Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2016, Vol. 10 Issue (3) : 455-478    https://doi.org/10.1007/s11707-016-0577-0
RESEARCH ARTICLE
Late Quaternary rates of stream incision in Northeast Peloponnese, Greece
Efthimios KARYMBALIS1,*(),Dimitrios PAPANASTASSIOU2,Kalliopi GAKI-PAPANASTASSIOU3,Maria FERENTINOU4,Christos CHALKIAS1
1. Department of Geography, Harokopio University, Athens 17671, Greece
2. Institute of Geodynamics, National Observatory of Athens, Athens 11810, Greece
3. Department of Geography and Climatology, Faculty of Geology and Geoenvironment, National and Kapodistrian University of Athens, Athens 15784, Greece
4. Department of Geology, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
 Download: PDF(4749 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study focuses on defining rates of fluvial incision for the last 580±5 kyr along valley systems of eight streams that drain the eastern part of the northern Peloponnese. The streams are developed on the uplifted block of the offshore-running Xylokastro normal fault, one of the main faults bounding the southern edge of the Gulf of Corinth half-graben, and have incised a set of ten uplifted marine terraces having an amphitheatric shape. These terraces range in age from 60±5 kyr to 580±5 kyr and have been mapped in detail and correlated with late Pleistocene oxygen-isotope stages of high sea-level stands by previous studies. The terraces were used in this paper as reference surfaces in order to define fluvial incision rates at the lower reaches of the studied streams. To evaluate incision rates, thirty-three topographic valley cross-sections were drawn using fieldwork measurements as well as using a highly accurate (2×2 cell size) Digital Elevation Model (DEM) at specific locations where streams cut down the inner edges of the marine terraces. For each cross-section the ratio of valley floor width to valley height (Vf) and long-term mean stream incision rates were estimated for the last 580±5 kyr, while rock uplift rates were estimated for the last 330±5 kyr. The geomorphic evolution of the valleys on the uplifted block of the Xylokastro fault has been mainly driven by the lithology of the bedrock, sea level fluctuations during the late Quaternary, and incision of the channels due to the tectonic uplift. Stream incision rates range from 0.10±0.1 mm/yr for the last 123±7 kyr to 1.14±0.1 mm/yr for the last 310±5 kyr and are gradually greater from east to west depending on the distance from the trace of the fault. Downcutting rates are comparable with the rock uplift rates, which range from 0.4±0.02 mm/yr to 1.49±0.12 mm/yr, over the last 330±5 kyr.

Keywords fluvial incision      tectonic uplift      marine terraces      Peloponnese      Greece     
Corresponding Author(s): Efthimios KARYMBALIS   
Just Accepted Date: 14 April 2016   Online First Date: 23 May 2016    Issue Date: 20 June 2016
 Cite this article:   
Efthimios KARYMBALIS,Dimitrios PAPANASTASSIOU,Kalliopi GAKI-PAPANASTASSIOU, et al. Late Quaternary rates of stream incision in Northeast Peloponnese, Greece[J]. Front. Earth Sci., 2016, 10(3): 455-478.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0577-0
https://academic.hep.com.cn/fesci/EN/Y2016/V10/I3/455
Fig.1  Hill shade maps of the Gulf of Corinth and the studied streams’ catchments. The main faults of the Gulf of Corinth are also depicted (P.f.: Psathopyrgos fault; E.f.: Eliki fault; X.f.: Xylokastro fault).
Fig.2  Hill shade map of the broader area of the uplifted marine terraces between Corinth and Xylokastro. The locations of the valley-cross profiles, which were used for the estimations of mean long-term fluvial incision rates and ratio of valley floor width to valley height values, are also indicated. Hill shade map is produced by topographic maps at the scale of 1:50,000. Locations of the four cross-sections ((a), (b), (c), and (d) in Fig. 3) at different distances from the Xylokastro fault are indicated. Marine terraces and faults are based on Armijo et al. (1996).
Fig.3  Correlation of marine terraces in space and time. The elevations of palaeo-shorelines at four sections at different distances from the Xylokastro fault (5, 10, 15, and 20 km) are correlated with the sea-level highstands (modified from Armijo et al. (1996)). Locations of the four sections ((a), (b), (c), and (d)) are indicated in Fig. 2.
Stream Length of the main channel/km Total channels length/km Basin area/km2 Drainage density Basin slope/%
Xerias 32.2 341.5 164.7 2.07 25
Raizanis 24.1 299.4 135.6 2.21 25
Zapantis 25.2 190.5 66.47 2.87 33
Assopos 45.2 555.5 268.4 2.07 32
Elisson 17.9 77.23 27.95 2.76 35
Seliandros 15.1 53.94 21.47 2.51 29
Katharoneri 7.8 44.11 14.69 3.00 44
Trikalitikos 32.1 403.20 139.0 2.90 44
Tab.1  Characteristics of the streams and their corresponding drainage basins
Fig.4  Geological map of the drainage basins (based on the geological mapping by the Institute of Geology and Mineral Exploration of Greece at a scale of 1:50,000, (IGME, 1970, 1972, 1982, 1989). A geological cross-section (A?A′) is also included. The location of the cross-section is shown on the map.
Fig.5  Longitudinal profiles of the eight rivers, derived from (20 m×20 m) DEM produced by 1:50,000 scale topographic maps of the Hellenic Military Geographical Service. The positions of the major knickpoints within each river profile are also depicted. Bold lines represent faults producing surface displacements, whereas dashed lines represent the lithologic boundaries associated with knickpoints. (bs: break slope knickpoints, vs: vertical step knickpoints, F: main faults affecting the longitudinal profiles, L: lithologic contacts).
Cross-valley profile number Stream Time range /kyr Valley width (Vw)/m Valley height (Vh)/m Vw/Vh Width of valley floor (Vfw)/m Elevation of the left divide (Eld)/m Elevation of the right divide (Erd)/m Elevation of the valley floor (Esc)/m Ratio of valley floor width to valley height (Vf) Stream power index (Si) Cumulative incision/m Incision rate /(mm·yr?1) Uplift rate /(mm·yr?1)
1 Xerias 240±5 630±2 36.35±3 17.3±1.5 128±2 96±2 76±2 49.5±1 3.51±0.35 6.11 36 0.15±0.02 0.40±0.02
2 Xerias 310±5 800±2 31±3 25.8±2.6 455±2 108±2 86±2 61±1 12.64±1.12 6.15 31 0.10±0.01 0.40±0.01
3 Raizanis 240±5 550±2 60±3 9.1±0.5 240±2 100±2 96±2 39.5±1 4.10±0.25 5.90 60 0.25±0.02 0.45±0.02
4 Raizanis 310±5 760±2 80±3 9.5±0.4 219±2 124±2 120±2 42±1 2.74±0.13 6.11 81 0.26±0.01 0.48±0.01
5 Raizanis 580±5 1450±2 159±3 9.1±0.2 163±2 220±2 228±2 66±1 1.03±0.03 6.10 0.27±0.02
6 Zapantis 195±5 369±2 17±3 21.7±4.1 221±2 80±2 80±2 63±1 13.00±2.49 5.97 18 0.09±0.02 0.43±0.02
7 Zapantis 240±5 570±2 35,5±3 16.1±1.4 287±2 112±2 108±2 75.5±1 8.32±0.79 5.97 36 0.15±0.02 0.50±0.02
8 Zapantis 310±5 570±2 59,5±3 9.6±0.5 199±2 140±2 140±2 80.5±1 3.34±0.20 5.94 59 0.19±0.01 0.54±0.01
9 Zapantis 580±5 1200±2 165±3 7.3±0.1 294±2 280±2 276±2 114±1 1.79±0.05 5.95 0.28±0.02
10 Assopos 105±5 435±2 22.5±3 19.3±2.7 299±2 56±2 52±2 31±1 13.00±1.81 6.25 22 0.21±0.04 0.74±0.05
11 Assopos 195±5 425±2 67.5±3 6.3±0.3 257±2 108±2 102±2 36±1 3.72±0.19 6.25 68 0.35±0.02 0.56±0.02
12 Assopos 240±5 920±2 113.5±3 8.1±0.2 333±2 164±2 156±2 46.5±1 2.93±0.10 6.25 113 0.47±0.02 0.71±0.02
13 Assopos 310±5 1390±2 146±3 9.5±0.2 282±2 208±2 180±2 42±1 1.86±0.05 6.25 146 0.47±0.02 0.71±0.02
14 Assopos 330±5 1900±2 192±3 9.9±0.2 605±2 260±2 240±2 58±1 3.15±0.06 6.24 191 0.58±0.02 0.78±0.02
15 Elisson 80±5 550±2 16±3 34.4±6.8 83±2 52±2 50±2 34±1 4.88±1.01 5.68 16 0.20±0.05 0.88±0.08
16 Elisson 123±7 335±2 24.5±3 13.7±1.8 239±2 84±2 84±2 59.5±1 9.76±1.30 5.67 25 0.20±0.04 0.65±0.05
17 Elisson 240±5 815±2 100±3 8.2±0.3 211±2 204±2 184±2 91±1 2.05±0.08 5.68 101 0.42±0.02 0.85±0.03
18 Elisson 310±5 810±2 121±3 6.7±0.2 327±2 244±2 208±2 99±1 2.57±0.08 5.68 121 0.39±0.02 0.76±0.02
19 Elisson 330±5 730±2 154±3 4.7±0.1 190±2 280±2 268±2 119±1 1.23±0.04 5.69 155 0.47±0.02 0.86±0.02
20 Seliandros 80±5 560±2 37.5±3 14.9±0.3 165±2 64±2 60±2 22.5±1 4.18±0.37 5.51 38 0.47±0.07 1.00±0.09
21 Seliandros 105±5 465±2 53±3 8.8±0.5 84±2 88±2 76±2 26±1 1.50±0.12 5.67 53 0.50±0.05 1.00±0.07
22 Seliandros 123±7 255±2 59.5±3 4.3±0.3 58±2 126±2 108±2 53.5±1 0.91±0.07 5.72 59 0.48±0.05 0.92±0.07
23 Seliandros 240±5 505±2 136±3 3.7±0.1 28±2 228±2 240±2 100±1 0.21±0.02 5.85 137 0.57±0.02 1.02±0.03
24 Seliandros 310±5 730±2 160±3 4.6±0.1 28±2 300±2 280±2 130±1 0.18±0.02 5.78 161 0.52±0.02 1.02±0.02
25 Seliandros 330±5 970±2 186±3 5.2±0.1 27±2 388±2 350±2 174±1 0.14±0.01 5.92 185 0.56±0.02 1.15±0.02
26 Katharoneri 60±5 157±2 22.5±3 7.0±1.0 15±2 52±2 44±2 24.5±1 0.64±0.17 5.14 23 0.38±0.08 1.25±0.14
27 Katharoneri 70±5 212±2 37.5±3 5.7±0.5 20±2 68±2 64±2 28±1 0.53±0.09 5.63 38 0.54±0.08 1.44±0.13
28 Katharoneri 80±5 329±2 60.5±3 5.4±0.3 44±2 100±2 100±2 39.5±1 0.73±0.07 5.63 61 0.76±0.09 1.49±0.12
29 Katharoneri 105±5 325±2 84.5±3 3.9±0.2 43±2 132±2 132±2 47.5±1 0.51±0.04 5.46 84 0.80±0.07 1.49±0.09
30 Katharoneri 123±7 660±2 106±3 6.2±0.2 29±2 176±2 184±2 74±1 0.27±0.03 5.35 106 0.86±0.07 1.43±0.10
31 Katharoneri 195±5 620±2 143±3 4.3±0.1 29±2 240±2 228±2 93±1 0.21±0.02 5.45 142 0.73±0.03 1.22±0.04
32 Katharoneri 240±5 1130±2 200±3 5.7±0.1 19±2 316±2 298±2 115±1 0.10±0.01 5.37 199 0.83±0.03 1.33±0.04
33 Trikalitikos 123±7 1010±2 159±3 6.4±0.1 180±2 180±2 188±2 26±1 1.14±0.03 6.18 160 1.29±0.10 1.46±0.10
Tab.2  Values of the morphometric parameters of the valleys for each valley-cross profile drawn along the main channels of the rivers. Stream Power Index (SI), mean rock uplift rates, and mean incision rates for each location are also included
Fig.6  Cross-valley profiles at specific locations where the main channels of the rivers cut down the inner edges of the uplifted marine terraces. Cross-valley profiles were constructed using the 2×2 cell size DEM derived from detailed topographic diagrams (at a scale of 1:5,000) obtained from the Hellenic Military Geographical Service. These topographic profiles were used for calculating Vf values and mean stream incision rates. The lithology of the valley sides and valley floor is based on geological maps at a scale of 1:50,000 of the Institute of Geology and Mineral Exploration of Greece. The names of the streams as well as the names and age ranges of the marine terraces are indicated. The age of the incised uplifted palaeo-surface for each cross valley profile is the age of the corresponding marine terrace. The locations of the valley-cross sections are depicted in Fig. 2.
Fig.7  Longitudinal profiles of the lower reaches of modern Xerias and Raizanis stream beds. Profiles of marine terrace surfaces along the west bank of the stream channels are also depicted. Stream and terrace long profiles derived from (2×2 cell size) DEM produced by 1:5,000 scale topographic maps of the Hellenic Military Geographical Service. The name and the age of each marine terrace are given. Arrows indicate the locations of the inner edges of the marine terraces. Numbers in circles correspond to the locations and the numbers of the valley-cross profiles of Fig. 6 used for the estimation of long-term stream incision rates. Diagrams above longitudinal profiles show rock uplift rates, the ratio of valley floor width to valley height (Vf), and fluvial incision rates for the streams estimated from the valley-cross profiles. Right axis is the calculated uplift and incision rates; left axis is the parameter of valley floor width to valley height (Vf).
Fig.8  Longitudinal profiles of the lower reaches of the modern Zapantis and Assopos stream beds. Profiles of marine terrace surfaces along the west bank of the stream channels are also depicted. The name and the age of each marine terrace are given. Arrows indicate the locations of the inner edges of the marine terraces. Numbers in circles correspond to the locations and the numbers of the valley-cross profiles of Fig. 6 used for the estimation of long-term stream incision rates. Diagrams above longitudinal profiles show rock uplift rates, the ratio of valley floor width to valley height (Vf), and fluvial incision rates for the streams estimated from the valley-cross profiles. Right axis is the calculated uplift and incision rates; left axis is the parameter of valley floor width to valley height (Vf).
Fig.9  Longitudinal profiles of the lower reaches of the modern Elisson and Seliandros stream beds. Profiles of marine terrace surfaces along the west bank of the stream channels are also depicted. The name and the age of each marine terrace are given. Arrows indicate the locations of the inner edges of the marine terraces. Numbers in circles correspond to the locations and the numbers of the valley-cross profiles of Fig. 6 used for the estimation of long-term stream incision rates. Diagrams above longitudinal profiles show rock uplift rates, the ratio of valley floor width to valley height (Vf), and fluvial incision rates for the streams estimated from the valley-cross profiles. Right axis is the calculated uplift and incision rates; left axis is the parameter of valley floor width to valley height (Vf).
Fig.10  Longitudinal profiles of the lower reaches of the modern Katharoneri and Trikalitikos stream beds. Profiles of marine terrace surfaces along the west bank of the stream channels are also depicted. The name and the age of each marine terrace are given. Arrows indicate the locations of the inner edges of the marine terraces. Numbers in circles correspond to the locations and the numbers of the valley-cross profiles of Fig. 6 used for the estimation of long-term stream incision rates. Diagrams above longitudinal profiles show rock uplift rates, the ratio of valley floor width to valley height (Vf), and fluvial incision rates for the streams estimated from the valley-cross profiles. Right axis is the calculated uplift and incision rates; left axis is the parameter of valley floor width to valley height (Vf).
Fig.11  Plot of ratio of valley floor width to valley height (Vf), estimated at selected locations along the stream channels from valley-cross profiles, as a function of distance from the Xylokastro fault trace.
Fig.12  Plot of long-term incision rates estimated at selected locations along the stream channels from valley-cross profiles, as a function of distance from the Xylokastro fault trace. Different colors of the points correspond to mean incision rates estimated for various time periods.
Fig.13  Log-log plot of cumulative incision (in m) vs. measurement interval (ka). Regression lines and power law functions that describe this relation for the streams of the study area are also given.
Fig.14  Ratio of valley floor width to valley height (Vf) vs. mean stream incision rates for thirty-three locations along the main channels of the studied streams.
Fig.15  Plot of long-term rock uplift rates estimated at the locations of the valley-cross profiles, as a function of the distance from the Xylokastro fault trace. Different colors of the points correspond to mean rock uplift rates estimated for various time periods.
Fig.16  Rock uplift rates vs. stream incision rates for thirty-one locations along the main channels of the studied streams.
1 Ambraseys N, Jackson J (1997). Seismicity and strain in the Gulf of Corinth (Greece) since 1694. J Earthquake Eng, 1(3): 433–474
https://doi.org/10.1080/13632469708962374
2 Armijo R, Meyer B, King G, Rigo A, Papanastassiou D (1996). Quaternary evolution of the Corinth Rift and its implications for the Late Cenozoic evolution of the Aegean. Geophys J Int, 126(1): 11–53
https://doi.org/10.1111/j.1365-246X.1996.tb05264.x
3 Avallone A, Briole P, Agatza-Balodimou A M, Billiris H, Charade O, Mitsakaki C, Nercessian A, Papazissi K, Paradissis D, Veis G (2004). Analysis of eleven years of deformation measured by GPS in the Corinth Rift Laboratory area. C R Geosci, 336(4−5): 301–311
https://doi.org/10.1016/j.crte.2003.12.007
4 Bell R E, McNeil L C, Bull J M, Henstock T J, Collier R E L, Leeder M R (2009). Fault architecture, basin structure and evolution of the Gulf of Corinth Rift, central Greece. Basin Res, 21(6): 824–855
https://doi.org/10.1111/j.1365-2117.2009.00401.x
5 Briole P, Rigo A, Lyon-Caen H, Ruegg J C, Papazissi K, Mitsakaki C, Balodimou A, Veis G, Hatzfeld D, Deschamps A (2000). Active deformation of the Corinth Rift, Greece: results from repeated Global Position System surveys between 1990 and 1995. J Geophys Res Solid Earth, 105(B11): 25606–25626
https://doi.org/10.1029/2000JB900148
6 Brocard G Y, van der Beek P A, Bourles D L, Siame L L, Mugnier J L (2003). Long-term fluvial incision rates and postglacial river relaxation time in the French Western Alps from 10Be dating of alluvial terraces with assessment of inheritance, soil development and wind ablation effects. Earth Planet Sci Lett, 209(1−2): 197–214
https://doi.org/10.1016/S0012-821X(03)00031-1
7 Bull W B, McFadden L D (1977). Tectonic geomorphology north and south of the Garlock Fault, California. In: Doehring D O, ed. Geomorphology in Arid Regions. New York: State University of New York, Binghamton, 115–138
8 Burbank D W, Anderson R S (2007). Tectonic Geomorphology. Chelsea: Blackwell Science
9 Carcaillet J, Mugnier J L, Koci R, Jouanne F (2009). Uplift and active tectonics of southern Albania inferred from incision of alluvial terraces. Quat Res, 71(3): 465–476
https://doi.org/10.1016/j.yqres.2009.01.002
10 Chappell J, Shackleton N J (1986). Oxygen isotopes and sea-level. Nature, 324(6093): 137–140
https://doi.org/10.1038/324137a0
11 Chousianitis K, Ganas A, Gianniou M (2013). Kinematic interpretation of present-day crustal deformation in central Greece from continuous GPS measurements. J Geodyn, 71: 1–13
https://doi.org/10.1016/j.jog.2013.06.004
12 Clarke P J, Davies R R, England P C, Parsons B, Billiris H, Paradissis D, Veis G, Cross P A, Denys P H, Ashkenazi V, Bingley R, Kahle H G, Muller M V, Briole P (1998). Crustal strain in central Greece from repeated GPS measurements in the interval 1989–1997. Geophys J Int, 135(1): 195–214
https://doi.org/10.1046/j.1365-246X.1998.00633.x
13 Collier R E L (1990). Eustatic and tectonic controls upon Quaternary coastal sedimentation in the Corinth Basin, Greece. J Geol Soc London, 147(2): 301–314
https://doi.org/10.1144/gsjgs.147.2.0301
14 Collier R E L, Leeder M R, Rowe R J, Atkinson T C (1992). Rates of tectonic uplift in the Corinth and Megara basins, Central Greece. Tectonics, 11(6): 1159–1167
https://doi.org/10.1029/92TC01565
15 Corbi F, Fubelli G, Luca F, Muto F, Pelle T, Robustelli G, Scarciglia F, Dramis F (2009). Vertical movements in the Ionian margin of the Sila Massif (Calabria, Italy). Italian Journal of Geosciences, 128(3): 731–738
https://doi.org/10.3301/IJG.2009.128.3.731
16 Cucci L (2004). Raised marine terraces in the Northern Calabrian Arc (Southern Italy): a ~ 600 kyr-long geological record of regional uplift. Ann Geophys, 47(4): 1391–1406
https://doi.org/10.4401/ag-3350
17 Demoulin A, Beckers A, Hubert-Ferrari A (2015). Patterns of Quaternary uplift of the Corinth rift southern border (N. Peloponnese, Greece) revealed by fluvial landscape morphometry. Geomorphology, 246: 188–204
https://doi.org/10.1016/j.geomorph.2015.05.032
18 Deperet C (1913). Observations sur l’ historique Pliocene et Quaternaire du golfe et de l’ isthme de Corinthe. Comptes Rendus de l'Académie des Sciences Paris, 156: 1048–1052
19 Doutsos T, Piper D J W (1990). Listric faulting, sedimentation, and morphological evolution of the Quaternary eastern Corinth rift, Greece: first stages of continental rifting. Geol Soc Am Bull, 102(6): 812–829
https://doi.org/10.1130/0016-7606(1990)102<0812:LFSAME>2.3.CO;2
20 Dufaure J J, Zamanis A (1980). Styles néotectoniques et étagements de niveaux marins sur un segment d’arc insulaire, le Péloponnèse, In: Proccedings of the Conference Niveaux marins et Tectonique Quaternaire dans l’Aire Méditerranéenne. Paris: CNRS, 77–107
21 Finnegan N J, Hallet B, Montgomery D R, Zeilter P K, Stone J O, Anders A M, Yuping L (2008). Coupling of rock uplift and river incision in the Namche Barwa-Gyala Peri massif, Tibet. Geol Soc Am Bull, 120(1/2): 142–155
https://doi.org/10.1130/B26224.1
22 Finnegan N J, Schumer R, Finnegan S (2014). A signature of transience in bedrock river incision rates over timescales of 104−107 years. Nature, 505(7483): 391–394
https://doi.org/10.1038/nature12913
23 Florinsky I V (2012). Digital Terrain Analysis in Soil Science and Geology. Amsterdam: Elsevier-Academic Press
24 Floyd M A, Billiris H, Paradissis D, Veis G, Avallone A, Briole P, McClusky S, Nocquet J M, Palamartchouk K, Parsons B, England P C (2010). A new velocity field for Greece: implications for the kinematics and dynamics of the Aegean. J Geophys Res, 115(B10 B10403): B10403
https://doi.org/10.1029/2009JB007040
25 Ford M, Rohais S, Williams E, Bourlange S, Jousselin D, Backert N, Malartre F (2013). Tectono-sedimentary evolution of the western Corinth rift (Central Greece). Basin Res, 25(1): 3–25
https://doi.org/10.1111/j.1365-2117.2012.00550.x
26 Freyberg B (1973). Geologie des Isthmus von Korinth. Erlanger Geologische Abhandlungen, 95: 1–183
27 Gaki-Papanastassiou K, Karymbalis E, Papanastassiou D, Maroukian H (2009). Quaternary marine terraces as indicators of neotectonic activity of the Ierapetra normal fault SE Crete (Greece). Geomorphology, 104(1−2): 38–46
https://doi.org/10.1016/j.geomorph.2008.05.037
28 Gallen S F, Pazzaglia F J, Wegmann K W, Pederson J L, Gardner W (2015). The dynamic reference frame of rivers and apparent transience in incision rates. Geology, 43(7): 623–626
https://doi.org/10.1130/G36692.1
29 Gardner T W, Jorgensen D W, Shuman C, Lemieux C R (1987). Geomorphic and tectonic process rates: effects of measured time interval. Geology, 15(3): 259–261
https://doi.org/10.1130/0091-7613(1987)15<259:GATPRE>2.0.CO;2
30 Harbor D J (1998). Dynamic equilibrium between an active uplift and the Sevier River, Utah. J Geol, 106(2): 181–194
https://doi.org/10.1086/516015
31 Haviv I, Enzel Y, Whipple K X, Zilberman E, Matmon A, Stone J, Fifield K L (2010). Evolution of vertical knickpoints (waterfalls) with resistant caprock: insights from numerical modeling. Journal of Geophysical Research – Earth Surface, 115: F03028
https://doi.org/10.1029/2008JF001187
32 IGME (1970). Geological map of Greece (1:50,000), Nemea sheet
33 IGME (1972). Geological map of Greece (1:50,000), Korinthos sheet
34 IGME (1982). Geological map of Greece (1:50,000), Kandhila sheet
35 IGME (1983). Geological map of Greece (1:500,000)
36 IGME (1989). Geological map of Greece (1:50,000), Xylokastro sheet
37 Jackson J A, Gagnepain J, Houseman G, King G C P, Papadimitriou P, Soufleris C, Virieux J (1982). Seismicity, normal faulting and the geomorphological development of the Gulf of Corinth (Greece): the Corinth earthquakes of February and march 1981. Earth Planet Sci Lett, 57(2): 377–397
https://doi.org/10.1016/0012-821X(82)90158-3
38 Kale V S, Shejwalkar N (2008). Uplift along the western margin of the Deccan Basalt Province: is there any geomorphometric evidence? J Earth Syst Sci, 117(6): 959–971
https://doi.org/10.1007/s12040-008-0081-3
39 Katsafados P, Kalogirou S, Papadopoulos A, Mavromatidis E (2009). Cartographic representation of climate spatial variability in Greece. In: Proccedings of the 9th Symposium on Oceanography and Fishery. Patras: HCMR, 439–444
40 Keller E A, Pinter N (1996). Active Tectonics: Earthquakes Uplift and Landscapes. New Jersey: Prentice Hall
41 Keraudren B, Sorel D (1987). The terraces of Corinth (Greece) – A detailed record of eustatic sea-level variations during the last 500,000 years. Mar Geol, 77(1−2): 99–107
https://doi.org/10.1016/0025-3227(87)90085-5
42 Kershaw S, Guo L (2001). Marine notches in coastal cliffs: indicators of relative sea-level change, Perachora Peninsula, central Greece. Mar Geol, 179(3−4): 213–228
https://doi.org/10.1016/S0025-3227(01)00218-3
43 Kirby E, Whipple K X (2012). Expression of active tectonics in erosional landscapes. J Struct Geol, 44: 54–75
https://doi.org/10.1016/j.jsg.2012.07.009
44 Knighton D (1999). Downstream variation in stream power. Geomorphology, 29(3−4): 293–306
https://doi.org/10.1016/S0169-555X(99)00015-X
45 Koukouvelas I, Katsonopoulou D, Soter S, Xypolias P (2005). Slip rates on the Helike Fault, Gulf of Corinth, Greece: new evidence from geoarchaeology. Terra Nova, 17(2): 158–164
https://doi.org/10.1111/j.1365-3121.2005.00603.x
46 Kraal R (1999). Bedrock incision and knickpoint processes in streams along an uplifting coast, southern Península de Nicoya, Costa Rica. In: Mendelson C V, Mankiewicz C, eds. Proceedings Twelfth Keck Research Symposium in Geology. Northfield, Minnesota: Keck Geology Consortium, 188–191
47 Lavé J, Avouac J P (2001). Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J Geophys Res Solid Earth, 106(B11): 26561–26591
https://doi.org/10.1029/2001JB000359
48 Leeder M R, McNeill L C, Collier R E L, Portman C, Rowe P J, Andrews J E, Gawthorpe L (2003). Corinth rift margin uplift: new evidence from Late Quaternary marine shorelines. Geophysical Research Letters, 30/12: 13-1 –13-4
https://doi.org/10.1029/2003GL017382
49 Leeder R, Mark F, Gawthorpe L, Kranis H, Loveless S, Pedentchouk N, Skourtsos E, Turner J, Andrews E, Stamatakis M (2012). A “Great Deepening”: chronology of rift climax, Corinth rift, Greece. Geology, 40(11): 999–1002
https://doi.org/10.1130/G33360.1
50 Leeder R, Portman C, Andrews E, Collier R, Finch E, Gawthorpe L, McNeill L, Pérez-Arlucea M, Rowe P (2005). Normal faulting and crustal deformation, Alkyonides Gulf and Perachora peninsula, eastern Gulf of Corinth rift, Greece. J Geol Soc London, 162(3): 549–561
https://doi.org/10.1144/0016-764904-075
51 Leland J, Reid M R, Burbank D W, Finkel R, Caffee M (1998). Incision and differential bedrock uplift along the Indus River near Nanga Parbat, Pakistan Himalaya, from 10Be and 26 Al exposure age dating of bedrock straths. Earth Planet Sci Lett, 154(1−4): 93–107
https://doi.org/10.1016/S0012-821X(97)00171-4
52 Maroukian H, Gaki-Papanastassiou K, Karymbalis E, Vouvalidis K, Pavlopoulos K, Papanastassiou D, Albanakis K (2008). Morphotectonic control on drainage network evolution in the Perachoora Peninsula, Greece. Geomorphology, 102(1): 81–92
https://doi.org/10.1016/j.geomorph.2007.07.021
53 Maroukian H, Gaki-Papanastassiou K, Papanastassiou D (1997). Coastal changes in thebroader area of Corinth, Greece. American School of Oriental Research. Archaeol Rep, 04: 217–226
54 Marquardt C, Lavenu A, Ortlieb L, Godoy E, Comte D (2004). Coastal neotectonics in Southern Central Andes: uplift and deformation of marine terraces in Northern Chile (27?S). Tectonophysics, 394(3−4): 193–219
https://doi.org/10.1016/j.tecto.2004.07.059
55 McNeill L C, Collier R E L (2004). Uplift and slip rates of the eastern Eliki fault segment, Gulf of Corinth, Greece, inferred from Holocene and Pleistocene terraces. J Geol Soc London, 161(1): 81–92
https://doi.org/10.1144/0016-764903-029
56 Merritts D, Bull W B (1989). Interpreting Quaternary uplift rates at the Mendocino triple junction, northern California, from uplifted marine terraces. Geology, 17: 1020–1024
https://doi.org/10.1130/0091-7613(1989)017<1020
57 Merritts D, Vincent K R (1989). Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Medocino triple junction region, northern California. Geol Soc Am, 101(11): 1373–1388
https://doi.org/10.1130/0016-7606(1989)101<1373:GROCST>2.3.CO;2
58 Merritts D, Vincent K, Wohl E E (1994). Long river profiles, tectonism, and eustacy: a quide to interpreting fluvial terraces. J Geophys Res, 99(B7): 14,031–14,050
https://doi.org/10.1029/94JB00857
59 Morewood N, Roberts G (1999). Lateral propagation of the surface trace of the south Alkyonides normal fault segment, central Greece: its impact on models of fault growth and displacement–length relationships. J Struct Geol, 21(6): 635–652
https://doi.org/10.1016/S0191-8141(99)00049-8
60 Murray-Wallace C V, Woodroffe C D (2014). Quaternary Sea-Level Changes: A Global Perspective. New York: Cambridge University Press
61 Palyvos N, Mancini M, Sorel D, Lemeille F, Pantosti D, Julia R, Triantaphyllou M, De Martini P (2010). Geomorphological, stratigraphic and geochronological evidence of fast Pleistocene coastal uplift in the westernmost part of the Corinth Gulf Rift (Greece). Geol J, 45(1): 78–104
https://doi.org/10.1002/gj.1171
62 Papageorgiou S, Arnold M, Laborel J, Stiros S (1993). Seismic uplift of the harbour of ancient Aigeira, Central Greece. Int J Naut Archaeol, 22(3): 275–281
https://doi.org/10.1111/j.1095-9270.1993.tb00420.x
63 Pavlides S, Caputo R (2004). Magnitude versus faults’ surface parameters: quantitative relationships from the Aegean Region. Tectonophysics, 380(3−4): 159–188
https://doi.org/10.1016/j.tecto.2003.09.019
64 Pazzaglia F, Brandon M (2001). A fluvial record of long-term steady-state uplift and erosion across the Cascadia forearc high, western Washington State. Am J Sci, 301(4−5): 385–431
https://doi.org/10.2475/ajs.301.4-5.385
65 Pillans B (1990). Pleistocene marine terraces in New Zealand: a review. NZ J Geol Geophys, 33(2): 219–231
https://doi.org/10.1080/00288306.1990.10425680
66 Pirazzoli P, Stiros S, Fontugne M, Arnold M (2004). Holocene and Quaternary uplift in the central part of the southern coast of the Corinth Gulf (Greece). Mar Geol, 212(1−4): 35–44
https://doi.org/10.1016/j.margeo.2004.09.006
67 Proença Cunha P, Antunes Martins A, Daveau S, Friend P F (2005). Tectonic control of the Tejo river fluvial incision during the late Cenozoic, in Rodao-central Poerugal (Atlantic Iberian border). Geomorphology, 64(3−4): 271–298
https://doi.org/10.1016/j.geomorph.2004.07.004
68 Rigo A, Lyon-Caen H, Armijo R, Deschamps A, Hatzfeld D, Makropoulos K, Papadimitriou P, Kassaras I (1996). A microseismic study in the western part of the Gulf of Corinth (Greece): implications for large-scale normal faulting mechanisms. Geophys J Int, 126(3): 663–688
https://doi.org/10.1111/j.1365-246X.1996.tb04697.x
69 Robustelli G, Luca F, Corbi F, Pelle T, Dramis F, Fubelli G, Scarciglia F, Muto F, Cugliari D (2009a). Alluvial terraces on the Ionian coast od northern Calabria, southern Italy: implications for tectonic and sea level controls. Geomorphology, 106(3−4): 165–179
https://doi.org/10.1016/j.geomorph.2008.12.010
70 Robustelli G, Luca F, Corbi F, Fubelli G, Scarciglia F, Dramis F (2009b). Geomorphological map of the Ionian area between the Trionto and Colognati River catchments (Calabria, Italy). J Maps, 5(1): 94–102
https://doi.org/10.4113/jom.2009.1044
71 Rohais S, Eschard R, Guillocheau F (2008). Depositional model and stratigraphic architecture of rift climax Gilbert- type fan deltas (Gulf of Corinth, Greece). Sediment Geol, 210(3−4): 132–145
https://doi.org/10.1016/j.sedgeo.2008.08.001
72 Rostami K, Peltier W R, Mangini A (2000). Quaternary marine terraces, sea-level changes and uplift history of Patagonia, Argentina: comparisons with predictions of the ICE-4G (VM2) model of the global process of glacial isostatic adjustment. Quat Sci Rev, 19(14−15): 1495–1525
https://doi.org/10.1016/S0277-3791(00)00075-5
73 Sebrier M (1977). Tectonique récente d’une transversale a l’Arc Egéen: le Golfe de Corinthe et ses régions périphériques. Thèse 3eme cycle, Univ. Paris-Sud: France
74 Seong Y B, Owen A, Bishop M P, Bush A, Clendon P, Copland L, Finkel R C, Kamp U, Shroder J F Jr (2008). Rates of fluvial bedrock incision within an actively uplifting orogen: Central Karakoram Mountains, northern Pakistan. Geomorphology, 97(3−4): 274–286
https://doi.org/10.1016/j.geomorph.2007.08.011
75 Stewart I S (1996). Holocene uplift and palaeoseismicity on the Eliki fault, western gulf of Corinth. Ann Geofis, 39: 575–588
https://doi.org/10.4401/ag-3993
76 Stewart S, Vita-Finzi C (1996). Coastal uplift on active normal faults: the Eliki Fault, Greece. Geophys Res Lett, 23(14): 1853–1856
https://doi.org/10.1029/96GL01595
77 Syndera N P, Whipple K X, Tucker G E, Merritts D J (2003). Channel response to tectonic forcing: field analysis of stream morphology and hydrology in the Mendocino triple junction region, northern California. Geomorphology, 53(1−2): 97–127
https://doi.org/10.1016/S0169-555X(02)00349-5
78 Turner J A, Leeder M R, Andrews J E, Rowe P J, Van Calsteren P, Thomas L (2010). Testing rival tectonic uplift models for the Lechaion Gulf in the Gulf of Corinth rift. J Geol Soc London, 167(6): 1237–1250
https://doi.org/10.1144/0016-76492010-035
79 Valensise G, Pantosti D (1992). A 125 kyr-long geological record of seismic source repeatability: the Messina Straights (southern Italy) and the 1908 earthquake (Ms 7.5). Terra Nova, 4(4): 472–483
https://doi.org/10.1111/j.1365-3121.1992.tb00583.x
80 Vita-Finzi C, King G C P (1985). The seismicity, geomorphology and structural evolution of the Corinth area of Greece. Philos Trans R Soc Lond, 314(1530): 379–407
https://doi.org/10.1098/rsta.1985.0024
81 Wakabayashi J, Sawyer T (2001). Stream incision, tectonics, uplift, and evolution of topography of the Sierra Nevada, California. The Journal of Geology, 109: 539–562
https://doi.org/0022-1376/2001/10905-0001$01.00
82 Westeway R (2002). The Quaternary evolution of the Gulf of Corinth, central Greece: coupling between surface processes and flow in the lower continental crust. Tectonophysics, 348: 269–318
https://doi.org/S0040-1951(02)00032-X
83 Whipple K X (2001). Fluvial landscape response time: how plausible is steady-state denudation? Am J Sci, 301(4−5): 313–325
https://doi.org/10.2475/ajs.301.4-5.313
84 Whipple K X, Tucker G E (1999). Dynamics of the stream power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. J Geophys Res, 104(B8): 17661–17674
https://doi.org/10.1029/1999JB900120
85 Zazo C, Goy J L, Dabrio C J, Bardají T, Hillaire-Marcel C, Ghaleb B, González-Delgado J Á, Soler V (2003). Pleistocene raised marine terraces of the Spanish Mediterranean and Atlantic coasts: records of coastal uplift, sea-level highstands and climate changes. Mar Geol, 194(1–2): 103–133
https://doi.org/10.1016/S0025-3227(02)00701-6
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed