Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (4) : 772-783    https://doi.org/10.1007/s11707-016-0559-2
RESEARCH ARTICLE
Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications
Danan DONG1,2,3,Wen CHEN1,2(),Miaomiao CAI1,Feng ZHOU1,Minghua WANG4,Chao YU1,2,Zhengqi ZHENG1,Yuanfei WANG1,3
1. Engineering Center of SHMEC for Space Information and GNSS, East China Normal University, Shanghai 200241, China
2. Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai 200241, China
3. Key?Laboratory?of?Geographic?Information?Science,?Ministry?of?Education, East China Normal University, Shanghai 200241, China
4. College?of?Surveying?and?Geo-informatics, Tongji?University, Shanghai 200092, China
 Download: PDF(758 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The multi-antenna synchronized global navigation satellite system receiver is a high precision, low cost, and widely used emerging receiver. Using this type of receiver, the satellite and receiver clock errors can be eliminated simultaneously by forming between antenna single-differences, which is equivalent to the conventional double-difference model. However, current multi-antenna synchronized global navigation satellite system receiver products have not fully realized their potential to achieve better accuracy, efficiency, and broader applications. This paper introduces the conceptual design and derivable products of multi-antenna synchronized global navigation satellite system receivers involving the aspects of attitude determination, multipath effect mitigation, phase center variation correction, and ground-based carrier phase wind-up calibration. Through case studies, the advantages of multi-antenna synchronized global navigation satellite system receivers in high-precision positioning applications are demonstrated.

Keywords multi-antenna synchronized global navigation satellite system receiver      high-precision positioning      attitude determination      multipath effect mitigation      phase center variation correction      ground-based carrier phase wind-up calibration     
Corresponding Author(s): Wen CHEN   
Just Accepted Date: 08 January 2016   Online First Date: 18 February 2016    Issue Date: 04 November 2016
 Cite this article:   
Danan DONG,Wen CHEN,Miaomiao CAI, et al. Multi-antenna synchronized global navigation satellite system receiver and its advantages in high-precision positioning applications[J]. Front. Earth Sci., 2016, 10(4): 772-783.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0559-2
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I4/772
Fig.1  Conceptual design of the MS-GNSS receiver.
Receiver Company Number of antennas Satellite
AsteRx2eH Septentrio NV 2 GPS, GLONASS
BD982 Trimble 2 GPS, GLONASS, BeiDou, SBAS
Triumph-4x Javad 4 GPS, GLONASS, SBAS
TOAS100D OlinkStar 2 GPS, BeiDou
K528 ComNav 2 GPS, BeiDou
Tab.1  Typical MS-GNSS receivers
DD MS-SD
Number of observations (n?1)*m*4 n*m*4
Redundancy (n?1)*m*4?(n?1)*2?6 n*m*4?n*2?8
Correlation High Low
Tab.2  Theoretical?performance?comparison between DD and MS-SD algorithm
Fig.2  Comparative experiment between MS-SD method and Trimble software. (a) Dynamic short baseline attitude determination experiment based on turning table. (b) The estimated trajectories of baseline vectors between the master and slave antennas using MS-SD method and Trimble software.
Fig.3  Hardware Installation for GPS/GNONASS system (Keong and Lachapelle, 2000).
Fig.4  Spatial distribution of multipath error on celestial hemisphere (Dong et al., 2014).
Fig.5  Relative MS-SD PCV measurement experiment (Mader, 1999).
Fig.6  Absolute MS-SD PCV measurement experiment (Bilich and Mader, 2010). (a) The calibration baseline. (b) Two-axis robot used to move the test antenna.
Fig.7  Accuracy test experiment of SAYD with turning table. (a) Experiment setting. (b) Changes in Δφw

over time.

1 Alber C, Ware R, Rocken C, Braun J (2000). Obtaining single path phase delays from GPS double differences. Geophys Res Lett, 27(17): 2661–2664
https://doi.org/10.1029/2000GL011525
2 Ashtech Inc. (1991). 3DF 24-Channel GPS measurement system. Houston: Ashtech Inc.
3 Banville S, Tang H (2010). Antenna rotation and its effects on kinematic Precise point positioning. In: Proceedings of ION GNSS-2010. Portland, OR, 2545–2552
4 Bilich A (2006). Improving the Precision and Accuracy of Geodetic GPS: Applications to Multipath and Seismology. Dissertation for Ph.D degree. Boulder: University of Colorado
5 Bilich A, Mader G L (2010). GNSS absolute antenna calibration at the National Geodetic Survey. In: Proceedings of ION GNSS-2010. Portland, OR, 1369–1377
6 Bock Y, Nikolaidis R, de Jonge P J, Bevis M (2000). Instantaneous geodetic positioning at medium distances with the Global Positioning System. J Geophys Res, 105(B12): 28223–28254
https://doi.org/10.1029/2000JB900268
7 Cannon M E, Berry E, King M (1993). Testing a lightweight GPS/ GIS terminal for sub-meter DGPS positioning. In: Proceedings of ION GPS-93. Salt Lake City, UT, 1011–1020
8 Cannon M E, Lachapelle G (1992). Analysis of a high-performance C/A code GPS receiver in kinematic mode. Navigation, 39(3): 285–300
https://doi.org/10.1002/j.2161-4296.1992.tb02277.x
9 Choi K, Bilich A, Larson K M, Axelrad P (2004). Modified sidereal filtering: implications for high-rate GPS positioning. Geophys Res Lett, 31(22): L22608
https://doi.org/10.1029/2004GL021621
10 Cohen C E (1992). Attitude Determination Using GPS. Dissertation for Ph.D drgree. Stanford: Stanford University
11 Cohen C E, Parkinson B W (1991). Mitigating Multipath in GPS-Based Attitude Determination. In: 14th AAS Guidance and Control Conference. Keystone, Colo, 53–68
12 Dong D N, Chen W, Cai M M, Zhou F, Xia J C, Cheng M F, Yu C, Qiu S(2015a). Attitude determination solution for multi-antenna synchronized GNSS receiver. 201510015460.6.
13 Dong D N, Chen W, Yu C, Cai M M, Zhou F, Cheng Y N, Cheng M F, Lv J Y, Qiu S (2015b). Azimuth angle determination method from estimated ground-based carrier phase wind-up with multi-antenna synchronized GNSS receiver. 201510096274.X.
14 Dong D N, Zheng Z Q, Kuang L, Chen W, Wang Y F, Zeng Z, Song L, Zhou F, Cai M M, Zhang Q Q, Xia J C (2014). Multipath hemispherical model (MHM) for multipath mitigation. 201410310467.6.
15 Fenton P C, Falkenberg B, Ford T, Ng K, Van Dierendonck A J (1991). NoVatel’s GPS receiver-the high performance OEM sensor of the future. In: Proceedings of ION GPS-91. Albuquerque, NM, 49–58
16 Fuhrmann T, Luo X G, KnöpflerA, Mayer M (2015). Generating statistically robust multipath stacking maps using congruent cells. GPS Solut, 19(1): 83–92
https://doi.org/10.1007/s10291-014-0367-7
17 Ge L L, Han S W, Rizos C (2000). Multipath mitigation of continuous GPS measurements using an adaptive filter. GPS Solut, 4(2): 19–30
https://doi.org/10.1007/PL00012838
18 Ge M, Gendt G, Rothacher M, Shi C, Liu J (2008). Resolution of GPS carrier-phase ambiguities in Precise Point Positioning (PPP) with daily observations. J Geod, 82(7): 389–399
https://doi.org/10.1007/s00190-007-0187-4
19 Genrich J, Bock Y (1992). Rapid resolution of crustal motion at short ranges with the Global Positioning System. J Geophys Res, 97(B3): 3261–3269
https://doi.org/10.1029/91JB02997
20 Hermann B R (1985). A Simulation of the navigation and orientation potential of the Ti-Agr. Mar Geod, 9(2): 133–143
https://doi.org/10.1080/15210608509379522
21 Keong J, Lachapelle G (2000). Heading and pitch determination using GPS/GLONASS. GPS Solut, 3(3): 26–36
https://doi.org/10.1007/PL00012800
22 Kouba J, Héroux P (2001). Precise point positioning using IGS orbit and clock products. GPS Solut, 5(2): 12–28
https://doi.org/10.1007/PL00012883
23 Kruczynski L R, Li P C, Evans A G, Hermann B R (1989). Using GPS to determine vehicle attitude: USS Yorktown test results. In: Proceedings of ION GPS-89. Colorado Springs, 163–171
24 Larson K M, Bilich A, Axelrad P (2007). Improving the precision of high-rate GPS. J Geophys Res, 112(B5): B05422
https://doi.org/10.1029/2006JB004367
25 Li Y, Zhang K, Roberts C, Murata M (2004). On-the-fly GPS-based attitude determination using single- and double-differenced carrier phase measurements. GPS Solut, 8(2): 93–102
https://doi.org/10.1007/s10291-004-0089-3
26 Lu G, Lachapelle G, Cannon M E, Vogel B (1994). Performance analysis of a shipborne gyrocompass with a multi-antenna GPS system. In: Proceedings of IEEE PLANSc94. Las Vegas, 337–343
27 Mader G (1999). GPS antenna calibration at the national geodetic survey. GPS Solut, 3(1): 50–58
https://doi.org/10.1007/PL00012780
28 Nee R D J V (1992). The multipath estimating delay lock loop. In: Proceedings of IEEE 2nd Symposium on Spread Spectrum Techniques and Applications. Yokohama, 39–42
29 Ragheb A E, Clarke P J, Edwards S J (2007). GPS sidereal filtering: coordinate and carrier-phase-level strategies. J Geod, 81(5): 325–335
https://doi.org/10.1007/s00190-006-0113-1
30 Rothacher M, Schaer S, Mervart L, Beutler G (1995). Determination of antenna phase center variations using GPS data. In: Proceedings of the IGS Workshop. Potsdam, Germany
31 Schupler B R, Clark T A, Allshouse R L (1995). Characterizations of GPS user antennas: reanalysis and new results. In: Beutler G et al., eds. GPS Trends in Precise Terrestrial, Airborne, and Spaceborne Applications. IAG Symposia, Vol.115. Boulder, CO, USA: Springer Verlag
32 Souza E M, Monico J F G (2004). Wavelet shrinkage: high frequency multipath reduction from GPS relative positioning. GPS Solut, 8(3): 152–159
https://doi.org/10.1007/s10291-004-0100-z
33 Tetewsky A K, Mullen F E (1997). Carrier phase wrap-up induced by rotating GPS antennas. GPS World, 8(2): 51–57
34 Teunissen P J G (1995). The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation. J Geod, 70(1-2): 65–82
https://doi.org/10.1007/BF00863419
35 Teunissen P J G, de Jonge P J, Tiberius C C J M (1997). The least-squares ambiguity decorrelation adjustment: its performance on short GPS baselines and short observation spans. J Geod, 71(10): 589–602
https://doi.org/10.1007/s001900050127
36 Townsend B, Fenton P (1994). A practical approach to the reduction of pseudorange multipath errors in A L1 GPS receiver. In: Proceedings of ION GPS-94, Salt Lake City, 143–148
37 UNAVCO (1995). Receiver and Antenna Test Report. University Navstar Consortium (UNAVCO) Academic Research Infrastructure (ARI), Boulder, Colorado
38 Van Dierendonck A J, Fenton P, Ford T (1992). Theory and performance of narrow correlator spacing in a GPS receiver. Navigation, 39(3): 265–283
https://doi.org/10.1002/j.2161-4296.1992.tb02276.x
39 Wilson G J, Tonnemacher J D (1992). A GPS attitude determination system. J Navig, 45(2): 192–204
https://doi.org/10.1017/S0373463300010699
40 Wu J, Wu S, Hajj G, Bertiger W, Lichten S (1993). Effects of antenna orientation on GPS carrier phase. Manuscr Geod, 18(2): 91–98
41 Wübbena G, Menge F, Schmitz M, Seeber G, Völksen C (1996). A new approach for field calibration of absolute antenna phase center variations. In: Proceedings of ION GPS-96. Kansas City, MO, 1205–1214
42 Ye S R, Chen D Z, Liu Y Y, Jiang P, Tang W M, Xia P F (2014). Carrier phase multipath mitigation for BeiDou navigation satellite system. GPS Solut, doi: 10.1007/s10291-014-0409-1
43 Young L, Meehan T (1988). GPS Multipath effect on code-using receiver. In: American Geophysical Union Meeting. Baltimore, MD, USA: 335–343
44 Zheng D W, Zhong P, Ding X L, Chen W (2005). Filtering GPS time series using a Vondrak filter and cross-validation. J Geod, 79(6‒7): 363–369
https://doi.org/10.1007/s00190-005-0474-x
45 Zhong P, Ding X L, Yuan L G, Xu Y L, Kwok K, Chen Y Q (2010). Sidereal filtering based on single differences for mitigating GPS multipath effects on short baselines. J Geod, 84(2): 145–158
https://doi.org/10.1007/s00190-009-0352-z
46 Zhou F, Dong D N, Chen W, Cai M M (2015). Isolating fractional phase delays in single differences with common receiver clock. (Submitted to GPS solutions)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed