  J, Sheinbaum  J (2002). Deep flows in the Yucatan Channel and their relation to changes in the Loop Current extension. J Geophys Res, 107(C12): 3233
https://doi.org/10.1029/2001JC001256
3 Candela  J, Tanahara  S, Crepon  M, Barnier  B, Sheinbaum  J (2003). Yucatan Channel flow: observations versus CLIPPER ATL6 and MERCATOR PAM models. J Geophys Res, 108(C12): 3385
https://doi.org/10.1029/2003JC001961
4 Cardona  Y, Bracco  A (2014). Predictability of mesoscale circulation throughout the water column in the Gulf of Mexico. Deep Sea Res Part II Top Stud Oceanogr, doi: 10.1016/j.dsr2.2014.01.008
5 Chang  Y L, Oey  L Y (2010). Why can wind delay the shedding of Loop Current eddies? J Phys Oceanogr, 40(11): 2481–2495
https://doi.org/10.1175/2010JPO4460.1
6 Chang  Y L, Oey  L Y (2011). Loop Current cycle: coupled response of the Loop Current with deep flows. J Phys Oceanogr, 41(3): 458–471
https://doi.org/10.1175/2010JPO4479.1
7 Chang  Y L, Oey  L Y (2012). Why does the Loop Current tend to shed more eddies in summer and winter? Geophys Res Lett, 39(5): n/a doi: 10.1029/2011GL050773
8 Chang  Y L, Oey  L Y (2013a). Loop Current growth and eddy shedding using models and observations: numerical process experiments and satellite altimetry data. J Phys Oceanogr, 43(3): 669–689
https://doi.org/10.1175/JPO-D-12-0139.1
9 Chang  Y L, Oey  L Y (2013b). Coupled response of the trade wind, SST gradient, and SST in the Caribbean Sea. J Phys Oceanogr, 43(7): 1325–1344
https://doi.org/10.1175/JPO-D-12-0183.1
10 Chérubin  L M, Sturges  W, Chassignet  E P (2005). Deep flow variability in the vicinity of the Yucatan Straits from a high-resolution numerical simulation. J Geophys Res, 110(C4): C04009
https://doi.org/10.1029/2004JC002280
11 Cho  K, Reid  R O, Nowlin  W D Jr (1998). Objectively mapped stream function fields on the Texas-Louisiana shelf based on 32 months of moored current meter data. J Geophys Res, 103(C5): 10377–10390
https://doi.org/10.1029/98JC00099
12 Clancy  R M (1992). Operational modeling: ocean modeling at the Fleet Numerical Oceanography Center. Oceanography (Wash DC), 5(1): 31–35
https://doi.org/10.5670/oceanog.1992.29
13 Cooper  G R J, Cowan  D R (2008). Comparing time series using wavelet-based semblance analysis. Comput Geosci, 34(2): 95–102
https://doi.org/10.1016/j.cageo.2007.03.009
14 Cunningham  S A, Kanzow  T, Rayner  D, Baringer  M O, Johns  W E, Marotzke  J, Longworth  H R, Grant  E M, Hirschi  J J M, Beal  L, Meinen  C S, Bryden  H L (2007). Temporal variability of the Atlantic meridional overturning circulation at 26.5 N. Science, 317(5840): 935–938
https://doi.org/10.1126/science.1141304
15 DeHaan  C J, Sturges  W (2005). Deep cyclonic circulation in the Gulf of Mexico. J Phys Oceanogr, 35(10): 1801–1812
https://doi.org/10.1175/JPO2790.1
16 Ezer  T, Oey  L Y, Lee  H C, Sturges  W (2003). The variability of currents in the Yucatan Channel: analysis of results from a numerical ocean model. J Geophys Res, 108(C1): 3012
https://doi.org/10.1029/2002JC001509
17 Fratantoni  P S, Lee  T N, Podesta  G P, Muller-Karger  F (1998). The influence of Loop Current perturbations on the formation and evolution of Tortugas eddies in the southern Straits of Florida. J Geophys Res, 103(C11): 24759
https://doi.org/10.1029/98JC02147
18 Herring  J H (2010). Gulf of Mexico hydrographic climatology and method of synthesizing subsurface profiles from the satellite sea surface height anomaly. US. Department of Commerce, National Oceanic and Atmospheric Administration. National Ocean Service, Coastal Survey Development Laboratory. Report 122. 63 pp
19 Hurlburt  H, Thompson  J D (1980). A Numerical Study of Loop Current Intrusions and Eddy Shedding. J Phys Oceanogr, 10(10): 1611–1651
https://doi.org/10.1175/1520-0485(1980)010<1611:ANSOLC>2.0.CO;2
20 Le Hénaff  M, Kourafalou  V H, Morel  Y, Srinivasan  A (2012). Simulating the dynamics and intensification of cyclonic Loop Current Frontal Eddies in the Gulf of Mexico. J Geophys Res, 117(C2): C02034
https://doi.org/10.1029/2011JC007279
21 Lee  H C, Mellor  G L (2003). Numerical simulation of the Gulf Stream System: the Loop Current and the deep circulation. J Geophys Res, 108(C2): 3043
https://doi.org/10.1029/2001JC001074
22 Lin  Y, Greatbatch  R J, Sheng  J (2009). A model study of the vertically integrated transport variability through the Yucatan Channel: role of Loop Current evolution and flow compensation around Cuba. J Geophys Res, 114(C8): C08003
https://doi.org/10.1029/2008JC005199
23 Lindo-Atichati  D, Bringas  F, Goni  G (2013). Loop Current excursions and ring detachments during 1993–2009. Int J Remote Sens, 34(14): 5042–5053
https://doi.org/10.1080/01431161.2013.787504
24 Lindo-Atichati  D, Bringas  F, Goni  G, Muhling  B, Muller-Karger  F E, Habtes  S (2012). Varying mesoscale structures influence larval fish distribution in the northern gulf of Mexico. Mar Ecol Prog Ser, 463: 245–257
https://doi.org/10.3354/meps09860
25 Maul  G A, Mayer  D A, Baig  S R (1985). Comparisons between a continuous 3-year current-meter observation at the sill of the Yucatan Strait, satellite measurements of Gulf Loop Current area, and regional sea level. J Geophys Res, 90(C5): 9089–9096
https://doi.org/10.1029/JC090iC05p09089
26 Muller-Karger  F E, Smith  J P, Werner  S, Chen  R, Roffer  M, Liu  Y, Muhling  B A, Lindo-Atichati  D, Lamkin  J, Cerdeira-Estrada  S, Enfield  D B (2014). Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico. Prog Oceanogr, 134: 54–76
27 Müller-Karger  F E, Walsh  J J, Evans  R H, Meyers  M B (1991). On the seasonal phytoplankton concentration and sea surface temperature cycles of the Gulf of Mexico as determined by satellites. J Geophys Res, 96(C7): 12645–12665
https://doi.org/10.1029/91JC00787
28 Muñoz  E, Busalacchi  A J, Nigam  S, Ruiz-Barradas  A (2008). Winter and summer structure of the Caribbean low-level jet. J Clim, 21(6): 1260–1276
https://doi.org/10.1175/2007JCLI1855.1
29 Nedbor-Gross  R, Dukhovskoy  D S, Bourassa  M A, Morey  S M, Chassignet  E P (2014). Investigation of the relationship between the Yucatan Channel transport and the Loop Current area in a multidecadal numerical simulation. Mar Technol Soc J, 48(4): 15–26
https://doi.org/10.4031/MTSJ.48.4.8
30 Nof  D (2005). The momentum imbalance paradox revisited. J Phys Oceanogr, 35(10): 1928–1939
https://doi.org/10.1175/JPO2772.1
31 Nowlin  W D, Jochens  A E, DiMarco  S F, Reid  R O (2000). Physical oceanography. Deepwater Gulf of Mexico environmental and socioeconomic data search and synthesis, Narrative Report, OCS Study MMS 2000-049,Gulf of Mexico OCS Regional Office, Minerals Management Service, U.S. Department of the Interior 1, 60
32 Nowlin  W D, Jochens  A E, Reid  R O, DiMarco  S F (1998). Texas-Louisiana Shelf Circulation and Transport Processes Study: Synthesis Report. Volume I: Technical Report. OCS Study MIMS 98-0035, U.S. Department of the Interior, Minerals Management Service, Gulf of Mexico OCS Region, 502 pp
33 Oey  L Y (1996). Simulation of mesoscale variability in the Gulf of Mexico: sensitivity studies, comparison with observations, and trapped wave propagation. J Phys Oceanogr, 26(2): 145–175
https://doi.org/10.1175/1520-0485(1996)026<0145:SOMVIT>2.0.CO;2
34 Oey  L Y (2004). Vorticity flux through the Yucatan Channel and Loop Current variability in the Gulf of Mexico. J Geophys Res, 109(C10): C10004
https://doi.org/10.1029/2004JC002400
35 Pichevin  T, Nof  D (1997). The momentum imbalance paradox. Tellus, Ser A, Dyn Meterol Oceanogr, 49(2): 298–319
https://doi.org/10.1034/j.1600-0870.1997.t01-1-00009.x
36 Poveda  G, Waylen  P R, Pulwarty  R S (2006). Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr Palaeoclimatol Palaeoecol, 234(1): 3–27
https://doi.org/10.1016/j.palaeo.2005.10.031
37 Smith  R H, Johns  E M, Goni  G J, Trinanes  J, Lumpkin  R, Wood  A M, Kelble  C R, Cummings  S R, Lamkin  J T, Privoznik  S (2014). Oceanographic conditions in the Gulf of Mexico in July 2010, during the Deepwater Horizon oil spill. Cont Shelf Res, 77: 118–131
https://doi.org/10.1016/j.csr.2013.12.009
38 Sturges  W, Evans  J C, Welsh  S, Holland  W (1993). Separation of warm-core rings in the Gulf of Mexico. J Phys Oceanogr, 23(2): 250–268
https://doi.org/10.1175/1520-0485(1993)023<0250:SOWCRI>2.0.CO;2
39 Tomczak  M, Godfrey  J S (2003). Regional Oceanography: An Introduction. Oxford: Pergamon
40 Vidal  V M V, Vidal  F V, Hernández  A F, Meza  E, Zambrano  L (1994). Winter water mass distributions in the western Gulf of Mexico affected by a colliding anticyclonic ring. J Oceanogr, 50(5): 559–588
https://doi.org/10.1007/BF02235424
41 Walker  N D, Wiseman  W J Jr, Rouse  L J Jr, Babin  A (2005). Effects of river discharge, wind stress, and slope eddies on circulation and the satellite-observed structure of the Mississippi River plume. J Coast Res, 216(6): 1228–1244
https://doi.org/10.2112/04-0347.1
42 Wang  C (2007). Variability of the Caribbean low-level jet and its relations to climate. Clim Dyn, 29(4): 411–422
https://doi.org/10.1007/s00382-007-0243-z
43 Wang  C, Lee  S (2007). Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes. Geophys Res Lett, 34(2):L0 2703
https://doi.org/10.1029/2006GL028579
44 Xu  F H, Chang  Y L, Oey  L Y, Hamilton  P (2013). Loop Current growth and eddy shedding using models and observations: analyses of the July 2011 Eddy-Shedding Event*. J Phys Oceanogr, 43(5): 1015–1027
https://doi.org/10.1175/JPO-D-12-0138.1
45 Zavala-Hidalgo  J, Morey  S L, O’Brien  J J, Zambudio  L (2006). On the Loop Current eddy shedding variability. Atmosfera, 19(001): 8
46 Zavala-Hidalgo  J, Morey  S L, O'Brien  J J (2003). Seasonal circulation on the western shelf of the Gulf of Mexico using a high-resolution numerical model. J Geophys Res, 108(C12): 3389
https://doi.org/10.1029/2003JC001879
[1] Chunlan LI, Jun WANG, Richa HU, Shan YIN, Yuhai BAO, Yuwei LI. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009[J]. Front. Earth Sci., 2018, 12(2): 420-430.
[2] Edward D. ZARON,Patrick J. FITZPATRICK,Scott L. CROSS,John M. HARDING,Frank L. BUB,Jerry D. WIGGERT,Dong S. KO,Yee LAU,Katharine WOODARD,Christopher N. K. MOOERS. Initial evaluations of a Gulf of Mexico/Caribbean ocean forecast system in the context of the Deepwater Horizon disaster[J]. Front. Earth Sci., 2015, 9(4): 605-636.
[3] Dandi QIN,Jianhong WANG,Yu LIU,Changming DONG. Eddy analysis in the Eastern China Sea using altimetry data[J]. Front. Earth Sci., 2015, 9(4): 709-721.
[4] Huan YANG,Wenjie XIAO,Chengling JIA,Shucheng XIE. Paleoaltimetry proxies based on bacterial branched tetraether membrane lipids in soils[J]. Front. Earth Sci., 2015, 9(1): 13-25.
[5] Zhibin SUN, Lie-Yauw OEY, Yi-Hui ZHOU. Skill-assessments of statistical and Ensemble Kalman Filter data assimilative analyses using surface and deep observations in the Gulf of Mexico[J]. Front Earth Sci, 2013, 7(3): 271-281.
[6] Jianhua XU, Yaning CHEN, Weihong LI, Paul Y. PENG, Yang YANG, Chu’nan SONG, Chunmeng WEI, Yulian HONG. Combining BPANN and wavelet analysis to simulate hydro-climatic processes----a case study of the Kaidu River, North-west China[J]. Front Earth Sci, 2013, 7(2): 227-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed