Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (1) : 20-34    https://doi.org/10.1007/s11707-016-0570-7
RESEARCH ARTICLE
Land surface temperature retrieval from Landsat 8 data and validation with geosensor network
Kun TAN1,Zhihong LIAO1,Peijun DU2(),Lixin WU1
1. Jiangsu Key Laboratory of Resources and Environment Information Engineering, China University of Mining and Technology, Xuzhou 221116, China
2. Key Laboratory for Satellite Mapping Technology and Applications of State Administration of Surveying, Mapping and Geoinformation of China, Nanjing University, Nanjing 210023, China
 Download: PDF(5645 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A method for the retrieval of land surface temperature (LST) from the two thermal bands of Landsat 8 data is proposed in this paper. The emissivities of vegetation, bare land, buildings, and water are estimated using different features of the wavelength ranges and spectral response functions. Based on the Planck function of the Thermal Infrared Sensor (TIRS) band 10 and band 11, the radiative transfer equation is rebuilt and the LST is obtained using the modified emissivity parameters. A sensitivity analysis for the LST retrieval is also conducted. The LST was retrieved from Landsat 8 data for the city of Zoucheng, Shandong Province, China, using the proposed algorithm, and the LST reference data were obtained at the same time from a geosensor network (GSN). A comparative analysis was conducted between the retrieved LST and the reference data from the GSN. The results showed that water had a higher LST error than the other land-cover types, of less than 1.2°C, and the LST errors for buildings and vegetation were less than 0.75°C. The difference between the retrieved LST and reference data was about 1°C on a clear day. These results confirm that the proposed algorithm is effective for the retrieval of LST from the Landsat 8 thermal bands, and a GSN is an effective way to validate and improve the performance of LST retrieval.

Keywords Land surface temperature (LST)      split-window algorithm      emissivity      Landsat 8     
Corresponding Author(s): Peijun DU   
Just Accepted Date: 05 May 2016   Online First Date: 08 June 2016    Issue Date: 23 January 2017
 Cite this article:   
Kun TAN,Zhihong LIAO,Peijun DU, et al. Land surface temperature retrieval from Landsat 8 data and validation with geosensor network[J]. Front. Earth Sci., 2017, 11(1): 20-34.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0570-7
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I1/20
Fig.1  Relationship between band 10 and band 11. (a) Spectral response functions, (b) Change of the Planck radiance B 10 ( T ) and B 11 ( T ) with temperature.
Temperature range/°C Parameter a Parameter b R 2
-20?0 0.896989 0.438607 0.999983
-10?10 0.883203 0.516232 0.999985
0?20 0.870708 0.600351 0.999987
0?50 0.853304 0.732458 0.999940
0?70 0.842858 0.824517 0.999901
Tab.1  Linear regression results of B 10 ( T ) and B 11 ( T )
Data Band Water Vegetation Soil Buildings
Landsat 8 Band 10 0.99502 0.98649 0.9722 0.9706
Band 11 0.99443 0.98615 0.97283 0.97026
Landsat 5 Band 6 0.995 0.986 0.97215 0.97
Tab.2  The typical land surface emissivities of Landsat 8 TIRS
Fig.2  The emissivity of typical land surfaces.
Temperature range/°C Parameter a 10 Parameter b 10 R 10 2 Parameter a 11 Parameter b 11 R 11 2
- 20?0 -21.051139 0.099695 0.999105 -18.377986 0.089182 0.999339
-10?10 -24.198012 0.111409 0.999260 - 20.776336 0.098109 0.999455
0?20 -27.166567 0.122081 0.999373 -18.377986 0.089182 0.999339
0?50 -32.253872 0.139974 0.996991 -14.901314 0.075912 0.994441
0?70 -35.721226 0.151823 0.995052 -12.722793 0.067324 0.986853
Tab.3  Linear regression results of B i ( T i ) and T i
Fig.3  Errors in LST due to the errors in the land surface emissivity of band 11, with the emissivity of band 10 increasing.
Fig.4  Errors in LST due to the errors in the land surface emissivity of band 11, with the brightness temperature increasing.
Fig.5  Errors in LST due to the errors in the land surface emissivity of bands 10 and 11, with the emissivity increasing.
Fig.6  Errors in LST due to the errors in the land surface emissivity of bands 10 and 11, with the brightness temperature increasing.
Fig.7  Errors in the LST due to errors in the atmospheric transmittance of band 11.
Fig.8  Errors in the LST due to errors in the atmospheric transmittance of bands 10 and 11.
Fig.9  Experiments with data from July 24, 2013. (a) The false-color composite image. (b) The classification image. (c) Emissivity of band 10. (d) Emissivity of band 11.
Fig.10  Experiments with data from September 26, 2013. (a) The false-color composite image. (b) The classification image. (c) Emissivity of band 10. (d) Emissivity of band 11.
Fig.11  Location of the temperature sensors.
Fig.12  Wireless temperature sensors.
Fig.13  LST on July 24, 2013. (a) The LST retrieved by the proposed split-window algorithm. (b) The LST retrieved by Mao’s algorithm. (c) The difference image between (a) and (b). (d) The LST retrieved by Qin’s algorithm. (e) The difference image between (a) and (d).
Fig.14  The LST of Vegetation1 on July 24, 2013.
Date Land-surface type LST GSN LST proposed Δ LST GSN-proposed LST Mao Δ LST GSN-Mao LST Qin Δ LST GSN-Qin
20130724 Water1 28.4 29.254 ?0.854 29.382 ?0.982 28.784 ?0.384
Water2 27.8 28.714 ?0.914 28.901 ?1.101 28.241 ?0.441
Vegetation 30.823 31.052 ?0.229 30.859 0.765 30.426 0.397
Building 37.130 37.517 ?0.387 37.954 ?0.824 36.229 0.901
20130926 Water1 21.6 22.217 ?0.617 22.095 ?0.495 21.974 ?0.374
Water2 20.4 21.544 ?1.144 21.682 ?1.282 21.478 ?1.078
Vegetation 28.722 29.323 ?0.601 28.903 ?0.181 28.572 ?0.15
Building 32.805 33.507 ?0.702 32.526 0.279 32.573 0.232
Tab.4  Results from the ground survey and LST images
Fig.15  LST on September 26, 2013. (a) The LST retrieved by the proposed split-window algorithm. (b) The LST retrieved by Mao’s algorithm. (c) The difference image between (a) and (b). (d) The LST retrieved by Qin’s algorithm. (e) The difference image between (a) and (d).
Fig.16  The LST of Vegetation1 on September 26, 2013.
1 Becker F, Li Z L (1995). Surface temperature and emissivity at various scales: definition, measurement and related problems. Remote Sens Rev, 12(3‒4): 225–253
https://doi.org/10.1080/02757259509532286
2 Berk A, Anderson G, Acharya P, Chetwynd J, Bernstein L, Shettle E, Matthew M, Adler-Golden S (1999). MODTRAN4 user’s manual. Air Force Research Laboratory, Space Vehicles Directorate, 1–5
3 Berk A, Bernstein L S, Robertson D C (1987). MODTRAN: a moderate resolution model for LOWTRAN. In: DTIC Document
4 Du C, Ren H, Qin Q, Meng J, Li J ( 2014). Split-Window algorithm for estimating land surface temperature from Landsat 8 TIRS data. In: Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, 3578–3581
5 Harris A, Mason I (1992). An extension to the split-window technique giving improved atmospheric correction and total water vapour. Int J Remote Sens, 13(5): 881–892
https://doi.org/10.1080/01431169208904161
6 Jiménez-Muñoz J C ( 2003). A generalized single-channel method for retrieving land surface temperature from remote sensing data. J Geophys Res, 108,
https://doi.org/doi:?10.1029/2003JD003480
7 Jiménez-Muñoz J C, Cristóbal J, Sobrino J A, Sòria G, Ninyerola M, Pons X ( 2009). Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. Geoscience and Remote Sensing. IEEE Transactions on, 47: 339–349
8 Jimenez-Munoz J C, Sobrino J A, Skokovic D, Mattar C, Cristobal J ( 2014). Land surface temperature retrieval methods from Landsat-8 thermal infrared sensor data. IEEE Geosci Remote Sens Lett, 11(10): 1840–1843
https://doi.org/10.1109/LGRS.2014.2312032
9 Kneizys F, Shettle E, Gallery W, Chetwynd J Jr, Abreu L (1983). Atmospheric transmittance/radiance: computer code LOWTRAN 6. Supplement: Program listings. In: DTIC Document
10 Kneizys F X, Shettle E, Abreu L, Chetwynd J, Anderson G (1988). Users guide to LOWTRAN 7. In: DTIC Document
11 Krishna A P, Sharma A ( 2013). Snow cover and land surface temperature assessment of Gangotri basin in the Indian Himalayan Region (IHR) using MODIS satellite data for climate change inferences. In, SPIE Remote Sensing (pp. 889314-889314-889319): International Society for Optics and Photonics
12 Lu D, Weng Q (2006). Spectral mixture analysis of ASTER images for examining the relationship between urban thermal features and biophysical descriptors in Indianapolis, Indiana, USA. Remote Sens Environ, 104: 157–167
13 Mao K B, Qin Z H, Shi J C, Gong P ( 2005a). The research of Split-Window Algorithm on the MODIS. Geomatics and Information Science of Wuhan University, 30(8): 703–707
14 Mao K, Qin Z, Shi J, Gong P ( 2005b). A practical split-window algorithm for retrieving land-surface temperature from MODIS data. Int J Remote Sens, 26(15): 3181–3204
https://doi.org/10.1080/01431160500044713
15 Patel N, Parida B, Venus V, Saha S, Dadhwal V ( 2012). Analysis of agricultural drought using vegetation temperature condition index (VTCI) from Terra/MODIS satellite data. Environ Monit Assess, 184(12): 7153–7163
https://doi.org/10.1007/s10661-011-2487-7
16 Price J C (1983). Estimating surface temperatures from satellite thermal infrared data—A simple formulation for the atmospheric effect. Remote Sens Environ, 13(4): 353–361
https://doi.org/10.1016/0034-4257(83)90036-6
17 Price J C (1984). Land surface temperature measurements from the split window channels of the NOAA 7 advanced very high resolution radiometer. Journal of Geophysical Research: Atmospheres (1984–2012), 89: 7231–7237
18 Qin Z, Dall’Olmo G, Karnieli A, Berliner P ( 2001a). Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from NOAA‐advanced very high resolution radiometer data. Journal of Geophysical Research: Atmospheres (1984–2012), 106: 22655–22670
19 Qin Z, Karnieli A, Berliner P ( 2001b). A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int J Remote Sens, 22(18): 3719–3746
https://doi.org/10.1080/01431160010006971
20 Qin Z, Li W, Gao M, Zhang H( 2006). Estimation of land surface emissivity for Landsat TM6 and its application to Lingxian Region in north China. Proc SPIE 6366, Remote Sensing for Environmental Monitoring, GIS Applications, and Geology VI, 636618
https://doi.org/10.1117/12.689310
21 Rozenstein O, Qin Z, Derimian Y, Karnieli A (2014). Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors (Basel Switzerland), 14: 5768–5780
22 Sasamori N (1999). Calculation of emissivity by measuring reflectance and transmittance. Report of Tokyo Metropolitan Industrial Technology Research Institute,2:45–48
23 Schädlich S, Göttsche F, Olesen F S ( 2001). Influence of land surface parameters and atmosphere on METEOSAT brightness temperatures and generation of land surface temperature maps by temporally and spatially interpolating atmospheric correction. Remote Sens Environ, 75(1): 39–46
https://doi.org/10.1016/S0034-4257(00)00154-1
24 Sibo D, Guangjian Y, Yonggang Q ( 2008). Two single-channel algorithms for retrieving land surface temperature from the simulated HJ-1B data. Prog Nat Sci, 18: 1001–1008
25 Sobrino J A, Jiménez-Muñoz J C, Paolini L ( 2004). Land surface temperature retrieval from LANDSAT TM 5. Remote Sens Environ, 90(4): 434–440
https://doi.org/10.1016/j.rse.2004.02.003
26 Sobrino J A, Li Z L, Stoll M P (1993). Impact of the atmospheric transmittance and total water vapor content in the algorithms for estimating satellite sea surface temperatures. Geoscience and Remote Sensing. IEEE Transactions on, 31: 946–952
27 Susskind J, Rosenfield J, Reuter D, Chahine M (1984). Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N. Journal of Geophysical Research: Atmospheres (1984–2012), 89: 4677–4697
28 Valor E, Caselles V (1996). Mapping land surface emissivity from NDVI: application to European, African, and South American areas. Remote Sens Environ, 57(3): 167–184
https://doi.org/10.1016/0034-4257(96)00039-9
29 Van de Griend A, Owe M (1993). On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int J Remote Sens, 14(6): 1119–1131
https://doi.org/10.1080/01431169308904400
30 Wan Z ( 2014). New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens Environ, 140: 36–45
https://doi.org/10.1016/j.rse.2013.08.027
31 Wan Z, Dozier J (1996). A generalized split-window algorithm for retrieving land-surface temperature from space. Geoscience and Remote Sensing. IEEE Transactions on, 34: 892–905
32 Weng Q, Lu D ( 2008). A sub-pixel analysis of urbanization effect on land surface temperature and its interplay with impervious surface and vegetation coverage in Indianapolis, United States. Int J Appl Earth Obs Geoinf, 10(1): 68–83
https://doi.org/10.1016/j.jag.2007.05.002
33 Wukelic G E, Gibbons D E, Martucci L M, Foote H P (1989). Radiometric calibration of Landsat Thematic Mapper thermal band. Remote Sens Environ, 28: 339–347
https://doi.org/10.1016/0034-4257(89)90125-9
34 Yang L, Cao Y, Zhu X, Zeng S, Yang G, He J, Yang X ( 2014). Land surface temperature retrieval for arid regions based on Landsat-8 TIRS data: a case study in Shihezi, Northwest China. Journal of Arid Land, 6(6): 704–716
https://doi.org/10.1007/s40333-014-0071-z
35 Yong Z, Yu T, Xingfa G, Yuxiang Z, Fuliang Z, Shanshan Y, Wenjun Z, Xiaowen L ( 2006). Land surface temperature retrieval from CBERS-02 IRM SS thermal infrared data and its applications in quantitative analysis of urban heat island effect. Journal of Remote Sensing, 10: 789–797
36 Zhou J, Li J, Zhao X, Zhan W F, Guo J X ( 2011). A modified single-channel algorithm for land surface temperature retrieval from HJ-1 B satellite data. Journal of Infrared and Millimeter Waves, 30(1): 61–67
https://doi.org/10.3724/SP.J.1010.2011.00061
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed