Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (1) : 162-183    https://doi.org/10.1007/s11707-016-0581-4
RESEARCH ARTICLE
Regional study on investment for transmission infrastructure in China based on the State Grid data
Wendong WEI1, Xudong WU2, Xiaofang WU2, Qiangmin XI3, Xi JI4, Guoping LI1()
1. College of Government, Peking University, Beijing 100871, China
2. College of Engineering, Peking University, Beijing 100871, China
3. School of Economics, Nankai University, Tianjin 300071, China
4. School of Economics, Peking University, Beijing 100871, China
 Download: PDF(3304 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Transmission infrastructure is an integral component of safeguarding the stability of electricity delivery. However, existing studies of transmission infrastructure mostly rely on a simple review of the network, while the analysis of investments remains rudimentary. This study conducted the first regionally focused analysis of investments in transmission infrastructure in China to help optimize its structure and reduce investment costs. Using State Grid data, the investment costs, under various voltages, for transmission lines and transformer substations are calculated. By analyzing the regional profile of cumulative investment in transmission infrastructure, we assess correlations between investment, population, and economic development across the regions. The recent development of ultra-high-voltage transmission networks will provide policy-makers new options for policy development.

Keywords regional study      energy geography      investment analysis      transmission lines      transformer substation     
Corresponding Author(s): Guoping LI   
Just Accepted Date: 31 March 2016   Online First Date: 12 June 2016    Issue Date: 23 January 2017
 Cite this article:   
Wendong WEI,Xudong WU,Xiaofang WU, et al. Regional study on investment for transmission infrastructure in China based on the State Grid data[J]. Front. Earth Sci., 2017, 11(1): 162-183.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0581-4
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I1/162
NumberScheme numberTerrainDistance (km)Total investment (1E+04 CNY¥)Unit distance investment (1E+04 CNY¥/km)
11APFlatland5.04E+012.11E+034.19E+01
21AHRiver swamp3.25E+011.91E+035.88E+01
31AQHill5.00E+012.24E+034.47E+01
41BPFlatland5.04E+012.36E+034.68E+01
51BHRiver swamp3.25E+012.18E+036.70E+01
61BQHill5.00E+012.48E+034.96E+01
71CPFlatland5.04E+012.84E+035.64E+01
81CQHill5.00E+013.11E+036.21E+01
91DPFlatland5.04E+012.94E+035.83E+01
101DQHill5.00E+013.20E+036.40E+01
111EPFlatland5.04E+013.07E+036.09E+01
121EHRiver swamp3.25E+012.90E+038.91E+01
131EQHill5.00E+013.36E+036.71E+01
141FPFlatland5.04E+013.14E+036.24E+01
151FQHill5.00E+013.43E+036.86E+01
161GPFlatland5.04E+013.11E+036.17E+01
171GHRiver swamp3.25E+012.68E+038.25E+01
181GQHill5.00E+013.21E+036.41E+01
191HPFlatland5.04E+013.47E+036.89E+01
201HHRiver swamp3.25E+012.90E+038.92E+01
211HQHill5.00E+013.55E+037.10E+01
221IPFlatland5.04E+014.50E+038.93E+01
231IHRiver swamp3.25E+013.69E+031.13E+02
241IQHill5.00E+014.44E+038.88E+01
251JPFlatland5.04E+014.62E+039.17E+01
261JHRiver swamp3.25E+013.89E+031.20E+02
271JQHill5.00E+014.62E+039.23E+01
281KPFlatland5.04E+014.94E+039.81E+01
291KHRiver swamp3.25E+014.11E+031.26E+02
301KQHill5.00E+015.04E+031.01E+02
311LPFlatland5.04E+015.16E+031.02E+02
321LHRiver swamp3.25E+014.40E+031.35E+02
331LQHill5.00E+015.22E+031.04E+02
341MPFlatland8.47E+009.95E+021.18E+02
351RPFlatland5.04E+013.76E+037.47E+01
361RHRiver swamp3.25E+013.15E+039.68E+01
371RQHill5.00E+013.76E+037.51E+01
381TPFlatland5.04E+014.05E+038.04E+01
391THRiver swamp3.25E+013.39E+031.04E+02
401TQHill5.00E+014.04E+038.08E+01
  Inventory for construction schemes of transmission lines under 110 kV
NumberScheme numberTerrainDistance (km)Total investment (1E+04 CNY¥)Unit distance investment (1E+04 CNY¥/km)
12APFlatland5.00E+013.72E+037.45E+01
22AHRiver swamp5.69E+015.71E+031.00E+02
32AQHill5.00E+014.00E+038.00E+01
42ASMountain land5.42E+014.93E+039.10E+01
52AGPlateau5.28E+015.56E+031.05E+02
62BPFlatland5.00E+014.14E+038.27E+01
72BHRiver swamp5.69E+016.25E+031.10E+02
82BQHill5.00E+014.49E+038.98E+01
92BSMountain land5.42E+015.46E+031.01E+02
102BGPlateau5.28E+016.04E+031.14E+02
112CPFlatland5.00E+013.62E+037.24E+01
122CHRiver swamp5.69E+015.58E+039.81E+01
132CQHill5.00E+013.91E+037.82E+01
142CSMountain land5.42E+014.89E+039.03E+01
152CGPlateau5.28E+015.55E+031.05E+02
162DPFlatland5.00E+013.93E+037.86E+01
172DHRiver swamp5.69E+015.82E+031.02E+02
182DQHill5.00E+014.07E+038.13E+01
192DSMountain land5.42E+015.01E+039.25E+01
202DGPlateau5.28E+015.66E+031.07E+02
212EPFlatland5.00E+018.03E+031.61E+02
222EHRiver swamp5.69E+011.14E+042.01E+02
232EQHill5.00E+018.45E+031.69E+02
242FPFlatland5.00E+015.90E+031.18E+02
252FHRiver swamp5.69E+019.18E+031.61E+02
262FQHill5.00E+016.39E+031.28E+02
272FSMountain land5.42E+017.96E+031.47E+02
282FGPlateau5.28E+019.02E+031.71E+02
292GPFlatland5.00E+016.85E+031.37E+02
302GHRiver swamp5.69E+011.07E+041.87E+02
312GQHill5.00E+017.47E+031.49E+02
322GSMountain land5.42E+018.88E+031.64E+02
332GGPlateau5.28E+011.02E+041.92E+02
342HPFlatland5.00E+017.54E+031.51E+02
352HHRiver swamp5.69E+011.25E+042.19E+02
362HQHill5.00E+018.06E+031.61E+02
372HSMountain land5.42E+019.71E+031.79E+02
382HGPlateau5.28E+011.09E+042.07E+02
392IPFlatland5.00E+016.51E+031.30E+02
402IHRiver swamp5.69E+019.74E+031.71E+02
412IQHill5.00E+017.14E+031.43E+02
  Inventory for construction schemes of transmission lines under 220 kV
NumberScheme numberTerrainDistance (km)Total investment (1E+04 CNY¥)Unit distance investment (1E+04 CNY¥/km)
13APFlatland8.30E+016.52E+037.86E+01
23BPFlatland8.30E+016.82E+038.21E+01
33BMDesert4.20E+014.01E+039.55E+01
43BSMountain land5.30E+015.00E+039.44E+01
53BGPlateau5.10E+015.44E+031.07E+02
63CQHill6.70E+015.96E+038.89E+01
73CMDesert4.20E+014.20E+031.00E+02
83CSMountain land5.30E+015.12E+039.67E+01
93CGPlateau5.10E+015.64E+031.11E+02
103DQHill6.70E+016.05E+039.02E+01
113DMDesert4.20E+014.25E+031.01E+02
123DSMountain land5.30E+015.30E+031.00E+02
133DGPlateau5.10E+015.72E+031.12E+02
  Inventory for construction schemes of transmission lines under 330 kV
NumberScheme numberTerrainDistance (km)Total investment (1E+04 CNY¥)Unit distance investment (1E+04 CNY¥/km)
15APFlatland5.00E+016.66E+031.33E+02
25AQHill5.00E+017.00E+031.40E+02
35AHRiver swamp5.00E+018.36E+031.67E+02
45ASMountain land5.00E+018.09E+031.62E+02
55AGPlateau5.00E+019.06E+031.81E+02
65BPFlatland4.99E+016.76E+031.35E+02
75BQHill4.99E+017.09E+031.42E+02
85BHRiver swamp5.08E+018.67E+031.71E+02
95BSMountain land5.00E+018.30E+031.66E+02
105BGPlateau4.70E+018.78E+031.87E+02
115CPFlatland5.00E+018.06E+031.61E+02
125CQHill5.00E+018.41E+031.68E+02
135CHRiver swamp5.00E+011.08E+042.16E+02
145CSMountain land5.00E+019.56E+031.91E+02
155CGPlateau5.00E+011.09E+042.18E+02
165DPFlatland4.99E+011.28E+042.57E+02
175DQHill4.99E+011.34E+042.68E+02
185DHRiver swamp5.08E+011.63E+043.20E+02
195DSMountain land5.00E+011.57E+043.14E+02
205DGPlateau4.70E+011.62E+043.46E+02
215EPFlatland4.99E+011.30E+042.61E+02
225EQHill4.99E+011.36E+042.72E+02
235EHRiver swamp5.08E+011.69E+043.33E+02
245ESMountain land5.00E+011.59E+043.17E+02
255EGPlateau4.70E+011.67E+043.56E+02
265FPFlatland4.99E+011.36E+042.72E+02
275FHRiver swamp5.06E+011.81E+043.59E+02
285FSMountain land5.00E+011.71E+043.43E+02
295FGPlateau4.70E+011.81E+043.86E+02
305GPFlatland5.00E+011.59E+043.17E+02
315GQHill5.00E+011.64E+043.28E+02
325GHRiver swamp5.00E+012.03E+044.07E+02
335GSMountain land5.00E+011.91E+043.82E+02
345GGPlateau5.00E+012.14E+044.28E+02
355HPFlatland4.99E+011.67E+043.34E+02
365HQHill4.89E+011.69E+043.45E+02
375HHRiver swamp5.06E+012.26E+044.47E+02
385HSMountain land5.00E+012.10E+044.19E+02
395HGPlateau4.70E+012.17E+044.62E+02
405IPFlatland4.99E+012.73E+045.47E+02
415IQHill4.89E+012.77E+045.65E+02
425IHRiver swamp5.06E+013.29E+046.51E+02
  Inventory for construction schemes of transmission lines under 500 kV
NumberScheme numberTerrainDistance (km)Total investment (1E+04 CNY¥)Unit distance investment (1E+04 CNY¥/km)
17A1PFlatland5.00E+011.04E+042.08E+02
27A1QHill5.00E+011.09E+042.17E+02
37A1HRiver swamp5.00E+011.24E+042.47E+02
47A1SMountain land5.00E+011.23E+042.45E+02
57A1GPlateau5.00E+011.40E+042.81E+02
67A1MDesert3.00E+017.80E+032.60E+02
77A3PFlatland5.00E+011.08E+042.16E+02
87A3QHill5.00E+011.13E+042.26E+02
97A3SMountain land5.00E+011.28E+042.56E+02
107A3GPlateau5.00E+011.47E+042.94E+02
117A3MDesert3.00E+018.16E+032.72E+02
127A5PFlatland5.00E+011.09E+042.18E+02
137A5QHill5.00E+011.15E+042.29E+02
147A5SMountain land5.00E+011.30E+042.60E+02
157A5GPlateau5.00E+011.50E+042.99E+02
167A5MDesert3.00E+018.28E+032.76E+02
177B1PFlatland5.00E+011.15E+042.30E+02
187B1QHill5.00E+011.19E+042.39E+02
197B1SMountain land5.00E+011.35E+042.71E+02
207B1GPlateau5.00E+011.55E+043.11E+02
217B2PFlatland5.00E+011.30E+042.61E+02
227B2QHill5.00E+011.36E+042.73E+02
237B2SMountain land5.00E+011.56E+043.13E+02
247B2GPlateau5.00E+011.79E+043.57E+02
257C2PFlatland5.00E+012.13E+044.27E+02
267C2QHill5.00E+012.22E+044.45E+02
277C2HRiver swamp5.00E+012.54E+045.07E+02
287C2SMountain land5.00E+012.53E+045.06E+02
297C2GPlateau5.00E+012.78E+045.57E+02
307C2MDesert3.00E+011.60E+045.33E+02
317D1PFlatland5.00E+012.27E+044.55E+02
327D1QHill5.00E+012.37E+044.74E+02
337D1SMountain land5.00E+012.64E+045.27E+02
347D1GPlateau5.00E+012.92E+045.84E+02
357D1MDesert3.00E+011.68E+045.58E+02
  Inventory for construction schemes of transmission lines under 750 kV
NumberScheme numberTerrainDistance (km)Total investment (1E+04 CNY¥)Unit distance investment (1E+04 CNY¥/km)
18B1PFlatland5.00E+011.52E+043.04E+02
28B1QHill5.00E+011.59E+043.18E+02
38B1HRiver swamp5.00E+011.96E+043.93E+02
48B1SMountain land5.00E+011.92E+043.83E+02
58B1GPlateau5.00E+012.15E+044.30E+02
68B3QHill5.00E+011.89E+043.79E+02
78B3SMountain land5.00E+012.17E+044.34E+02
88B6GPlateau3.00E+012.08E+046.92E+02
  Inventory for construction schemes of transmission lines under 800 kV
NumberScheme numberTerrainDistance (km)Total investment (1E+04 CNY¥)Unit distance investment (1E+04 CNY¥/km)
110A2SMountain land5.00E+012.33E+044.66E+02
210A2GPlateau5.00E+012.67E+045.35E+02
310GB1PFlatland5.00E+013.80E+047.61E+02
410GB1QHill5.00E+014.04E+048.09E+02
510GB1HRiver swamp5.00E+014.82E+049.63E+02
610GB2PFlatland5.00E+013.86E+047.73E+02
710GB2HRiver swamp5.00E+015.09E+041.02E+03
810GB2QHill5.00E+014.09E+048.18E+02
910GB2SMountain land5.00E+014.85E+049.70E+02
1010GB3PFlatland5.00E+014.07E+048.14E+02
1110GB3QHill5.00E+014.36E+048.71E+02
1210GB3HRiver swamp5.00E+015.44E+041.09E+03
1310GB4QHill5.00E+014.86E+049.72E+02
1410GB4SMountain land5.00E+015.76E+041.15E+03
  Inventory for construction schemes of transmission lines under±1000 kV
Scheme numberNumber of groupsNameplate capacity (MVA)Total investment (1E+04 CNY¥)Unit capacity investment (1E+04 CNY¥/MVA)
1A1131.52.12E+036.72E+01
1A21402.02E+035.04E+01
1A32502.86E+032.86E+01
1B22503.18E+033.18E+01
1B32504.09E+034.09E+01
1B52504.08E+034.08E+01
1C12504.98E+034.98E+01
1C22506.38E+036.38E+01
  Inventory for construction schemes of transformer substation under 110 kV
Scheme numberNumber of groupsNameplate capacity (MVA)Total investment (1E+04 CNY¥)Unit capacity investment (1E+04 CNY¥/MVA)
2A111205.56E+034.63E+01
2A311806.52E+033.62E+01
2A521809.69E+032.69E+01
2A711808.27E+034.59E+01
2A811805.57E+033.09E+01
2B121809.20E+032.56E+01
2B221809.51E+032.64E+01
2B322401.21E+042.52E+01
2B422401.44E+043.00E+01
2B521808.60E+032.39E+01
  Inventory for construction schemes of transformer substation under 220 kV
Scheme numberNumber of groupsNameplate capacity (MVA)Total investment (1E+04 CNY¥)Unit capacity investment (1E+04 CNY¥/MVA)
3A123601.94E+042.70E+01
3C112401.20E+045.00E+01
3C222401.54E+043.21E+01
3D112401.18E+044.93E+01
3D212401.52E+046.34E+01
  Inventory for construction schemes of transformer substation under 330 kV
Scheme numberNumber of groupsNameplate capacity (MVA)Total investment (1E+04 CNY¥)Unit capacity investment (1E+04 CNY¥/MVA)
5A117503.11E+044.15E+01
5A1110003.19E+043.19E+01
5A217503.07E+044.09E+01
5A327503.89E+042.59E+01
5A3210004.01E+042.01E+01
5A417503.11E+044.14E+01
5B117502.50E+043.34E+01
5B227503.38E+042.25E+01
5B3210003.50E+041.75E+01
5C117501.98E+042.63E+01
5C217502.02E+042.69E+01
5C327502.76E+041.84E+01
5D117502.30E+043.07E+01
5D217502.35E+043.13E+01
5D327503.16E+042.11E+01
  Inventory for construction schemes of transformer substation under 500 kV
Scheme numberNumber of groupsNameplate capacity (MVA)Total investment (1E+04 CNY¥)Unit capacity investment (1E+04 CNY¥/MVA)
7A1121007.29E+043.47E+01
7C1121006.10E+042.90E+01
7C2121004.91E+042.34E+01
7C3121005.52E+042.63E+01
7C4115004.81E+043.21E+01
  Inventory for construction schemes of transformer substation under 750 kV
Scheme numberNumber of groupsNameplate capacity (MVA)Total investment (1E+04 CNY¥)Unit capacity investment (1E+04 CNY¥/MVA)
10A2230002.04E+053.40E+01
10B1230001.93E+053.22E+01
  Inventory for construction schemes of transformer substation under 1000 kV
1 BP (2015). Statistical review of world energy. British Petroleum.
2 B Chen, G Q Chen (2007a). Resource analysis of the Chinese society 1980−2002 based on exergy—Part 2. Energy Policy, 35(4): 2051–2064
https://doi.org/10.1016/j.enpol.2006.07.001
3 B Chen, G Q Chen (2007b). Resource analysis of the Chinese society 1980−2002 based on exergy—Part 4. Energy Policy, 35(4): 2079–2086
https://doi.org/10.1016/j.enpol.2006.08.004
4 B Chen, G Q Chen, Z F Yang, M M Jiang (2007). Ecological footprint accounting for energy and resource in China. Energy Policy, 35(3): 1599–1609
https://doi.org/10.1016/j.enpol.2006.04.019
5 G Q Chen, B Chen (2007c). Resource analysis of the Chinese society 1980−2002 based on energy—Part 5. Energy Policy, 35(4): 2087–2095
https://doi.org/10.1016/j.enpol.2006.08.012
6 G Q Chen, H Chen, Z M Chen, B Zhang, L Shao, S Guo, S Y Zhou, M M Jiang (2011a). Low-carbon building assessment and multi-scale input-output analysis. Commun Nonlinear Sci Numer Simul, 16(1): 583–595
https://doi.org/10.1016/j.cnsns.2010.02.026
7 G Q Chen, L Shao, Z M Chen, Z Li, B Zhang, H Chen, Z Wu (2011b). Low-carbon assessment for ecological wastewater treatment by a constructed wetland in Beijing. Ecol Eng, 37(4): 622–628
https://doi.org/10.1016/j.ecoleng.2010.12.027
8 G Q Chen, Q Yang, Y H Zhao (2011c). Renewability of wind power in China: a case study of nonrenewable energy cost and greenhouse gas emission by a plant in Guangxi. Renew Sustain Energy Rev, 15(5): 2322–2329
https://doi.org/10.1016/j.rser.2011.02.007
9 G Q Chen, Q Yang, Y H Zhao, Z F Wang (2011d). Nonrenewable energy cost and greenhouse gas emissions of a 1.5 MW solar power tower plant in China. Renew Sustain Energy Rev, 15(4): 1961–1967
https://doi.org/10.1016/j.rser.2010.12.014
10 H Chen, G Q Chen (2011a). Energy cost of rapeseed-based biodiesel as alternative energy in China. Renew Energy, 36(5): 1374–1378
https://doi.org/10.1016/j.renene.2010.11.026
11 Z M Chen, G Q Chen (2011b). Embodied carbon dioxide emission at supra-national scale: a coalition analysis for G7, BRIC, and the rest of the world. Energy Policy, 39(5): 2899–2909
https://doi.org/10.1016/j.enpol.2011.02.068
12 Z M Chen, G Q Chen (2011c). An overview of energy consumption of the globalized world economy. Energy Policy, 39(10): 5920–5928
https://doi.org/10.1016/j.enpol.2011.06.046
13 C de Castro, M Mediavilla, L J Miguel, F Frechoso (2013). Global solar electric potential: a review of their technical and sustainable limits. Renew Sustain Energy Rev, 28: 824–835
https://doi.org/10.1016/j.rser.2013.08.040
14 EBCEPY (1995). China Electric Yearbook 1993. Beijing: China Electric Power Press
15 EBCEPY (2013). China Electric Yearbook 2013. Beijing: China Electric Power Press
16 M Han, G Chen, J Meng, X Wu, A Alsaedi, B Ahmad (2016). Virtual water accounting for a building construction engineering project with nine sub-projects: a case in E-town, Beijing. J Clean Prod, 112: 4691–4700
17 M Y Han, G Q Chen, L Shao, J S Li, A Alsaedi, B Ahmad, S Guo, M M Jiang, X Ji (2013a). Embodied energy consumption of building construction engineering: Case study in E-town, Beijing. Energy Build, 64: 62–72
https://doi.org/10.1016/j.enbuild.2013.04.006
18 M Y Han, X Sui, Z L Huang, X D Wu, X H Xia, T Hayat, A Alsaedi (2014). Bibliometric indicators for sustainable hydropower development. Ecol Indic, 47: 231–238
https://doi.org/10.1016/j.ecolind.2014.01.035
19 M Y Han, Q Yang, X D Wu, T H Wu, G Q Chen (2013b). SWOC analysis on CCS: a case for oxy-fuel combustion CO2 capture system. Journal of Environmental accounting and management, 1(4): 333–343
20 Y Hua, M Oliphant, E J Hu (2016). Development of renewable energy in Australia and China: a comparison of policies and status. Renew Energy, 85: 1044–1051
https://doi.org/10.1016/j.renene.2015.07.060
21 X Ji, G Q Chen, B Chen, M M Jiang (2009). Exergy-based assessment for waste gas emissions from Chinese transportation. Energy Policy, 37(6): 2231–2240
https://doi.org/10.1016/j.enpol.2009.02.012
22 H Kim, B Kim (2016). Wind resource assessment and comparative economic analysis using AMOS data on a 30 MW wind farm at Yulchon district in Korea. Renew Energy, 85: 96–103
https://doi.org/10.1016/j.renene.2015.06.039
23 J S Li, G Q Chen, T Hayat, A Alsaedi (2015a). Mercury emissions by Beijing׳s fossil energy consumption: based on environmentally extended input–output analysis. Renew Sustain Energy Rev, 41: 1167–1175
https://doi.org/10.1016/j.rser.2014.08.073
24 J S Li, G Q Chen, T M Lai, B Ahmad, Z M Chen, L Shao, X Ji (2013). Embodied greenhouse gas emission by Macao. Energy Policy, 59: 819–833
https://doi.org/10.1016/j.enpol.2013.04.042
25 J S Li, G Q Chen, X F Wu, T Hayat, A Alsaedi, B Ahmad (2014). Embodied energy assessment for Macao’s external trade. Renew Sustain Energy Rev, 34: 642–653
https://doi.org/10.1016/j.rser.2014.03.038
26 J S Li, X H Xia, G Q Chen, A Alsaedi, T Hayat (2016). Optimal embodied energy abatement strategy for Beijing economy: based on a three-scale input-output analysis. Renew Sustain Energy Rev, 53: 1602–1610
https://doi.org/10.1016/j.rser.2015.09.090
27 X Li, C Lin, Y Wang, L Zhao, N Duan, X Wu (2015b). Analysis of rural household energy consumption and renewable energy systems in Zhangziying town of Beijing. Ecol Modell, 318: 184–193
https://doi.org/10.1016/j.ecolmodel.2015.05.011
28 Z Y Liu (2015). Global Energy Internet. Beijing: China Electric Power Press
29 T Ma, H Yang, L Lu, J Peng (2014). Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong. Renew Energy, 69: 7–15
https://doi.org/10.1016/j.renene.2014.03.028
30 J Meng, Q Yang, Z Li, X D Wu, G Q Chen (2014). A comparative study on CCS and renewable energy in China: Challenges and Policy Choices. Journal of Environmental Accounting and Management, 2(2): 133–143
31 MOCA (2012). Guidebook for Administrative Division of the People’s Republic of China 2012. Beijing: China Cartographic Publishing house
32 NBS (1994). China Statistical Yearbook 1994. Beijing: China Statistics Press
33 NBS (2011). China Statistical Yearbook 2011. Beijing: China Statistics Press
34 NBS (2013). China Statistical Yearbook 2013. Beijing: China Statistics Press
35 A Qadir, L Carter, T Wood, A Abbas (2015). Economic and policy evaluation of SPCC (solar-assisted post-combustion carbon capture) in Australia. Energy, 93(Part 1): 294–308
https://doi.org/10.1016/j.energy.2015.08.090
36 E S Rubin, S Yeh, M Antes, M Berkenpas, J Davison (2007). Use of experience curves to estimate the future cost of power plants with CO2 capture. Int J Greenh Gas Control, 1(2): 188–197
https://doi.org/10.1016/S1750-5836(07)00016-3
37 SGCC (2010). Guidebook for the General Investment cost for Power Transmission and Transformation Project of SGCC (2010 edition). Beijing: China Electric Power Press
38 SGCC (2013). Guidebook for the General Investment cost for Power Transmission and Transformation Project of SGCC (2013 edtion). Beijing: China Electric Power Press
39 SGERI (2014). Analysis report for world energy and electric power development. Beijing: China Electric Power Press
40 L Shao, Z Wu, L Zeng, Z M Chen, Y Zhou, G Q Chen (2013). Embodied energy assessment for ecological wastewater treatment by a constructed wetland. Ecol Modell, 252: 63–71
https://doi.org/10.1016/j.ecolmodel.2012.09.004
41 X D Wu, X H Xia, G Q Chen, X F Wu, B Chen (2016a). Embodied energy analysis for coal-based power generation system-highlighting the role of indirect energy cost. Appl Energy, in press
https://doi.org/10.1016/j.apenergy.2016.03.027
42 X D Wu, Q Yang, G Q Chen, T Hayat , A Alsaedi (2016b). Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600 MW retrofitted oxyfuel power plant as a case study. Renew Sustain Energy Rev, 60: 1274–85
https://doi.org/10.1016/j.rser.2016.03.015
43 X D Wu, Q Yang, T H Wu, G Q Chen (2014a). CCS policy for China: implications from some representative countries and regions. Journal of Environmental Accounting and Management, 2(1): 43–63
https://doi.org/10.5890/JEAM.2014.03.004
44 X F Wu, G Q Chen, X D Wu, Q Yang, A Alsaedi, T Hayat, B Ahmad (2015a). Renewability and sustainability of biogas system: cosmic exergy based assessment for a case in China. Renew Sustain Energy Rev, 51: 1509–1524
https://doi.org/10.1016/j.rser.2015.07.051
45 X F Wu, X D Wu, J S Li, X H Xia, T Mi, Q Yang, G Q Chen, B Chen, T Hayat, A Alsaedi (2014b). Ecological accounting for an integrated “pig–biogas–fish” system based on emergetic indicators. Ecol Indic, 47: 189–197
https://doi.org/10.1016/j.ecolind.2014.04.033
46 X F Wu, Q Yang, X H Xia, T H Wu, X D Wu, L Shao, T Hayat, A Alsaedi, G Q Chen (2015b). Sustainability of a typical biogas system in China: emergy-based ecological footprint assessment. Ecological Informatics, 26: 78–84
47 X H Xia, Y Hu, A Alsaedi, T Hayat, X D Wu, G Q Chen (2015). Structure decomposition analysis for energy-related GHG emission in Beijing: urban metabolism and hierarchical structure. Ecol Inform, 26(Part 1): 60–69
https://doi.org/10.1016/j.ecoinf.2014.09.008
48 X H Xia, Y Hu, G Q Chen, A Alsaedi, T Hayat, X D Wu (2015). Vertical specialization, global trade and energy consumption for an urban economy: A value added export perspective for Beijing. Ecological Modelling, 318: 49–58
49 X H Xia, G T Huang, G Q Chen, B Zhang, Z M Chen, Q Yang (2011). Energy security, efficiency and carbon emission of Chinese industry. Energy Policy, 39(6): 3520–3528
https://doi.org/10.1016/j.enpol.2011.03.051
50 Q Yang, G Q Chen, S Liao, Y H Zhao, H W Peng, H P Chen (2013). Environmental sustainability of wind power: an emergy analysis of a Chinese wind farm. Renew Sustain Energy Rev, 25: 229–239
https://doi.org/10.1016/j.rser.2013.04.013
51 J B Zhou, M M Jiang, B Chen, G Q Chen (2009). Emergy evaluations for constructed wetland and conventional wastewater treatments. Commun Nonlinear Sci Numer Simul, 14(4): 1781–1789
https://doi.org/10.1016/j.cnsns.2007.08.010
52 X Zhou, J Yi, R Song, X Yang, Y Li, H Tang (2010). An overview of power transmission systems in China. Energy, 35(11): 4302–4312
https://doi.org/10.1016/j.energy.2009.04.016
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed