Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (4) : 683-690    https://doi.org/10.1007/s11707-015-0549-9
RESEARCH ARTICLE
Evaluation of the occluded carbon within husk phytoliths of 35 rice cultivars
Xing SUN1,Qin LIU1(),Jie GU1,2,Xiang CHEN1,Keya ZHU1,3
1. Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
2. College of Forest Resources & Environment, Nanjing Forestry University, Nanjing 210037, China
3. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 201195, China
 Download: PDF(172 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Rice is a well-known silicon accumulator. During its periods of growth, a great number of phytoliths are formed by taking up silica via the plant roots. Concurrently, carbon in those phytoliths is sequestrated by a mechanism of long-term biogeochemical processes within the plant. Phytolith occluded C (PhytOC) is very stable and can be retained in soil for longer than a millennium. In this study, we evaluated the carbon bio-sequestration within the phytoliths produced in rice seed husks of 35 rice cultivars, with the goal of finding rice cultivars with relatively higher phytolith carbon sequestration efficiencies. The results showed that the phytolith contents ranged from 71.6 mg·g?1 to 150.1 mg·g?1, and the PhytOC contents ranged from 6.4 mg·g?1 to 38.4 mg·g?1, suggesting that there was no direct correlation between the PhytOC content and the content of rice seed husk phytoliths (R= 0.092, p>0.05). Of all rice cultivars, six showed a higher carbon sequestration efficiency in phytolith seed husks. Additionally, the carbon bio-sequestration within the rice seed husk phytoliths was approximately 0.45?3.46 kg-e-CO2·ha?1·yr?1. These rates indicate that rice cultivars are a potential source of carbon biosequestration which could contribute to the global carbon cycle and climate change.

Keywords carbon sequestration      seed husks      PhytOC      phytolith      rice cultivars     
Corresponding Author(s): Qin LIU   
Just Accepted Date: 04 December 2015   Online First Date: 08 January 2016    Issue Date: 04 November 2016
 Cite this article:   
Xing SUN,Qin LIU,Jie GU, et al. Evaluation of the occluded carbon within husk phytoliths of 35 rice cultivars[J]. Front. Earth Sci., 2016, 10(4): 683-690.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-015-0549-9
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I4/683
Number Cultivars Varieties
1 Zhonghan 35 Indica rice
2 Xinliangyou 6 Indica two line hybrid rice
3 Tianyou 998 Indica three line hybrid rice
4 Gangyou 188
5 II you 1259
6 IIyou 501
7 Fuyou 21
8 Chuannong 1
9 Zhongyou 7
10 Yixiang 2079
11 IIyou 1313
12 Yixiang 725
13 Tenuo 2072 Indica glutinous rice
14 Zhenzhunuo
15 Huaidao 5 Japonica rice
16 Huaidao 11
17 Lianjing 11
18 Yanjing 47?12
19 Wuyunjing 21
20 Zhengdao 18
21 Fengguan 16
22 Longjing 38
23 Longdao 12
24 Longjing 21
25 Longjing 36
26 Suidao 3
27 Jixidao 1
28 Nanjing 5055
29 Nanjing 46
30 Xiushui 09
31 Zhejing 88
32 Xiushui 134
33 8you 682 Japonica three line hybrid rice
34 Sujingnuo 1 Japonica glutinous rice
35 Zhenou 65
Tab.1  The 35 tested rice cultivars collected from six provinces in China (the 35 cultivars belong to seven varieties)
Fig.1  The phytoliths extracted by the wet Ashing Method followed by Walkley and Black (1934) and Zuo and Lü (2011) from the rice husk samples.
Cultivars Husk Weight /% Phytolith content/ (mg·g?1) PhytON content in phytoliths/ (mg·g?1) PhytOC content in phytoliths /(mg·g?1) PhytOC content in seed husks /(mg·g?1) C/N of phytoliths Estimated fluxes of PhytOC in seed husks/ (kg-CO2·ha?1·yr?1)
Zhonghan 35 22.46 109.6±22.5 0.33±0.01 3.84±0.44 0.47±0.09 11.83±1.60 3.22±0.37
Xinliangyou 6 22.06 117.8±8.4 0.48±0.05 0.89±0.15 0.11±0.03 1.85±0.43 0.79±0.13
Tianyou 998 24.26 132.2±6.3 0.39±0.03 3.16±0.84 0.43±0.11 9.81±2.83 3.46±0.92
Gangyou 188 18.60 111.2±11.0 0.37±0.03 0.64±0.08 0.07±0.01 1.74±0.25 0.45±0.06
II you 1259 22.15 128.9±16.3 0.36±0.02 0.88±0.15 0.12±0.03 2.43±0.42 0.86±0.15
IIyou 501 25.16 129.3±5.1 0.45±0.02 1.72±0.83 0.22±0.11 3.81±1.71 1.91±0.92
Fuyou 21 22.53 98.8±6.5 0.49±0.03 2.32±0.35 0.23±0.02 4.73±0.51 1.76±0.27
Chuannong 1 19.67 71.6±7.6 0.50±0.09 1.10±0.14 0.08±0.01 2.22±0.19 0.53±0.07
Zhongyou 7 19.79 97.6±8.5 0.53±0.06 1.07±0.46 0.10±0.04 2.00±0.82 0.70±0.30
Yixiang 2079 22.77 118.5±4.9 0.43±0.10 1.07±0.64 0.13±0.08 2.39±1.05 0.98±0.59
IIyou 1313 20.25 110.8±3.1 0.51±0.07 1.26±0.37 0.14±0.04 2.44±0.63 0.96±0.28
Yixiang 725 22.65 132.4±16.2 0.40±0.03 0.66±0.09 0.09±0.02 1.65±0.22 0.67±0.09
Tenuo 2072 19.83 148.5±31.4 0.34±0.06 2.83±0.28 0.42±0.10 8.52±1.09 2.84±0.28
Zhenzhunuo 26.65 113.9±56.9 0.34±0.04 0.89±0.12 0.11±0.06 2.63±0.60 0.92±0.12
Huaidao 5 15.32 150.1±5.5 0.37±0.06 3.73±0.68 0.56±0.14 9.82±2.35 2.92±0.53
Huaidao 11 16.74 138.9±31.8 0.48±0.17 2.22±0.55 1.09±1.01 1.09±1.01 1.76±0.44
Lianjing 11 16.09 127.1±14.4 0.31±0.03 2.62±0.48 0.33±0.04 0.33±0.04 1.83±0.33
Yanjing 47-12 19.57 148.5±2.8 0.32±0.05 2.93±0.30 0.44±0.05 0.44±0.05 2.90±0.30
Wuyunjing 21 13.63 122.5±20.6 0.35±0.01 3.41±0.27 0.40±0.06 0.40±0.06 1.94±0.15
Zhengdao 18 16.60 131.0±55.9 0.37±0.07 0.80±0.09 0.10±0.04 0.10±0.04 0.59±0.07
Fengguan 16 17.84 79.4±6.4 0.54±0.03 3.09±0.49 0.25±0.05 0.25±0.05 1.49±0.24
Longjing 38 17.98 135.0±16.1 0.46±0.05 3.10±0.58 0.42±0.06 0.42±0.06 2.57±0.48
Longdao 12 18.14 149.9±7.9 0.43±0.02 2.01±0.15 0.30±0.03 0.30±0.03 1.86±0.14
Longjing 21 17.26 156.3±21.4 0.38±0.05 1.85±0.57 0.30±0.14 0.30±0.14 1.70±0.52
Longjing 36 16.63 119.8±10.6 0.49±0.03 2.05±0.55 0.25±0.08 0.25±0.08 1.39±0.37
Suidao 3 16.96 141.3±4.2 0.40±0.05 1.74±0.09 0.25±0.02 0.25±0.02 1.42±0.07
Jixidao 1 16.67 140.9±9.9 0.40±0.06 1.45±0.36 0.21±0.07 0.21±0.07 1.16±0.29
Nanjing 5055 15.40 136.2±9.7 0.35±0.05 1.14±0.23 0.15±0.02 0.15±0.02 0.81±0.16
Nanjing 46 14.72 105.7±4.2 0.55±0.07 2.26±0.33 0.24±0.15 0.24±0.15 1.19±0.17
Xiushui 09 15.10 125.5±1.6 0.45±0.07 1.72±0.40 0.22±0.05 0.22±0.05 1.11±0.26
Zhejing 88 15.14 146.5±10.5 0.54±0.07 1.48±0.31 0.22±0.06 0.22±0.06 1.12±0.23
Xiushui 134 17.39 138.4±4.1 0.53±0.04 1.12±0.02 0.16±0.00 0.16±0.00 0.92±0.02
8you 682 19.52 89.5±6.7 0.48±0.01 2.39±0.13 0.21±0.03 0.21±0.03 1.42±0.08
Sujingnuo 1 15.87 124.1±19.8 0.44±0.01 2.01±0.25 0.55±0.59 0.55±0.59 1.35±0.17
Zhenou 65 16.89 134.0±6.4 0.47±0.03 2.35±0.61 0.27±0.01 0.27±0.01 1.81±0.47
Tab.2  Rice cultivars, seed husk content as a percentage of rice, content of phytoliths, PhytON and PhytOC in the seed husk on a dry weight basis, and the estimated fluxes of PhytOC per ha in Mg of CO2 equivalents (Mg-e-CO2) for rice (according to gain yields of single rice crops of 9.28 Mg·ha?1*)
Variables Husk weight Phytolith content PhytON content in phytoliths PhytOC
content in phytoliths
PhytOC content in seed husks Estimated fluxes of PhytOC in seed husks C/N of phytoliths
Husk weight 1
Phytolith contents ?0.237 1
PhytON content in phytoliths ?0.127 ?0.428* 1
PhytOC content in phytoliths ?0.204 0.092 ?0.180 1
PhytOC content in seed husks ?0.268 0.380* ?0.287 0.865** 1
Estimated fluxes of PhytOC in seed husks 0.074 0.344* ?0.351* 0.888** 0.855** 1
C/N of phytoliths ?0.148 0.216 ?0.143 0.539** 0.582** 0.528** 1
Tab.3  Correlation coefficients between the seven variables of the 35 rice cultivars
Varieties n Husk Weight/% Phytolith content/ (mg·g?1) PhytON content in phytoliths/ (mg·g?1) PhytOC content in phytoliths/ (mg·g?1) PhytOC content in seed husks / (mg·g?1) C/N of phytoliths Estimated fluxes of PhytOC in seed husks /(kg-CO2 ·ha?1·yr?1)
Indica rice 1 22.46±0.00 109.6±22.5 0.33±0.01 3.84±0.44 0.47±0.09 11.63±1.60 3.22±0.37
Indica two line hybrid rice 1 22.06±0.00 117.8±8.4 0.48±0.05 0.89±0.15 0.11±0.03 1.85±0.43 0.79±0.13
Indica three line hybrid rice 10 21.78±2.13 113.1±19.6 0.44±0.08 1.39±0.80 0.16±0.11 3.16±1.98 1.22±0.92
Indica glutinous rice 2 23.24±4.82 131.2±24.5 0.34±0.05 1.86±1.37 0.26±0.22 5.47±4.03 1.88±1.35
Japonica rice 18 16.51±1.45 132.9±18.4 0.43±0.08 2.15±0.84 0.28±0.12 5.25±2.54 1.59±0.67
Japonica three line hybrid rice 1 19.52±0.00 89.5±6.7 0.48±0.01 2.39±0.13 0.21±0.03 4.98±0.92 1.42±0.08
Japonica glutinous rice 2 16.38±0.72 129.1±7.0 0.46±0.02 2.18±0.24 0.41±0.20 4.78±0.31 1.58±0.33
Tab.4  Rice varieties, the seed husk content as a percentage of rice, the content of phytoliths, PhytON and PhytOC in seed husk on a dry weight basis and the estimated fluxes of PhyOC per ha in Mg of CO2 equivalents (Mg-e-CO2) for rice (according to gains in yields of single rice crops of 9.28 Mg·ha?1*)
Variables Husk weight Phytolith content PhytON content in phytoliths PhytOC
content in phytoliths
PhytOC content in seed husks Estimated fluxes of PhytOC in seed husks C/N of phytoliths
Husk weight 1
Phytolith content ?0.245 1
PhytON content in phytoliths ?0.497 ?0.261 1
PhytOC content in phytoliths ?0.054 ?0.242 ?0.581 1
PhytOC content in seed husks ?0.261 0.181 ?0.550 0.855* 1
Estimated fluxes of PhytOC in seed husks 0.199 ?0.041 ?0.824* 0.930** 0.840* 1
C/N of phytoliths 0.140 ?0.130 ?0.751 0.966** 0.833* 0.990** 1
Tab.5  Correlation coefficients between the seven variables of the seven varieties
1 Anthoni P M, Freibauer A, Kolle O, Schulze E (2004). Winter wheat carbon exchange in Thuringia, Germany. Agric Meteorol, 121(1‒2): 55–67
https://doi.org/10.1016/S0168-1923(03)00162-X
2 Ball T B, Brotherson J D, Gardner J S (1993). A typologic and morphometric study of variation in phytoliths from einkorn wheat (Triticum monococcum). Can J Bot, 71(9): 1182–1192
https://doi.org/10.1139/b93-139
3 Ball T B, Gardner J S, Brotherson J D (1996). Identifying phytoliths produced by the inflorescence bracts of three species of Wheat (Triticum monococcum L., T. dococcon Schrank., and T. aestivum L.) using computer-assisted image and statistical analyses. J Archaeol Sci, 23(4): 619–632
https://doi.org/10.1006/jasc.1996.0058
4 Bowdery D (2007). Phytolith analysis: sheep, diet and fecal material at Ambathala Pastoral Station, Queensland, Australia. In: Madella M, Débora Z, eds. Plant, People and Places–recent Studies in Phytolith Analysis. Oxford: Oxbow
5 Drees L R, Wilding L P, Smeck N E, Senkayi A L (1989). Silica in soils: quartz and disordered silica polymorphs. In: Dixon J B, Weed S B, eds. Minerals in Soil Environments.Madison Wisconsin: Soil Society of America
6 Gu Y S, Wang H L, Huang X Y, Peng H X, Huang J H (2012). Phytolith records of the climate change since the past 15000 years in the middle reach of the Yangtze River in China. Front Earth Sci, 6(1): 10–17
https://doi.org/10.1007/s11707-012-0302-6
7 Hart D M, Humphreys G S (1997). Plant opal phytoliths: an Australian perspective. Quatern Aust, 15: 17–25
8 International Rice Research Institute (IRRI) (2011)
9 Jones L, Handreck K (1967). Silica in soils, plants and animals. Adv Agron, 19: 107–149
https://doi.org/10.1016/S0065-2113(08)60734-8
10 Jones L H P, Milne A A (1963). Studies of silica in the oat plant. Plant Soil, 18(2): 207–220
https://doi.org/10.1007/BF01347875
11 Lal R (2004). Soil carbon sequestration impacts on global climate change and food security. Science, 304(5677): 1623–1627
https://doi.org/10.1126/science.1097396 pmid: 15192216
12 Li Z, Song Z, Parr J F, Wang H (2013). Occluded C in rice phytoliths: implications to biogeochemical carbon sequestration. Plant Soil, 370(1‒2): 615–623
https://doi.org/10.1007/s11104-013-1661-9
13 Linquist B, Groenigen K, Adviento‐Borbe M APittelkow CKessel C, (2012). An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob Change Biol, 18(1): 194–209
https://doi.org/10.1111/j.1365-2486.2011.02502.x
14 Liu B, Xu H, Lan J H, Sheng E G, Che S, Zhou X Y (2014). Biogenic silica contents of Lake Qinghai sediments and its environmental significance. Front Earth Sci, 8(4): 573–581
https://doi.org/10.1007/s11707-014-0440-0
15 Lux A, Luxová M, Hattori T, Inanaga S, Sugimoto Y (2002). Silicification in sorghum (Sorghum bicolor) cultivars with different drought tolerance. Physiol Plant, 115(1): 87–92
https://doi.org/10.1034/j.1399-3054.2002.1150110.x pmid: 12010471
16 McCarl B A, Metting F B, Rice C (2007). Soil carbon sequestration. Clim Change, 80(1–2): 1–3
https://doi.org/10.1007/s10584-006-9174-7
17 Mulholland S C, Prior C A (1993). AMS radiocarbon dating of phytoliths. In: Pearsall D M, Piperno D R, eds. MASCA Research Papers in Science and Archaeology. University of Pennsylvania, Philadelphia, 21–23
18 Parr J F (2006). Effect of fire on phytolith coloration. Geoarchaeology, 21(2): 171–185
https://doi.org/10.1002/gea.20102
19 Parr J F, Sullivan L A (2005). Soil carbon sequestration in phytoliths. Soil Biol Biochem, 37(1): 117–124
https://doi.org/10.1016/j.soilbio.2004.06.013
20 Parr J F, Sullivan L A (2011). Phytolith occluded carbon and silica variability in wheat cultivars. Plant Soil, 342(1‒2): 165–171
https://doi.org/10.1007/s11104-010-0680-z
21 Parr J F, Sullivan L A, Chen B, Ye G, Zheng W (2010). Carbon bio-sequestration within the phytoliths of economic bamboo species. Glob Change Biol, 16(10): 2661–2667
https://doi.org/10.1111/j.1365-2486.2009.02118.x
22 Parr J F, Sullivan L A, Quirk R (2009). Sugarcane phytoliths: encapsulation and sequestration of a long-lived carbon fraction. Sugar Tech, 11(1): 17–21
https://doi.org/10.1007/s12355-009-0003-y
23 Pathak H, Li C, Wassmann R (2005). Greenhouse gas emissions from Indian rice fields: calibration and upscaling using the DNDC model. Biogeosciences Discuss, 2: 113–123
https://doi.org/10.5194/bg-2-113-2005
24 Pearsall D M (1989). Paleoethnobotany: A Handbook of PROcedures. London: Academic
25 Perry C C, Williams R J P, Fry S C (1987). Cell wall biosynthesis during silicification of grass hairs. J Plant Physiol, 126(4‒5): 437–448
https://doi.org/10.1016/S0176-1617(87)80028-7
26 Piperno D R (1988). Phytolith analysis: an archaeological and geological perspective. London: Academic
27 Sangster A G, Parry D W (1981). Ultrastructure of silica deposits in higher plants. In: Simpson T L, Volcani B E, eds. Silicon and Siliceous Structures in Biological Systems. New York: Springer, 383–407
28 Schlesinger W H (1990). Evidence from chronosequence studies for a low carbon-storage potential of soils. Nature, 348(6298): 232–234
https://doi.org/10.1038/348232a0
29 Song Z L, Liu H Y, Si Y, Yin Y (2012a). The production of phytoliths in China’s grasslands: implications to the biogeochemical sequestration of atmospheric CO2. Glob Change Biol, 18(12): 3647–3653
https://doi.org/10.1111/gcb.12017
30 Song Z L, Müller K, Wang H L (2014a). Biogeochemical silicon cycle and carbon sequestration in agricultural ecosystems. Earth Sci Rev, 139: 268–278
https://doi.org/10.1016/j.earscirev.2014.09.009
31 Song Z L, Wang H L, Strong P J, Guo F S (2014b). Phytolith carbon sequestration in China’s croplands. Eur J Agron, 53: 10–15
https://doi.org/10.1016/j.eja.2013.11.004
32 Song Z L, Wang H L, Strong P J, Li Z M, Jiang P K (2012b). Plant impact on the coupled terrestrial biogeochemical cycles of silicon and carbon: Implications for biogeochemical carbon sequestration. Earth Sci Rev, 115(4): 319–331
https://doi.org/10.1016/j.earscirev.2012.09.006
33 Walkley A, Black I A (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci, 37(1): 29–38
https://doi.org/10.1097/00010694-193401000-00003
34 Wang S M, Zhang C H, Hu F X, Zeng K, Zhang W H, Wang W J (2008). The quantitative analysis of rice aboveground biomass and net primary productivity. Chinese Agr Sci Bull, 24: 201–205 (in Chinese)
35 Wang Y J (1998). A study on the chemical compostion of phytolths. J Oceano Huanghai Bohai Seas, 16: 33–38 (in Chinese)
36 Wilding L P (1967). Radiocarbon dating of biogenetic opal. Science, 156(3771): 66–67
https://doi.org/10.1126/science.156.3771.66 pmid: 17798627
37 Wilding L P, Brown R E, Holowaychuk N (1967). Accessibility and properties of occluded carbon in biogenetic opal. Soil Sci, 103(1): 56–61
https://doi.org/10.1097/00010694-196701000-00009
38 Wilding L P, Drees L R (1974). Contributions of forest opal and associated crystalline phases to fine silt and clay fractions of soils. Clays Clay Miner, 22(3): 295–306
https://doi.org/10.1346/CCMN.1974.0220311
39 Yoshida S, Ohnishi Y, Kitagishi K (1962). Histochemistry of silicon in rice plant II: localization of silicon within rice tissues. Soil Sci Plant Nutr, 8(1): 36–41
https://doi.org/10.1080/00380768.1962.10430980
40 Zhang W J, Wang X J ,Xu M G, Huang S M, Liu H, Peng C (2010). Soil organic carbon dynamics under long-term fertilizations in arable land of northern China. Biogeosciences, 7(2): 409–425
https://doi.org/10.5194/bg-7-409-2010
41 Zuo X X, Lü H Y (2011). Carbon sequestration within milletphytoliths from dry-farming of crops in China. Chin Sci Bull, 56(32): 3451–3456
https://doi.org/10.1007/s11434-011-4674-x
[1] Yonghui WANG, Kexiang LIU, Zhaopeng WU, Li JIAO. Comparison and analysis of three estimation methods for soil carbon sequestration potential in the Ebinur Lake Wetland, China[J]. Front. Earth Sci., 2020, 14(1): 13-24.
[2] Liangxia ZHANG, Wei CAO, Jiangwen FAN. Soil organic carbon dynamics in Xilingol grassland of northern China induced by the Beijing-Tianjin Sand Source Control Program[J]. Front. Earth Sci., 2017, 11(2): 407-415.
[3] Djakanibé Désiré TRAORÉ,Yansheng GU,Humei LIU,Ceven SHEMSANGA,Jiwen GE. Vegetation types and climate conditions reflected by the modern phytolith assemblages in the subalpine Dalaoling Forest Reserve, central China[J]. Front. Earth Sci., 2015, 9(2): 268-275.
[4] Yansheng GU, Hanlin WANG, Xianyu HUANG, Hongxia PENG, Junhua HUANG. Phytolith records of the climate change since the past 15000 years in the middle reach of the Yangtze River in China[J]. Front Earth Sci, 2012, 6(1): 10-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed