|
|
|
Trace Projection Transformation: a new method for measurement of debris flow surface velocity fields |
Yan YAN1,2,Peng CUI1,3( ),Xiaojun GUO1,2,Yonggang GE1 |
1. Key Laboratory of Mountain Surface Process and Hazards/Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China 2. University of Chinese Academy of Sciences, Beijing 100049, China 3. Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China |
|
|
|
|
Abstract Spatiotemporal variation of velocity is important for debris flow dynamics. This paper presents a new method, the trace projection transformation, for accurate, non-contact measurement of a debris-flow surface velocity field based on a combination of dense optical flow and perspective projection transformation. The algorithm for interpreting and processing is implemented in C++ and realized in Visual Studio 2012. The method allows quantitative analysis of flow motion through videos from various angles (camera positioned at the opposite direction of fluid motion). It yields the spatiotemporal distribution of surface velocity field at pixel level and thus provides a quantitative description of the surface processes. The trace projection transformation is superior to conventional measurement methods in that it obtains the full surface velocity field by computing the optical flow of all pixels. The result achieves a 90% accuracy of when comparing with the observed values. As a case study, the method is applied to the quantitative analysis of surface velocity field of a specific debris flow.
|
| Keywords
debris flow
surface velocity field
spatiotemporal variation
dense optical flow
perspective projection transformation
|
|
Corresponding Author(s):
Peng CUI
|
|
Online First Date: 18 September 2016
Issue Date: 04 November 2016
|
|
| 1 |
Adrian R J (2005). Twenty years of particle image velocimetry. Exp Fluids, 39(2): 159–169
https://doi.org/10.1007/s00348-005-0991-7
|
| 2 |
Arattano M, Marchi L (2000). Video-derived velocity disribution along a debris flow surge. Phys Chem Earth, Part B Hydrol Oceans Atmos, 25(9): 781–784
https://doi.org/10.1016/S1464-1909(00)00101-5
|
| 3 |
Arattano M, Marchi L (2005). Measurements of debris flow velocity through cross-correlation of instrumentation data. Nat Hazards Earth Syst Sci, 5(1): 137–142
https://doi.org/10.5194/nhess-5-137-2005
|
| 4 |
Bouguet J Y (2001). Pyramidal implementation of the affine Lucas kanade feature tracker description of the algorithm. Intel Corporation, 5
|
| 5 |
Calvo B, Savi F (2009). A real-world application of Monte Carlo procedure for debris flow risk assessment. Comput Geosci, 35(5): 967–977
https://doi.org/10.1016/j.cageo.2008.04.002
|
| 6 |
Costa J E, Spicer K R, Cheng R T, Haeni F P, Melcher N B, Thurman E M, Plant W J, Keller W C (2000). Measuring stream discharge by non-contact methods: a proof-of-concept experiment. Geophys Res Lett, 27(4): 553–556
https://doi.org/10.1029/1999GL006087
|
| 7 |
Cui P (1992). Study on conditions and mechanisms of debris flow initiation by means of experiment. Chin Sci Bull, 37: 759–763
|
| 8 |
Cui P, Chen X Q, Wang Y Y (2005). Jiangjia Ravine debris flows in south-western China. In: Jakob M, Hungr O, editors. Debris-flow hazards and related phenomena(pp. 565–594). Springer Berlin Heidelberg.
|
| 9 |
Cui P, Zhu Y Y, Chen J (2007). Relationships between antecedent rainfall and debris flows in Jiangjia ravine, China. In: Cheng-lung Chen, Jon J. Major, editors. Debris-flow hazards mitigation-mechanics, prediction, and assessment. Rotterdam: Millpress
|
| 10 |
Dramais G, Le Coz J, Camenen B, Hauet A (2011). Advantages of a mobile LSPIV method for measuring flood discharges and improving stage–discharge curves. J Hydro-environment Res, 5(4): 301–312
https://doi.org/10.1016/j.jher.2010.12.005
|
| 11 |
Farnebäck G (2003). Two-frame motion estimation based on polynomial expansion. In: Bigun J, Gustavsson T, eds. Image Analysis. Berlin Heidelberg: Springer Verlag, 363–370
|
| 12 |
Felberg R A, Christou I, Demchuk A M, Malkoff M, Alexandrov A V (2002). Screening for intracranial stenosis with transcranial Doppler: the accuracy of mean flow velocity thresholds. J Neuroimaging, 12(1): 9–14
https://doi.org/10.1111/j.1552-6569.2002.tb00083.x
|
| 13 |
Fox J F, Belcher B J (2011). Comparison of macroturbulence measured using decomposition of PIV, ADV and LSPIV data. J Hydraul Res, 49(1): 122–126
https://doi.org/10.1080/00221686.2010.535704
|
| 14 |
Fujisawa N, Oguma Y (2008). Measurement of pressure field around a NACA0018 airfoil from PIV velocity data. J Vis (Tokyo), 11(4): 281–282
https://doi.org/10.1007/BF03182195
|
| 15 |
Fujita I, Kunita Y (2011). Application of aerial LSPIV to the 2002 flood of the Yodo River using a helicopter mounted high density video camera. J Hydro-environment Res, 5(4): 323–331
https://doi.org/10.1016/j.jher.2011.05.003
|
| 16 |
Genevois R, Galgaro A, Tecca P R (2001). Image analysis for debris flow properties estimation. Phys Chem Earth, Part C Sol-terr Planet Sci, 26(9): 623–631
https://doi.org/10.1016/S1464-1917(01)00059-9
|
| 17 |
Guo X, Cui P, Li Y (2013). Debris flow warning threshold based on antecedent rainfall: a case study in Jiangjia ravine, Yunnan, China. Journal of Mountain Science, 10(2): 305–314
https://doi.org/10.1007/s11629-013-2521-z
|
| 18 |
Hu K, Hu C, Li Y, Cui P (2011a). Characteristics and mechanism of debris-flow surges at Jiangjia ravine. In: 5th International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment.Rome: Casa Editrice Università La Sapienza, 211–217
|
| 19 |
Hu K, Wei F, Li Y (2011b). Real-time measurement and preliminary analysis of debris-flow impact force at Jiangjia ravine, China. Earth Surf Process Landf, 36(9): 1268–1278
https://doi.org/10.1002/esp.2155
|
| 20 |
Hürlimann M, Rickenmann D, Graf C (2003). Field and monitoring data of debris-flow events in the Swiss Alps. Can Geotech J, 40(1): 161–175
https://doi.org/10.1139/t02-087
|
| 21 |
Ilstad T, Elverhøi A, Issler D, Marr J G (2004). Subaqueous debris flow behaviour and its dependence on the sand/clay ratio: a laboratory study using particle tracking. Mar Geol, 213(1‒4): 415–438
https://doi.org/10.1016/j.margeo.2004.10.017
|
| 22 |
Itakura Y, Inaba H, Sawada T (2005). A debris-flow monitoring devices and methods bibliography. Nat Hazards Earth Syst Sci, 5(6): 971–977
https://doi.org/10.5194/nhess-5-971-2005
|
| 23 |
Iverson R M (1997). The physics of debris flows. Rev Geophys, 35(3): 245–296
https://doi.org/10.1029/97RG00426
|
| 24 |
Kantoush S A, De Cesare G, Boillat J L, Schleiss A J (2008). Flow field investigation in a rectangular shallow reservoir using UVP, LSPIV and numerical modelling. Flow Meas Instrum, 19(3‒4): 139–144
https://doi.org/10.1016/j.flowmeasinst.2007.09.005
|
| 25 |
Kantoush S A, Schleiss A J, Sumi T, Murasaki M (2011). LSPIV implementation for environmental flow in various laboratory and field cases. J Hydro-environment Res, 5(4): 263–276
https://doi.org/10.1016/j.jher.2011.07.002
|
| 26 |
Kouamé D, Girault J M, Remenieras J P, Chemla J P, Lethiecq M (2003). High resolution processing techniques for ultrasound doppler velocimetry in the presence of colored noise. Part II: multiplephase pipe-flow velocity measurement. IEEE Trans Ultrason Ferroelectr Freq Control, 50(3): 267–278
https://doi.org/10.1109/TUFFC.2003.1193620
|
| 27 |
Lee S, Park C, Kang J, Daichin (2009). Evaluation of wind environment around a residential complex using a PIV velocity field measurement technique. Environ Fluid Mech, 9(6): 655–668
https://doi.org/10.1007/s10652-009-9133-8
|
| 28 |
Leitgeb R, Schmetterer L F, Wojtkowski M, Hitzenberger C K, Sticker M, Fercher A F (2002). Flow velocity measurements by frequency domain short coherence interferometry. Proc SPIE, 4619: 16–21
https://doi.org/10.1117/12.470477
|
| 29 |
Li Y, Liu J, Su F, Xie J, Wang B (2015). Relationship between grain composition and debris flow characteristics: a case study of the Jiangjia gully in China. Landslides, 12(1): 19–28
https://doi.org/10.1007/s10346-014-0475-z
|
| 30 |
Marchi L, Arattano M, Deganutti A M (2002). Ten years of debris-flow monitoring in the Moscardo torrent (Italian Alps). Geomorphology, 46(1‒2): 1–17
https://doi.org/10.1016/S0169-555X(01)00162-3
|
| 31 |
Pedersen C J, Huang D, Shure M A, Rollins A M (2007). Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography. Opt Lett, 32(5): 506–508
https://doi.org/10.1364/OL.32.000506
|
| 32 |
Ren H, Brecke K M, Ding Z, Zhao Y, Nelson J S, Chen Z (2002). Imaging and quantifying transverse flow velocity with the Doppler bandwidth in a phase-resolved functional optical coherence tomography. Opt Lett, 27(6): 409–411
https://doi.org/10.1364/OL.27.000409
|
| 33 |
Sederman A J, Mantle M D, Buckley C, Gladden L F (2004). MRI technique for measurement of velocity vectors, acceleration, and autocorrelation functions in turbulent flow. J Magn Reson, 166(2): 182–189
https://doi.org/10.1016/j.jmr.2003.10.016
|
| 34 |
Shi B, Wei J, Pang M (2014). A modified optical flow algorithm based on bilateral-filter and multi-resolution analysis for PIV image processing. Flow Meas Instrum, 38: 121–130
https://doi.org/10.1016/j.flowmeasinst.2014.05.005
|
| 35 |
Sidenbladh H, Black M J, Fleet D J (2000). Stochastic tracking of 3D human figures using 2D image motion. In: Computer vision—ECCV 2000. Berlin Heidelberg: Springer Verlag, 702–718
|
| 36 |
Szkulmowski M, Szkulmowska A, Bajraszewski T, Kowalczyk A, Wojtkowski M (2008). Flow velocity estimation using joint spectral and time domain optical coherence tomography. Opt Express, 16(9): 6008–6025
https://doi.org/10.1364/OE.16.006008
|
| 37 |
Takahashi T (1978). Mechanical characteristics of debris flow. J Hydraul Div, 104: 1153–1169
|
| 38 |
Tang J B, Hu K H, Zhou G D, Chen H Y, Zhu X H, Ma C (2013). Debris flow impact pressure signal processing by the wavelet analysis. Journal of Sichuan University: (Engineering Science Edition), 45: 8–13 (in Chinese)
|
| 39 |
Valentino R, Barla G, Montrasio L (2008). Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests. Rock Mech Rock Eng, 41(1): 153–177
https://doi.org/10.1007/s00603-006-0126-3
|
| 40 |
Wang G, Wu Q J, Sun G (2008). Quasi-perspective projection with applications to 3D factorization from uncalibrated image sequences. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008. IEEE, 1–8
|
| 41 |
Wei F Q, Hu K H, Cui P, Chen J, He Y P (2002). Characteristics and origing of debris flow of Jiangjiagou valiey blocking. J Soil Water Conserv, 16: 71–75 (in Chinese)
|
| 42 |
Ying X, Hu Z, Zha H (2006). Fisheye lenses calibration using straight-line spherical perspective projection constraint. In: Narayanan P J, Nayar S K, Shum H Y, eds. Computer Vision–ACCV. Berlin Heidelberg: Springer Verlag, 61–70
|
| 43 |
Zhang Z, Wang X, Fan T, Xu L (2013). River surface target enhancement and background suppression for unseeded LSPIV. Flow Meas Instrum, 30: 99–111
https://doi.org/10.1016/j.flowmeasinst.2012.12.002
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|