Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (1) : 184-201    https://doi.org/10.1007/s11707-016-0565-4
RESEARCH ARTICLE
Shale gas reservoir characteristics of Ordovician-Silurian formations in the central Yangtze area, China
Chang’an SHAN1,2,Tingshan ZHANG2,3(),Yong WEI4,Zhao ZHANG5
1. School of Earth Sciences and Engineering, Xi’an Shiyou University, Xi’an 710065, China
2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploration, Southwest Petroleum University, Chengdu 610500, China
3. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
4. Exploration and Development Research Institute, Southwest Oil & Gas field Company, CNPC, Chengdu 610041, China
5. Exploration and Development department, Zhejiang Oilfield Company, CNPC, Hangzhou 310023, China
 Download: PDF(9292 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The characteristics of a shale gas reservoir and the potential of a shale gas resource of Ordovician–Silurian age in the north of the central Yangtze area were determined. Core samples from three wells in the study area were subjected to thin-section examination, scanning electron microscopy, nuclear magnetic resonance testing, X-ray diffraction mineral analysis, total organic carbon (TOC) testing, maturity testing, gas-bearing analysis, and gas component and isothermal adsorption experiments. A favorable segment of the gas shale reservoir was found in both the Wufeng Formation and the lower part of the Longmaxi Formation; these formations were formed from the late Katian to early Rhuddanian. The high–quality shale layers in wells J1, J2, and J3 featured thicknesses of 54.88 m, 48.49 m, and 52.00 m, respectively, and mainly comprised carbonaceous and siliceous shales. Clay and brittle minerals showed average contents of 37.5% and 62.5% (48.9% quartz), respectively. The shale exhibited type II1 kerogens with a vitrinite reflectance ranging from 1.94% to 3.51%. TOC contents of 0.22%–6.05% (average, 2.39%) were also observed. The reservoir spaces mainly included micropores and microfractures and were characterized by low porosity and permeability. Well J3 showed generally high gas contents, i.e., 1.12–3.16 m3/t (average 2.15 m3/t), and its gas was primarily methane. The relatively thick black shale reservoir featured high TOC content, high organic material maturity, high brittle mineral content, high gas content, low porosity, and low permeability. Shale gas adsorption was positively correlated with TOC content and organic maturity, weakly positive correlated with quartz content, and weakly negatively correlated with clay content. Therefore, the Wufeng and Longmaxi formations in the north of the central Yangtze area have a good potential for shale gas exploration.

Keywords reservoir characteristic      shale gas      Upper Ordovician      Lower Silurian      central Yangtze area     
Corresponding Author(s): Tingshan ZHANG   
Online First Date: 26 July 2016    Issue Date: 23 January 2017
 Cite this article:   
Chang’an SHAN,Tingshan ZHANG,Yong WEI, et al. Shale gas reservoir characteristics of Ordovician-Silurian formations in the central Yangtze area, China[J]. Front. Earth Sci., 2017, 11(1): 184-201.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0565-4
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I1/184
Fig.1  Location of wells and regional tectonic structure of the middle Yangtze area: (a) location of the study area; (b) regional tectonic structure of middle Yangtze area (modified after Fu et al., 2006); (c) location of wells in the study area.
Fig.2  (a) Cross section of three wells showing the stratigraphy in the Wufeng and Longmaxi Formations. (b) Lithologic characteristics of the cores in J1. (c) Core photo of J3, showing a fault at the bottom of Longmaxi Formation.
Well name Depth
/m
Formation Lithology Mineral composition
/%
Clay composition
/%
Mixer layer clays
I/S/% C/S/%
Q Pl Ca Py Si A Cl I C I/S C/S S I S C
J1 292.6 Longmaxi
(S1l)
Black shale 44 11 0 2 0 0 43 53 24 6 17 15 85 41 59
299.4 46 11 0 0 0 0 43 55 23 5 17 15 85 37 63
310.8 46 10 0 3 0 0 41 57 23 5 15 10 90 50 50
319.7 50 8 0 9 0 2 31 55 24 7 14 15 85 31 69
327.2 66 8 0 3 0 2 21 52 31 17 0 10 90 0 0
329.6 Wufeng
(O3w)
Black shale 71 4 0 2 0 4 19 48 21 13 18 10 90 31 69
332.7 48 11 0 4 0 4 33 49 20 15 16 15 85 33 67
J2 200.0 Longmaxi
(S1l)
Black shale 45 10 0 0 0 0 45 43 30 15 12 15 85 41 59
214.0 43 11 0 0 3 0 43 43 29 17 11 15 85 42 58
214.7 43 11 0 0 2 0 44 53 16 19 12 15 85 29 71
J3 4061.9 Longmaxi
(S1l)
Black shale 43 7 0 0 0 50 43 26 21 10 10 90 42 58
4064.9 38 7 0 2 0 0 53 37 27 23 13 10 90 39 61
4068.4 42 7 0 1 0 0 50 41 28 18 13 10 90 43 57
4071.2 39 7 0 3 0 0 51 42 23 23 12 15 85 50 50
4075.2 49 6 0 3 0 0 42 45 15 27 13 10 90 26 74
4079.8 50 8 9 6 0 0 27 42 29 17 12 10 90 43 57
4083.0 37 13 0 4 0 0 46 39 13 28 20 10 90 38 62
4086.3 62 5 0 3 0 5 25 58 15 18 9 10 90 23 77
4089.9 48 6 12 2 0 14 18 55 16 23 6 15 85 42 58
4092.0 72 2 3 2 0 3 18 56 18 19 7 10 90 44 56
4095.1 45 5 0 5 0 1 44 48 23 19 10 10 90 27 73
Tab.1  Mineral content chart based on XRD analysis in the Wufeng–Longmaxi Formations in the J1, J2, and J3 wells
Fig.3  Bar chart and triangular diagram of mineral components: (a) mineral composition bar chart of shale in J1, J2, and J3; (b) mineral composition triangular chart of marine shale in J1, J2, and J3 and other wells abroad; (c) clay?mineral composition triangular chart of marine shale in J1, J2 and J3 as well as wells from the Dianqianbei area.
Fig.4  Photomacrographs and photomicrographs of core lithologic characteristics: (a) Graptolite?fossils are well-developed in black shale, Wufeng Formation, 329.0 m; core photo, J1; (b) Muddy shale, 285.3 m, J1; (c) Microscopic photo of muddy shale, mud>90%,?arenite (5%–8%), pyrite>1%, Longmaxi Formation, 285.3 m, (-) 50×, J1; (d) Siliceous shale, high-angle fractures filled by calcite, 263.2 m, J2; (e) Microscopic photo of siliceous shale, containing numerous radiolaria and sponge spicule fossils, (-) 50×, 263.2 m, J2; (f) Silty shale, 135.4?m, J2; (g) Microscopic photo of silty shale and quartz grains floating among clay minerals, (-) 50×, 135.4 m, J2; (h) Carbonaceous shale, 4064.5 m, J3; (i) Microscopic photo of carbonaceous shale, rich in organic matters, 4064.5 m, J3.
Fig.5  Kerogen macerals of 6 shale samples in the Longmaxi Formation in the J3 well: [a(t)] Photo by transmitted light microscopy, 4061.91 m; [a(f)] Photo by fluorescence microscopy, 4061.91 m; [b(t)] Photo by transmitted light microscopy, 4071.17 m; [b(f)] Photo by fluorescence microscopy, 4071.17 m; [c(t)] Photo by transmitted light microscopy, 4077.30 m; [c(f)] Photo by fluorescence microscopy, 4077.30 m; [d(t)] Photo by transmitted light microscopy, 4083.04 m; [d(f)] Photo by fluorescence microscopy, 4083.04 m; [e(t)] Photo by transmitted light microscopy, 4088.60 m; [e(f)] Photo by fluorescence microscopy, 4088.60 m; [f(t)] Photo by transmitted light microscopy, 4096.00 m; [f(f)] Photo by fluorescence microscopy, 4096.00 m.
Well name Depth
/m
Formation Lithology TOC
/%
VRr
/%
Kerogen macerals content/% Kerogen type
Sapropelic amorphogen Inertinite
J1 292.6 S1l Black
Shale
0.8 1.95 / / /
300.8 S1l 0.76 / / / /
303.5 S1l 0.83 / / / /
308.9 S1l 0.22 / / / /
310.8 S1l 0.99 / / / /
317.4 S1l 1.59 1.94 / / /
319.7 S1l 1.28 / / / /
324.2 S1l 1.57 / / / /
327.2 S1l 3.78 1.96 / / /
329.6 O3w 2.53 1.99 / / /
332.7 O3w 4.78 / / /
336.9 O3w 4.31 2.01 / / /
J3 4061.6 S1l Black
Shale
2.25 / / / /
4061.9 S1l 2.99 / 67 33 II1
4063.3 S1l 2.71 / / / /
4064.9 S1l 2.98 / / / /
4065.8 S1l 2.57 / / / /
4066.7 S1l 2.9 / / / /
4068.4 S1l 2.03 / / / /
4069.5 S1l 1.8 / / / /
4070.1 S1l 2.84 2.96 / / /
4071.2 S1l 3.02 2.68 70 30 II1
4071.8 S1l 3.48 / / / /
4072.9 S1l 3.94 / / / /
4073.7 S1l 4.2 3.28 / / /
4075.2 S1l 3.65 3.51 / / /
4076.1 S1l 3.78 2.82 / / /
4077.3 S1l 2.87 3.01 63 37 II1
4077.8 S1l 3.58 / / / /
4079.8 S1l 3.39 / / / /
4080.8 S1l 4.79 2.96 / / /
4081.5 S1l 4.1 / / / /
4082.6 S1l 4.64 / / / /
4083 S1l 4.83 / 71 29 II1
4084.1 S1l 5.54 / / / /
4086.3 S1l 4.8 2.87 / / /
4087.2 S1l 4.65 / / / /
4087.8 S1l 4.13 2.73 / / /
4088.6 S1l 3.98 / 57 43 II1
4089.9 S1l 4.78 2.98 / / /
4090.1 S1l 4.52 / / / /
4091 S1l 6.15 / / / /
4092 S1l 5.12 2.64 / / /
4093 S1l 5.98 2.75 / / /
4095.1 S1l 5.15 2.82 / / /
4096 S1l 4.56 / 56 44 II1
4096.3 S1l 3.21 / / / /
4097.2 S1l 3.15 / / / /
Tab.2  Organic geochemistry characteristics of the Wufeng–Longmaxi Formations in the J1 and J3 wells
Well
name
Depth
/m
Formation NMR porosity
/%
NMR permeability
/md
Bound water saturation
/%
Free gas saturation
/%
T2
/ms
J1 299.4 S1l 1.28 0.000033 74.52 25.48 2.23
333.9 O3w 1.11 0.00005 64.29 35.71 1.55
J2 200.0 S1l 2.31 0.000225 78.45 21.55 2.23
214.7 S1l 1.97 0.00033 68.7 31.3 1.55
J3 4068.4 S1l 2.99 0.0022 65.93 34.07 2.23
4092.2 S1l 4.41 0.00085 87.22 12.78 4.64
Tab.3  NMR results of the six?core samples from the J1, J2, and J3 wells
Fig.6  Types of microscopic pores of rocks in the Wufeng and Longmaxi formations in J1: (a)?clay mineral pores, Longmaxi Formation, 297.4 m; (b) clay mineral pores, Wufeng Formation, 329.4 m; (c) clay mineral pores, Longmaxi Formation, 283.2 m; (d) clay mineral pores, Longmaxi Formation, 311.2 m; (e) pyrite?intercrystalline pores, Longmaxi Formation, 127.7 m; (f) mineral moldic?pores, Longmaxi Formation, 325.1 m; (g) dissolution pores, Longmaxi Formation, 301.3 m; (h) organic?matter pores, Wufeng Formation, 330.2 m; (i) microfractures, Wufeng Formation, 331.8 m.
Fig.7  NMR T2 relaxation?time spectrum before and after centrifugation of core samples.
Fig.8  Relationship of NMR permeability?and?NMR porosity?of core samples.
Well
name
Depth
/m
Formation TOR
/%
Lost gas /(m3·t?1) Separated gas /(m3·t?1) Residual gas /(m3·t?1) Total gas /(m3·t?1)
J1 292.6 S1l 0.8 0 0 0.12 0.12
310.8 0.99 0 0.01 0.08 0.09
319.7 1.28 0 0.02 0.2 0.22
332.7 O3w 2.53 0.03 0.18 0.29 0.5
J3 4061.9 S1l 2.99 0.67 0.43 0.05 1.14
4064.9 2.98 0.97 0.66 0.04 1.68
4068.4 2.03 0.66 0.4 0.06 1.12
4071.2 3.02 0.65 0.58 0.07 1.3
4073.7 4.2 0.97 0.94 0.02 1.93
4075.2 3.65 0.91 0.41 0.11 1.43
4079.8 3.39 2.08 1.03 0.06 3.16
4083.0 4.83 1.73 1.06 0.09 2.88
4086.3 4.8 2.49 1.37 0.06 3.93
4089.9 4.78 0.86 0.49 0.07 1.43
4091.0 6.15 1.8 1.01 0.05 2.87
4095.1 5.15 1.64 1.17 0.17 2.98
Tab.4  Separation result of the shale gas content in the J1 and J3 wells
Well
name
Depth
/m
He
/%
H2
/%
O2
/%
N2
/%
Co2
/%
H2s
/%
C1
/%
C2
/%
C3
/%
Ic4
/%
Nc4
/%
Ic5
/%
Nc5
/%
C6+
/%
J1 292.6 0 0 0 97.33 1.56 0 0.94 0.02 0.03 0.02 0.04 0.02 0.03 0.01
310.8 0 0 0 96.43 2.77 0 0.73 0.01 0.01 0.01 0.02 0.01 0.01 0
319.7 0 0 0 92.38 0 0 7.46 0.07 0.02 0.01 0.03 0.01 0.02 0
332.7 0.03 0.01 0 13.89 0.71 0 85.31 0.05 0 0 0 0 0 0
J3 4061.9 0.05 0.31 0 0 3.4 0 96.16 0.08 0 0 0 0 0 0
4064.9 0.05 0.02 0 0 5.53 0 94.37 0.03 0 0 0 0 0 0
4068.4 0.04 0.12 0 0 3.22 0 96.54 0.08 0 0 0 0 0 0
4071.2 0.03 0.89 0 0.06 3.52 0 95.39 0.11 0 0 0 0 0 0
4073.7 0.04 0.96 0 4.5 3.3 0 91.07 0.13 0 0 0 0 0 0
4075.2 0.07 0 0 1.86 7.37 0 90.64 0.06 0 0 0 0 0 0
4079.8 0.01 0 0 6.56 2.08 0 91.2 0.15 0 0 0 0 0 0
4083.0 0.05 0 0 6.25 1.01 0 92.64 0.05 0 0 0 0 0 0
4086.3 0.03 0 0 4.6 0.88 0 94.4 0.09 0 0 0 0 0 0
4089.9 0.02 0 0 4.71 3.27 0 91.94 0.06 0 0 0 0 0 0
4091.0 0.02 0.02 0 4.72 3.21 0 91.97 0.06 0 0 0 0 0 0
4095.1 0.03 0 0 1.87 2.6 0 95.38 0.12 0 0 0 0 0 0
Tab.5  Component analysis of shale gas in the J1 and J3 wells
Fig.9  Relationships among clay minerals, quartz, and TOC of black shale in J1 and J3. Relationship between (a) clay mineral content and TOC and (b) quartz content and TOC.
Fig.10  Correlation of total gas content and TOC in the J1 and J3 wells.
Well
name
Sample
name
Depth
/m
Fitting
coefficient
Vl
/(m3·t?1)
Pl
/MPa
TOC
/%
VRr
/%
Clay
/%
Quartz
/%
J1 J1-1 292.6 0.9968 1.71 1.49 0.8 1.95 43 44
J1-2 310.8 0.9982 2.26 1.53 0.99 / 41 46
J1-3 327.2 0.9954 3.02 3.08 3.78 1.96 21 66
J1-4 329.6 0.9991 2.35 2.36 2.53 1.99 19 71
J3 J3-1 4064.9 0.9993 2.88 3.44 2.98 / 38 53
J3-2 4071.2 0.9991 3.34 1.74 3.02 2.68 39 51
J3-3 4079.8 0.9992 3.34 2.02 3.39 / 27 50
J3-4 4086.3 0.9996 4.33 2.1 4.8 2.87 25 62
J3-5 4092 0.9998 4.00 1.91 5.12 2.64 18 72
J3-6 4095.1 0.9996 2.82 1.49 5.15 2.82 44 45
Tab.6  Sample data from the isothermal adsorption test of shale methane (30°C)
Fig.11  Isothermal curves for 10 black shale samples from the J1 and J3 wells.
Fig.12  Relationships among TOC, VRr, and methane adsorption capability of black shale in J1 and J3: (a) TOC and VL and (b) VRr and VL.
Fig.13  Relationships among quartz, clay, and methane adsorption capability of black shale in J1 and J3: (a) Quartz content and adsorption capability and (b) clay content and adsorption capability.
Area Formation Lithology Brittle mineral
/%
Clay mineral
/%
Porosity
/%
Permeability
/(×10?3mm2)
Shale thickness
/m
TOC
/%
Kerogen type VRr
/%
Reservoir
Space
Jiaoshiba Wufeng-
Longmaxi
Carbonaceous shale
Siliceous?shale
33.9?80.3
(56.5)
16.6?62.8
(40.9)
1.17?8.61
(4.87)
0.0001?
335.21
39.5?89 0.46?7.13
(2.66)
I, II1 2.42?2.8
(2.59)
Matrix
Pores
+
Facture
Chang-
ning
Wufeng-
Longmaxi
Siliceous?shale
Calcareous shale
Quartz17?58(33)
Feldspar3?18(7)
Calcite+dolomite
4?65(22)
10?53
(31)
3.4?8.2
(5.4)
0.000 22?
0.0019
(0.00029)
40?60 1.9?7.3
(4)
I, II1 2.3?2.8
(2.5)
Matrix
Pores
+
Facture
Weiyuan Wufeng-
Longmaxi
Siliceous?shale
Calcareous shale argillaceous?shale
Quartz17?58(33)
Feldspar3?18(7) calcite+dolomite
4?65(22)
15?49
(34)
3.9?6.7
(5.3)
0.000015?
0.000090
(0.000 042)
26?50 1.9?6.4
(2.7)
I, II1 2.7 Matrix
Pores
+
Facture
Fushun--
Yong-
chuan
Wufeng-
Longmaxi
Siliceous?shale
Calcareous shale
Quartz45?48(47)
Feldspar3?9(7)
Calcite+dolomite
4?6(5)
37?40
(39)
3.0?7.0
(4.2)
0.000187?
0.000 273
(0.000 233)
60?120 1.6?6.8
(3.8)
I, II1 2.5?3.0 Matrix
Pores
+
Facture
Zhaotong Wufeng-
Longmaxi
Siliceous?shale
calcareous shale
Quartz24?54(40) feldspar4?5(4.5) calcite+Dolomite
0?44(22)
23?42
(32)
2.6?7.0
(5.9)
0.0043?
0.042
(0.019)
30?40 1.6?4.9
(3.2)
I, II1 2.1?
3.0
Matrix
Pores
+
Facture
The study area Longmaxi Carbonaceous shale siliceous?shale Quartz37?72(48) feldspar2?13(8.2) calcite+Dolomite
0?26(3.5)
18?53 (37.41) 1.11?4.41
(2.35)
0.00003?
0.0022
(0.000615)
48?55 0.22?
6.15
(3.39)
II1 1.94?
3.51
(2.66)
Matrix
Pores
+
Facture
Tab.7  The comparison of gas shale reservoir characteristics among the study area, gas shale basins in America, and domestic commercial shale gas producing areas
30 Papazis P K (2005). Petrographic characterization of the Barnett Shale, Fort Worth Basin, Texas. M.S. Thesis, University of Texasat Austin, Austin, Texas, 142p and appendices.
31 Pu P L (2008). Analysis of the reservoir forming conditions of shale gas potential in Sichuan basin. Master Degree Thesis. China University of Petroleum, Beijing, 5–6 (in Chinese)
32 Qin J Z, Fu X D, Shen B J, Liu W X, Teng G E, Zhang Q Z, Jiang Q G (2010). Characteristics of ultramicroscopic organic lithology of excellent marine shale in the Upper product sequence, Sichuan Basin. Petroleum Geology & Experiment, 32(2): 164–170 (in Chinese)
33 Qiu X S, Yang B, Hu M Y (2013). The Characteristics of shale reservoirs and gas content of Wufeng- Longmaxi Formation in the middle Yangtze region. Journal of Natural Gas team, 24(6): 1274–1283 (in Chinese)
34 Reed R M, Loucks R G (2007). Imaging nanoscale pores in the Mississippian Barnett Shale of the northern Fort Worth Basin. AAPG Annual Convention Abstracts 6, 115
35 Slatt R M, O’Brien N R (2011). Pore types in the Barnett and Woodford Gas shales: Contribution to understanding gas storage and migration Pathways in fine-grained rocks. AAPG Bull, 95(12): 2017–2030
https://doi.org/10.1306/03301110145
36 Ross D J K, Bustin R M (2007). Shale gas potential of the Lower Jurassic Gordondale Member, northeastern British Columbia, Canada. Bull Can Pet Geol, 55(1): 51–75
https://doi.org/10.2113/gscpgbull.55.1.51
1 Burnaman M D, Xia W W, Shelton J (2009). Shale gas play screening and evaluation criteria. China Petroleum Exploration, 14(3): 51–64
2 Chalmers G R, Bustin R M, Power I M (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and Field emission scanning electron microscopy / transmission electron Microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doigunits. AAPG Bull, 96(6): 1099–1119
https://doi.org/10.1306/10171111052
3 Chen W L, Zhou W, Luo P, Deng H C, Li Q, Shan R, Qi M H (2013). Analysis of the shale gas reservoir in the Lower Silurian Longmaxi Formation, Changxin1 well, Southeast Sichuan Basin, China. Yanshi Xuebao, 29(3): 1073–1086 (in Chinese)
4 Chen X, Rong J, Li Y, Boucot A J (2004). Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition. Palaeogeogr Palaeoclimatol Palaeoecol, 204(3-4): 353–372
https://doi.org/10.1016/S0031-0182(03)00736-3
5 Chen X, Rong J Y, Zhou Z Y, Zhang Y D, Zhan R B, Liu J B, Fan J X (2001). Qianzhong Uplift and Yichang Uplift from Ordovician to Silurian in Yangtze area. Chin Sci Bull, 46(12): 1052–1056
6 Cui X, Bustin A M, Bustin R (2009). Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications. Geofluids, 9(3): 208–223
https://doi.org/10.1111/j.1468-8123.2009.00244.x
7 Curtis J B (2002). Fractured shale-gas systems. AAPG Bull, 86(11): 1921–1938
37 Ross D J K, Bustin R M (2009). The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar Pet Geol, 26(6): 916–927
https://doi.org/10.1016/j.marpetgeo.2008.06.004
38 Schoenherr J, Littke R, Urai J L, Kukla P A, Rawahi Z (2007). Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen. Org Geochem, 38(8): 1293–1318
https://doi.org/10.1016/j.orggeochem.2007.03.010
39 Shang Z Y, Ou Y J, Feng Q N (1998). The new logging technology and development of reservoir evaluation of oil and gas.Beijing: Petroleum Industry Press, 276 (in Chinese)
8 Fu X D, Qin J Z, Teng G E, Wang X F (2011). The Mineral components of the source rocks and their petroleum significance: a case from Paleozoic Marine source rocks in the Middle and Upper Yangtze region. Journal of petroleum Exploration and Development, 38(6): 671‒684 (in Chinese)
9 Fu Y X, Zhang P, Li Z X, Yang Z W, Liu X M, Wang S H (2007). The tectonic characteristics and their significance for hydrocarbon exploration in mid- Yangtze area. Geotectonica Et Metallogenia., 31(3): 308–314 (in Chinese)
10 Gao H Q, Cao H H, Ding A X, Gong Y, Li C, Ye J G, Yue X J (2013). Isotherm adsorption characteristic of marine and continental shale and its controlling factors. Natural Gas Geoscience, 24(6): 1290–1297 (in Chinese)
40 Strapoc D, Mastalerz M, Schimmelmann A, Drobniak A, Hasenmueller N R (2010). Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian–Mississippian), eastern Illinois Basin. AAPG Bull, 94(11): 1713–1740
https://doi.org/10.1306/06301009197
41 Teng J W, Liu Y S (2013). Analysis of distribution, storage potential and prospect for shale oil and gas in China. Progress in Geophysics, 28(3): 1083–1108 (in Chinese)
42 Tu J Q, Wang S Z, Fei X D (1998). Discussion on certain problems to the division of organic matter types in kerogen. Experimental petroleum geology, 20(2): 187–191
43 Wang Y, Rong J Y, Zhan R B, Huang B, Wu R C, Wang G X (2013). On the Ordovician, Silurian boundary with strata in southwestern Hubei, and the Yichang Uplift. Journal of Stratigraphy, 37(3): 265–274
44 Wang Z C, Zhao W Z, Peng H Y (2002). Characteristics of multi-source petroleum systems in Sichuan basin. Petroleum exploration and development, 29(2): 26–28 (in Chinese)
45 Wu J S, Yu B S, Li Y X (2012). Adsorption Capacity of Shale Gas and Controlling Factors from the Well Yuye 1 at the Southeast of Chongqing. Journal of Southwest Petroleum University: Science and Technology Edition, 34(4): 40–48 (in Chinese)
46 Xiao Z H, Yang R F, Feng T, Cao Y J, Wang Q R, Yang T C, Wang C H, Deng Y (2012). Reservoir forming conditions and exploration potential of shale gas in Lower Cambrian Niutitang Formation, Northwestern Hunan. Journal of Hunan University of Science and Technology(Natural Science Edition), 36(2): 65–70
11 Guo T L, Zhang H R (2014). Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin. Petroleum Exploration and Development, 41(1): 31–40 (in Chinese)
https://doi.org/10.1016/S1876-3804(14)60003-3
47 Xie X M, Teng G R, Qin J Z, Bian L Z, Zhang Q Z, Zhang W T (2013). Bacter-like fossil in the early Cambrian siliceous shale from Zunyi, Guizhou, SW China. Acta Geol Sin, 87(1): 20–28
48 Zhang T W, Ellis G S, Ruppel S C, Milliken K, Yang R S (2012). Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org Geochem, 47: 120–131
https://doi.org/10.1016/j.orggeochem.2012.03.012
49 Zhou S W, Jiang W, Zhang C Y (2012). The enlightenment on shale gas exploration and development in China getting from Eagle Ford in America. Eng Sci, 14(6): 16–21
50 Zou C N, Yang Z, Zhang G S, Hou L H, Zhu R K, Tao S Z, Yuan X, Dong , Wang Y, GuoQ , Wang L, Bi H, Li D, WuN (2014). Conventional and unconventional petroleum “orderly accumulation”: Concept and practical significance. Petroleum Exploration and Development, 41(1): 14–30
https://doi.org/10.1016/S1876-3804(14)60002-1
12 Guo X S (2014). The Enrichment Mechanism and Exploration Technology of Shale Gas in Jiaoshiba Area, Fuling.Beijing: Science Publishing House, 1–347 (in Chinese)
13 Jarvie D M, Hill R J, Pollastro R M, Wavrek D A, Bowker K A, Claxton B L, Tobey M H (2003). Evaluation of unconventional natural gas prospects: The Barnett Shale fractured shale gas model. In: European Association of International on Organic Geochemistry Meeting, Poland, September8–12, Krakow
14 Jarvie D M, Hill R J, Ruble T E, Pollastro R M (2007). Unconventional Shale gas systems: the Mississippian Barnett Shale of north Central Texas as one model for thermogenic shale gas assessment. AAPG Bull, 91(4): 475–499
https://doi.org/10.1306/12190606068
15 Kang Y Z (2012). Characteristics and exploration prospect of unconventional shale gas reservoirs in China. Natural Gas Industry, 32(4): 1–5 (in Chinese)
16 Li A G, Wang F Y (2001). Accumulating gas system in Shizhu area of eastern Chongqing. Petroleum exploration and development, 28(6): 20–22 (in Chinese)
17 Li X J, Hu S Y, Cheng K M (2007). Suggestions from the Development of fractured shale gas in North America. Journal of Petroleum Exploration and Development, 34(4): 392–400 (in Chinese)
18 Li Y X, Lin J H, Long Y K, Li J H, Zhang L Y (2011). Exploration prospect of gas-bearing marine mudstone-shale in Lower Palaeozoic in the central Yangtze area, China. Geological Bulletin of China, 30(2/3): 349–356 (in Chinese)
19 Liu S G, Ma W X, Luba J, Huang W M, Zeng X L, Zhang C J (2011). Characteristics of the shale gas reservoir rocks in the Lower Silurian Longmaxi Formation, East Sichuan Basin, China. Acta Petrologica Sinaca, 27(8): 2239–2252 (in Chinese)
20 Liu X M, Fu Y X, Guo Z F, Wang Y L, Liang X W (2009). Characteristics of basin evolution and hydrocarbon response in the middle Yangtze region since Nanhua period. Petroleum Geology and Experiment, 31(2): 160–165 (in Chinese)
21 Long Y K (2011). Lower Palaeozoic shale gas exploration potential in the central Yangtze area, China. Geological Bulletin of China, 30(2/3): 344–348 (in Chinese)
22 Loucks R G, Reed R M, Ruppel S C, Jarvie D M (2009). Morphology, genesis and distribution of nanometer scale pores in siliceous Mudstones of the Mississippian Barnett shale. J Sediment Res, 79(12): 848–861
https://doi.org/10.2110/jsr.2009.092
23 Loucks R G, Ruppel S C (2007). Mississippian Barnett shale: lithofacies and depositional setting of a deep water shale gas Succession in the Fort Worth basin, Texas. AAPG Bull, 91(4): 579–601
https://doi.org/10.1306/11020606059
24 Lu X C, Li F C, Watson A T (1995). Adsorption measurements in Devonian shales. Fuel, 74(4): 599–603
https://doi.org/10.1016/0016-2361(95)98364-K
25 Ma L, Chen H J, Gan K W, Xu K D, Xu X S, Wu G Y, Ye Z, Liang X, Wu S H (2004). South China Tectonics and Marine oil and gas Geology(1).Beijing: Geological Publishing House, 259–364 (in Chinese)
26 Martini A M, Walter L M, Ku C W, Budai J M, McIntosh J C, Schoell M (2003). Microbial production and modification of gases in sedimentary basins: A geochemical case study from a Devonian shale gas play, Michigan basin. AAPG Bull, 87(8): 1355–1375
https://doi.org/10.1306/031903200184
27 Mavor M (2003). Barnett Shale gas-in-place volume including adsorbed and free gas volume. AAPG Southwest Section Meeting, Texas, March 1‒4. Fort Worth: Texas
28 Montgomery S L, Jarvie D M, Bowker K A, Pollastro R M (2005). Mississippian Barnett Shale, Fort Worth Basin, North-central Texas: Gas-shale Play with Multitrillion Cubic Foot Potential. AAPG Bull, 89(2): 155–175
https://doi.org/10.1306/09170404042
29 Mu C L, Zhou K K, Liang W, Ge X Y (2011). The depositional environments and petroleum exploration of the Early Paleozoic Hydrocarbon source rocks in the middle and upper Yangtze region. Acta Geol Sin, 30(4): 526–532
[1] Haihai HOU, Longyi SHAO, Yonghong LI, Zhen LI, Wenlong ZHANG, Huaijun WEN. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China[J]. Front. Earth Sci., 2018, 12(1): 148-159.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed