Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (1) : 127-136    https://doi.org/10.1007/s11707-016-0550-y
RESEARCH ARTICLE
The spatial distribution of threats to plant species with extremely small populations
Chunjing WANG, Jing ZHANG, Jizhong WAN, Hong QU, Xianyun MU, Zhixiang ZHANG()
School of Nature Conservation, Beijing Forestry University, Beijing 100083, China
 Download: PDF(921 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Many biological conservationists take actions to conserve plant species with extremely small populations (PSESP) in China; however, there have been few studies on the spatial distribution of threats to PSESP. Hence, we selected distribution data of PSESP and made a map of the spatial distribution of threats to PSESP in China. First, we used the weight assignment method to evaluate the threat risk to PSESP at both country and county scales. Second, we used a geographic information system to map the spatial distribution of threats to PSESP, and explored the threat factors based on linear regression analysis. Finally, we suggested some effective conservation options. We found that the PSESP with high values of protection, such as the plants with high scientific research values and ornamental plants, were threatened by over-exploitation and utilization, habitat fragmentation, and a small sized wild population in broad-leaved forests and bush fallows. We also identified some risk hotspots for PSESP in China. Regions with low elevation should be given priority for ex- and in-situ conservation. Moreover, climate change should be considered for conservation of PSESP. To avoid intensive over-exploitation or utilization and habitat fragmentation, in-situ conservation should be practiced in regions with high temperatures and low temperature seasonality, particularly in the high risk hotspots for PSESP that we proposed. Ex-situ conservation should be applied in these same regions, and over-exploitation and utilization of natural resources should be prevented. It is our goal to apply the concept of PSESP to the global scale in the future.

Keywords threatened plant species      extremely small populations      climate      protection value      human activities      China     
Corresponding Author(s): Zhixiang ZHANG   
Online First Date: 05 April 2016    Issue Date: 23 January 2017
 Cite this article:   
Chunjing WANG,Jing ZHANG,Jizhong WAN, et al. The spatial distribution of threats to plant species with extremely small populations[J]. Front. Earth Sci., 2017, 11(1): 127-136.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0550-y
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I1/127
1 Z An (2000). The history and variability of the East Asian paleomonsoon climate. Quat Sci Rev, 19(1‒5): 171–187
https://doi.org/10.1016/S0277-3791(99)00060-8
2 I Braverman (2014). Conservation without nature: the trouble with in situ versus ex situ conservation. Geoforum, 51: 47–57
https://doi.org/10.1016/j.geoforum.2013.09.018
3 M Burinskiene, V Rudzkiene (2009). Future insights, scenarios and expert method application in sustainable territorial planning. Technol Econ Dev Econ, 15(1): 10–25
https://doi.org/10.3846/1392-8619.2009.15.10-25
4 Y Chen, X Yang, Q Yang, D Li, W Long, W Luo (2014). Factors affecting the distribution pattern of wild plants with extremely small populations in Hainan Island, China. PLoS ONE, 9(5): e97751
https://doi.org/10.1371/journal.pone.0097751
5 China’s State Forestry Administration and the Institute of Botany, Chinese Academy of Sciences (2013). Rare and Endangered Plants in China. Beijing: China Forestry Publishing
6 Compilation Group of Vegetation Atlas of China (1:1000000) (2001).Vegetation Atlas of China (1:1000000). Beijing: Science Press
7 P J Cribb, S P Kell, K W Dixon, R L Barrett (2003). Orchid conservation: a global perspective. In: Dixon K W, Kell S P, Barrett R L, Cribb P J, eds. Orchid Conservation. Kota Kinabalu: Natural History Publications, 1–24
8 E Curio (1996). Conservation needs ethologv. Trends Ecol Evol, 11(6): 260–263
https://doi.org/10.1016/0169-5347(96)20046-1
9 M Drielsma, S Ferrier, G Howling, G Manion, S Taylor, J Love (2014). The biodiversity forecasting toolkit: answering the ‘how much’,‘what’, and ‘where’of planning for biodiversity persistence. Ecol Modell, 274: 80–91
https://doi.org/10.1016/j.ecolmodel.2013.11.028
10 ESRI (2014). ArcGIS desktop. Retrieved from
11 M C Evans, J E Watson, R A Fuller, O Venter, S C Bennett, P R Marsack, H P Possingham (2011). The spatial distribution of threats to species in Australia. Bioscience, 61(4): 281–289
https://doi.org/10.1525/bio.2011.61.4.8
12 L Fahrig (2003). Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst, 34(1): 487–515
https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
13 J Y Fang, Z H Wang, Z Y Tang (2009). Atlas of Woody Plants in China: Distribution and Climate. Beijing: Higher Education Press
14 J Franklin (2010) Mapping Species Distributions: Spatial inference and Prediction. London: Cambridge University Press
15 U Gärdenfors, C Hilton-Taylor, G M Mace, J P Rodríguez (2001). The application of IUCN Red List criteria at regional levels. Conserv Biol, 15(5): 1206–1212
https://doi.org/10.1046/j.1523-1739.2001.00112.x
16 C E González-Orozco, A H Brown, N Knerr, J T Miller, J J Doyle (2012). Hotspots of diversity of wild Australian soybean relatives and their conservation in situ. Conserv Genet, 13(5): 1269–1281
https://doi.org/10.1007/s10592-012-0370-x
17 J A Grytnes, O R Vetaas (2002). Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am Nat, 159(3): 294–304
https://doi.org/10.1086/338542
18 M B Hamilton (1994). Ex situ conservation of wild plant species: time to reassess the genetic assumptions and implications of seed banks. Conserv Biol, 8(1): 39–49
https://doi.org/10.1046/j.1523-1739.1994.08010039.x
19 R J Hijmans, S E Cameron, J L Parra, P G Jones, A Jarvis (2005). Very high resolution interpolated climate surfaces for global land areas. Int J Climatol, 25(15): 1965–1978
https://doi.org/10.1002/joc.1276
20 C N Jenkins, S L Pimm, L N Joppa (2013). Global patterns of terrestrial vertebrate diversity and conservation. Proc Natl Acad Sci USA, 110(28): E2602–E2610
https://doi.org/10.1073/pnas.1302251110
21 C Körner (2007). The use of ‘altitude’ in ecological research. Trends Ecol Evol, 22(11): 569–574
https://doi.org/10.1016/j.tree.2007.09.006
22 W H Li (2004). Degradation and restoration of forest ecosystems in China. For Ecol Manage, 201(1): 33–41
https://doi.org/10.1016/j.foreco.2004.06.010
23 R Lindborg, J Plue, K Andersson, S A Cousins (2014). Function of small habitat elements for enhancing plant diversity in different agricultural landscapes. Biol Conserv, 169: 206–213
https://doi.org/10.1016/j.biocon.2013.11.015
24 J Liu, J Diamond (2005). China’s environment in a globalizing world. Nature, 435(7046): 1179–1186
https://doi.org/10.1038/4351179a
25 B A Lukács, G Sramkó, A Molnár (2013). Plant diversity and conservation value of continental temporary pools. Biol Conserv, 158: 393–400
https://doi.org/10.1016/j.biocon.2012.08.024
26 Y Ma, G Chen, R E Grumbine, Z Dao, W Sun, H Guo (2013). Conserving plant species with extremely small populations (PSESP) in China. Biodivers Conserv, 22(3): 803–809
https://doi.org/10.1007/s10531-013-0434-3
27 Y Ma, J Nielsen, D F Chamberlain, X Li, W Sun (2014). The conservation of Rhododendrons is of greater urgency than has been previously acknowledged in China. Biodivers Conserv, 23(12): 3149–3154
https://doi.org/10.1007/s10531-014-0764-9
28 G F Midgley, L Hannah, D Millar, M C Rutherford, L W Powrie (2002). Assessing the vulnerability of species richness to anthropogenic climate change in a biodiversity hotspot. Glob Ecol Biogeogr, 11(6): 445–451
https://doi.org/10.1046/j.1466-822X.2002.00307.x
29 C Mora, R Metzger, A Rollo, R A Myers (2007). Experimental simulations about the effects of overexploitation and habitat fragmentation on populations facing environmental warming. Proc Biol Sci, 274(1613): 1023–1028
https://doi.org/10.1098/rspb.2006.0338
30 M A Moraes, R A X Borges, E M Martins, R A Fernandes, T Messina, G Martinelli (2014). Categorizing threatened species: an analysis of the Red List of the flora of Brazil. Oryx, 48(02): 258–265
https://doi.org/10.1017/S003060531200018X
31 A R Morais, R T Braga, R P Bastos, D Brito (2012). A comparative analysis of global, national, and state red lists for threatened amphibians in Brazil. Biodivers Conserv, 21(10): 2633–2640
https://doi.org/10.1007/s10531-012-0322-2
32 K A Murray, L D Verde Arregoitia, A Davidson, M Di Marco, M M Di Fonzo (2014). Threat to the point: improving the value of comparative extinction risk analysis for conservation action. Glob Change Biol, 20(2): 483–494
https://doi.org/10.1111/gcb.12366
33 F P Palstra, D E Ruzzante (2008). Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol, 17(15): 3428–3447
https://doi.org/10.1111/j.1365-294X.2008.03842.x
34 M Pfeifer, K Wiegand, W Heinrich, G Jetschke (2006). Long-term demographic fluctuations in an orchid species driven by weather: implications for conservation planning. J Appl Ecol, 43(2): 313–324
https://doi.org/10.1111/j.1365-2664.2006.01148.x
35 R L Pressey, M Cabeza, M E Watts, R M Cowling, K A Wilson (2007). Conservation planning in a changing world. Trends Ecol Evol, 22(11): 583–592
https://doi.org/10.1016/j.tree.2007.10.001
36 H Qian, R E Ricklefs (2000). Large-scale processes and the Asian bias in species diversity of temperate plants. Nature, 407(6801): 180–182
https://doi.org/10.1038/35025052
37 H Ren, Q Zhang, H Lu, H Liu, Q Guo, J Wang, S Jian, H Bao (2012). Wild plant species with extremely small populations require conservation and reintroduction in China. Ambio, 41(8): 913–917
https://doi.org/10.1007/s13280-012-0284-3
38 D M Richardson, R J Whittaker (2010). Conservation biogeography–foundations, concepts and challenges. Divers Distrib, 16(3): 313–320
https://doi.org/10.1111/j.1472-4642.2010.00660.x
39 A S Rodrigues, J D Pilgrim, J F Lamoreux, M Hoffmann, T M Brooks (2006). The value of the IUCN Red List for conservation. Trends Ecol Evol, 21(2): 71–76
https://doi.org/10.1016/j.tree.2005.10.010
40 A M Rosser, S A Mainka (2002). Overexploitation and species extinctions. Conserv Biol, 16(3): 584–586
https://doi.org/10.1046/j.1523-1739.2002.01635.x
41 M M Syfert, L Joppa, M J Smith, D A Coomes, S P Bachman, N A Brummitt (2014). Using species distribution models to inform IUCN Red List assessments. Biol Conserv, 177: 174–184
https://doi.org/10.1016/j.biocon.2014.06.012
42 J L Tella, A Rojas, M Carrete, F Hiraldo (2013). Simple assessments of age and spatial population structure can aid conservation of poorly known species. Biol Conserv, 167: 425–434
https://doi.org/10.1016/j.biocon.2013.08.035
43 J Wan, C Wang, S Han, J Yu (2014b). Planning the priority protected areas of endangered orchid species in northeastern China. Biodivers Conserv, 23(6): 1395–1409
https://doi.org/10.1007/s10531-014-0671-0
44 J Wan, C Wang, J Yu, S Han, L Wang, Q Wang (2014a). The ability of nature reserves to conserve medicinal plant resources: a case study in northeast China. Ecol Inform, 24: 27–34
https://doi.org/10.1016/j.ecoinf.2014.06.005
45 B Wang, Z Fang (1996). Chaotic oscillations of tropical climate: a dynamic system theory for ENSO. J Atmos Sci, 53(19): 2786–2802
https://doi.org/10.1175/1520-0469(1996)053<2786:COOTCA>2.0.CO;2
46 D Wang, W Ding, H Lo, T Stepinski, J Salazar, M Morabito (2013). Crime hotspot mapping using the crime related factors—A spatial data mining approach. Appl Intell, 39(4): 772–781
https://doi.org/10.1007/s10489-012-0400-x
47 X Wang, J Fang, N J Sanders, P S White, Z Tang (2009). Relative importance of climate vs local factors in shaping the regional patterns of forest plant richness across northeast China. Ecography, 32(1): 133–142
https://doi.org/10.1111/j.1600-0587.2008.05507.x
48 R J Wilson, C D Thomas, R Fox, D B Roy, W E Kunin (2004). Spatial patterns in species distributions reveal biodiversity change. Nature, 432(7015): 393–396
https://doi.org/10.1038/nature03031
49 W Yang, K Ma, H Kreft (2014). Environmental and socio-economic factors shaping the geography of floristic collections in China. Glob Ecol Biogeogr, 23(11): 1284–1292
https://doi.org/10.1111/geb.12225
50 K H Zhang (2005). Why does so much FDI from Hong Kong and Taiwan go to Mainland China? China Econ Rev, 16(3): 293–307
https://doi.org/10.1016/j.chieco.2005.02.004
51 Z Zhang, Y Yan, Y Tian, J Li, J S He, Z Tang (2015). Distribution and conservation of orchid species richness in China. Biol Conserv, 181: 64–72
https://doi.org/10.1016/j.biocon.2014.10.026
52 S Zhao, J Fang (2006). Patterns of species richness for vascular plants in China’s nature reserves. Divers Distrib, 12(4): 364–372
https://doi.org/10.1111/j.1366-9516.2006.00232.x
53 Y Zhao, X Hu, J Liu, Z Lu, J Xia, J Tian, J Ma (2015). Vegetation pattern in Shell Ridge Island in China’s Yellow River Delta. Front Earth Sci, 9(3): 567–577
https://doi.org/10.1007/s11707-015-0496-5
[1] FES-15550-of-WCJ_suppl_1 Download
[1] Jing ZHU, Yi LU, Fumin REN, John L McBRIDE, Longbin YE. Typhoon disaster risk zoning for China’s coastal area[J]. Front. Earth Sci., 2022, 16(2): 291-303.
[2] Dongliang ZHANG, Yunpeng YANG, Min RAN, Bo LAN, Hongyan ZHAO, Qi LIU. Vegetation dynamics and its response to climate change during the past 2000 years in the Altai Mountains, northwestern China[J]. Front. Earth Sci., 2022, 16(2): 513-522.
[3] Ziqiang DU, Rong RONG, Zhitao WU, Hong ZHANG. Examining the efficacy of revegetation practices in ecosystem restoration programs: insights from a hotspot of sandstorm in northern China[J]. Front. Earth Sci., 2021, 15(4): 922-935.
[4] Tao CHEN, Jinliang ZHANG, Yang LI, Yongfu ZHAO. Quantitative reconstruction of the palaeoclimate of the Shahejie Formation in the Chezhen Depression, Bohai Bay Basin, eastern China[J]. Front. Earth Sci., 2021, 15(4): 909-921.
[5] Herrieth MACHIWA, Bo TIAN, Dhritiraj SENGUPTA, Qian CHEN, Michael MEADOWS, Yunxuan ZHOU. Vegetation dynamics in response to human and climatic factors in the Tanzanian Coast[J]. Front. Earth Sci., 2021, 15(3): 595-605.
[6] Shikui GAO, Quanzhong GUAN, Dazhong DONG, Fang HUANG. Environmental risks of shale gas exploitation and solutions for clean shale gas production in China[J]. Front. Earth Sci., 2021, 15(2): 406-422.
[7] Jiancheng QIN, Buda SU, Hui TAO, Yanjun WANG, Jinlong HUANG, Tong JIANG. Projection of temperature and precipitation under SSPs-RCPs Scenarios over northwest China[J]. Front. Earth Sci., 2021, 15(1): 23-37.
[8] Xiaocha WEI, Qiuwen ZHOU, Ya LUO, Mingyong CAI, Xu ZHOU, Weihong YAN, Dawei PENG, Ji ZHANG. Vegetation dynamics and its response to driving factors in typical karst regions, Guizhou Province, China[J]. Front. Earth Sci., 2021, 15(1): 167-183.
[9] Fangyan ZHU, Heng WANG, Mingshi LI, Jiaojiao DIAO, Wenjuan SHEN, Yali ZHANG, Hongji WU. Characterizing the effects of climate change on short-term post-disturbance forest recovery in southern China from Landsat time-series observations (1988–2016)[J]. Front. Earth Sci., 2020, 14(4): 816-827.
[10] Ying LIU, Xudong WU, Xudong SUN, Chenghe GUAN, Bo ZHANG, Xiaofang WU. Exports-driven primary energy requirements and the structural paths of Chinese regions[J]. Front. Earth Sci., 2020, 14(4): 803-815.
[11] Kaixiu ZHANG, Wen QIN, Fang TIAN, Xianyong CAO, Yuecong LI, Jule XIAO, Wei DING, Ulrike HERZSCHUH, Qinghai XU. Influence of plant coverage and environmental variables on pollen productivities: evidence from northern China[J]. Front. Earth Sci., 2020, 14(4): 789-802.
[12] Marwa Gamal Mohamed ALI, Mahmoud Mohamed IBRAHIM, Ahmed El BAROUDY, Michael FULLEN, El-Said Hamad OMAR, Zheli DING, Ahmed Mohammed Saad KHEIR. Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta[J]. Front. Earth Sci., 2020, 14(3): 522-536.
[13] Baofu LI, Jili ZHENG, Xun SHI, Yaning CHEN. Quantifying the impact of mountain precipitation on runoff in Hotan River, northwestern China[J]. Front. Earth Sci., 2020, 14(3): 568-577.
[14] Sukh TUMENJARGAL, Steven R. FASSNACHT, Niah B.H. VENABLE, Alison P. KINGSTON, Maria E. FERNÁNDEZ-GIMÉNEZ, Batjav BATBUYAN, Melinda J. LAITURI, Martin KAPPAS, G. ADYABADAM. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia[J]. Front. Earth Sci., 2020, 14(2): 286-297.
[15] KuoRay MAO, Qian ZHANG, Yongji XUE, Nefratiri WEEKS. Toward a socio-political approach to water management: successes and limitations of IWRM programs in rural north-western China[J]. Front. Earth Sci., 2020, 14(2): 268-285.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed