Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (2) : 416-426    https://doi.org/10.1007/s11707-016-0591-2
RESEARCH ARTICLE
A geometric model of faulted detachment folding with pure shear and its application in the Tarim Basin, NW China
Zewei YAO1, Guangyu HE1(), Xiaoli ZHENG1, Chuanwan DONG1, Zicheng CAO2, Suju YANG2, Yi GU3
1. School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
2. SINOPEC Northwest Oilfield Company, Urumqi 830011, China
3. Wuxi Research Institute of Petroleum Geology, SINOPEC, Wuxi 214126, China
 Download: PDF(1447 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

We present an improved geometric model of faulted detachment folding with pure shear that is characterized by core thickening and a ramp-discordant backlimb. The model includes a two-stage evolution: 1) detachment folding involving pure shear with fixed hinges, and 2) faulted detachment folding, in which the core of anticline thrusts above a break-through fault in forelimb by limb rotation. The growth strata patterns of the model are also discussed with respect to factors such as limb rotation, tectonic uplift rate, and sedimentation rate. A thrust-related fold, called a TBE thrust fold, in the Tarim Basin in NW China, is analyzed as an example of the theoretical model. The result indicates that the TBE thrust fold has undergone a two-stage evolution with shortening of a few hundred meters. Both the theoretical model and the actual example indicate that the shortening in the detachment folding stage takes up a large proportion of the total shortening. The structural restoration of the TBE thrust fold also provides new evidence that the formation of a series of thin-skinned structures in the SE Tarim Basin initiated in the Late Ordovician. The model may be applicable to low-amplitude faulted detachment folds.

Keywords faulted detachment folding      geometric model      pure shear      growth strata      Tarim Basin      shortening     
Corresponding Author(s): Guangyu HE   
Just Accepted Date: 19 October 2016   Online First Date: 17 November 2016    Issue Date: 19 May 2017
 Cite this article:   
Zewei YAO,Guangyu HE,Xiaoli ZHENG, et al. A geometric model of faulted detachment folding with pure shear and its application in the Tarim Basin, NW China[J]. Front. Earth Sci., 2017, 11(2): 416-426.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0591-2
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I2/416
Fig.1  Geometric models of four types of fault-related folding. (a) Break-thrust folding (modified from Fischer et al., 1992). (b) Classical fault-propagation folding (Suppe and Medwedeff, 1990). (c) Faulted detachment folding (Mitra, 2002). (d) Double-edge fault-propagation folding (Tavani et al., 2006). db is backlimb dip and q is ramp dip.
Fig.2  Stepwise evolution of faulted detachment folding with pure shear. (a) Initial geometry of faulted detachment fold, where initial limb length L0 is approximately 6 units and the thickness of layer is 1 unit. (b) Fixed-hinge, low-amplitude, symmetric detachment fold formed with pure shear (modified from Epard and Groshong, 1995). (c) Break-through folding with a fault in forelimb of detachment fold with increased shortening. The strata of grey in the base are the basal detachment layers.
Fig.3  Numerical model of growth sedimentation and progressive limb rotation (Hardy and Poblet, 1994).
Fig.4  Relations of limb rotation (a), (c) and uplift (b), (d) and limb length (d) versus shortening for different models. (a), (b) corresponding to the model of progressive limb rotation (Hardy and Poblet, 1994). (c), (d) corresponding to the detachment fold under given conditions (see text for detail). The shortening unit in (a), (b) is the limb length and in (c), (d) is the thickness of single layer.
Fig.5  Forward modeling of growth faulted detachment folding with certain simplifications for uplift rate larger than sedimentation rate (a), (b) and for uplift rate less than sedimentation rate (c), (d). U=uplift rate, S=sedimentation rate. Note the growth strata at detachment folding stage are thicker than that at break-through stage.
Fig.6  A detachment fold showing contrasting measures of shortening. The initial limb length is L0. S is horizontal shortening. Ab is the area of the triangle with grey color (modified from Suppe, 2011)
Fig.7  Relations of total shortening and pure shear shortening in detachment fold with pure shear in the case where q<= 60°. The distance between curve and dotted line is the bed-length shortening. The unit of S and Sε is the undeformed limb length L0.
Fig.8  Geometric elements used in the derivation of relationships of shortening, uplift, and displacement. See text for detail.
Fig.9  Graph of relationships between shortening d and displacement df verse backlimb dip db with certain ramp dip q based on Eqs. (2) and (3).
Fig.10  (a) Sketch map of tectonic units of the Tarim Basin. (b) Location of the TBE thrust fold in the Tanggubasi depression of the Central uplift of the Tarim Basin.
Fig.11  A schematic diagram showing stratigraphic units in the Tanggubasi depression, Tarim Basin.
Fig.12  (a) Interpreted seismic profile of TBE thrust fold (for location see Fig. 10). Vertical exaggeration is approximately 1. (b) Line drawings of time-depth converted seismic profile of the TBE thrust fold. The seismic reflection interfaces T1, T2, T3, T4, T5 are the stratigraphic boundaries of certain units (see Fig. 11 for detail). TWT: two-way travel time.
Fig.13  Displacement–distance diagram showing that displacement decreases slightly with increasing distance. The three dots from left to right correspond to T4, T3, and T2, respectively. The decrease of displacement may be due to drag effect of the reverse fault.
Fig.14  (a) Areas of relief are plotted versus height above reference level and the slope is the total shortening. (b) Bed length shortening and total shortening. Note that reference level is the base of Cambrian. Three points is the shortening of T4, T3, and T2, respectively.
Fig.15  Restoration cross-sections of the TBE thrust fold. (a) Faulted detachment folding during deposition of upper Sangtamu formation. (b) Detachment folding during deposition of the Qiaerbake formation to the Sangtamu formation. (c) Pre-folding stage at the end of the Middle Ordovician.
1 Atkinson P K, Wallace W K (2003). Competent unit thickness variation in detachment folds in the Northeastern Brooks Range, Alaska: geometric analysis and a conceptual model. Journal of Structural Geology, 25(10): 1751–1771
2 Cai X Y, Li Y (2008). Ordovician lithofacies and stratigraphic lacunae in the southern part of the Central Tarim, Xinjiang. Journal of Stratigraphy, 32(4): 353–362 (in Chinese)
3 Epard J L, Groshong R H Jr (1995). Kinematic model of detachment folding including limb rotation, fixed hinges and layer-parallel strain. Tectonophysics, 247(1‒4): 85–103
https://doi.org/10.1016/0040-1951(94)00266-C
4 Erslev E A, Mayborn K R (1997). Multiple geometries and modes of fault-propagation folding in the Canadian thrust belt. Journal of Structural Geology, 19(3‒4): 321–335
5 Fischer M P, Woodward N B, Mitchell M M (1992). The kinematics of break-thrust folds. J Struct Geol, 14(4): 451–460
https://doi.org/10.1016/0191-8141(92)90105-6
6 Gonzalez-Mieres R, Suppe J (2006). Relief and shortening in detachment folds. Journal of Structural Geology, 28(10): 1785–1807
7 Groshong R H, Epard J J (1994). The role of strain in area-constant detachment folding. Journal of Structural Geology, 16(5): 613–618
8 Hardy S, Poblet J (1994). Geometric and numerical model of progressive limb rotation in detachment folds. Geology, 22(4): 371–374
https://doi.org/10.1130/0091-7613(1994)022<0371:GANMOP>2.3.CO;2
9 He B Z, Jiao C L, Xu Z Q, Cai Z Q, Liu S L, Zhang Y L (2011). Manifestation of the Middle-Late Caledonian tectonic movement along the Altun-West Kunlun orogenic belt in the Tangguzibas depression, Tarim Basin. Yanshi Xuebao, 27(11): 3435–3448 (in Chinese)
10 Homza T X, Wallace W K (1995). Geometric and kinematic models for detachment folds with fixed and variable detachment depths. J Struct Geol, 17(4): 575–588
https://doi.org/10.1016/0191-8141(94)00077-D
11 Hubert-Ferrari A, Suppe J, Gonzalez-Mieres R, Wang X (2007). Mechanisms of active folding of the landscape (southern Tian Shan, China). Journal of Geophysical Research-Solid Earth, 112(B3): 485–493
12 Jamison W R (1987). Geometric analysis of fold development in overthrust terranes. Journal of Structural Geology, 9(2): 207–219
13 Li H W, Wu G H, Shi L L, Wang B, Gao L (2013). The structural features and evolution series of Madong thrust belt, west of Tarim Basin. Xingjiang Geology, 31(3): 180–185 (in Chinese)
14 Lin C, Yang H, Liu J, Rui Z, Cai Z, Zhu Y (2012). Distribution and erosion of the Paleozoic tectonic unconformities in the Tarim Basin, Northwest China: significance for the evolution of paleo-uplifts and tectonic geography during deformation. J Asian Earth Sci, 46(2): 1–19
https://doi.org/10.1016/j.jseaes.2011.10.004
15 Mercier E, Rafini S, Ahmadi R (2007). Folds kinematics in “Fold-and-Thrust Belts” the “hinge migration” question, a review. In: Lacombe O, LavéJ, Roure F, Vergés J, eds. Thrust Belts and Foreland Basins: From Fold Kinematics to Hydrocarbon Systems. Berlin: Springer, 135–147
16 Mitra S (1990). Fault-propagation folds geometry, kinematic evolution, and hydrocarbon traps. AAPG Bull, 74(6): 921–945
17 Mitra S (2002). Structural models of faulted detachment folds. AAPG Bull, 86(9): 1673–1694
18 Mitra S (2003). A unified kinematic model for the evolution of detachment folds. Journal of Structural Geology, 25(10): 1659–1673
19 Poblet J, McClay K, Storti F, Munoz J A (1997). Geometries of syntectonic sediments associated with single-layer detachment folds. J Struct Geol, 19(3‒4): 369–381 doi:10.1016/S0191-8141(96)00113-7
20 Ramon G, Suppe J (2011). Shortening histories in active detachment folds based on area-of-relief methods. In: McClay K, Shaw J, Suppe J, eds. Thrust Fault-Related Folding, AAPG Memoir 94. Tulsa: AAPG, 39–67
21 Ren J Y, Zhang J X, Yang H Z, Hu D S, Li M, Zhang Y P (2011). Analysis of fault systems in the Central uplift, Tarim Basin. Yanshi Xuebao, 27(1): 219–230 (in Chinese)
22 Rowan M G (1997). Three-dimensional geometry and evolution of a segmented detachment fold, Mississippi Fan foldbelt, Gulf of Mexico. J Struct Geol, 19(3‒4): 463–480
https://doi.org/10.1016/S0191-8141(96)00098-3
23 Salvini F, Storti F (2002). Three-dimensional architecture of growth strata associated to fault-bend, fault-propagation, and décollement anticlines in non-erosional environments. Sediment Geol, 146(1–2): 57–73
https://doi.org/10.1016/S0037-0738(01)00166-X
24 Stewart S A (1996). Influence of detachment layer thickness on style of thin-skinned shortening. Journal of Structural Geology, 18(10): 1271–1274
25 Storti F, Poblet J (1997). Growth stratal architectures associated to decollement folds and fault-propagation folds. Inferences on fold kinematics. Tectonophysics, 282(1–4): 353–373
https://doi.org/10.1016/S0040-1951(97)00230-8
26 Suppe J (2011). Mass balance and thrusting in detachment folds. In: McClay K, Shaw J, Suppe J, eds. Thrust Fault-Related Folding, AAPG Memoir 94. Tulsa: AAPG, 21–37
27 Suppe J, Connors C D, Zhang Y (2004). Shear fault-bend folding. In: McClay K R, ed. Thrust Tectonics and Hydrocarbon Systems, AAPG Memoir 82. Tulsa: AAPG, 303–323
28 Suppe J, Medwedeff D A (1990). Geometry and kinematics of fault-propagation folding. Eclogae Geol Helv, 83(3): 409–454
29 Suppe J, Sabat F, Munoz J A, Poblet J, Roca E, Verges J (1997). Bed-by-bed fold growth by kink-band migration: Sant Llorenc de Morunys, eastern Pyrenees. Journal of Structural Geology, 19(3‒4): 443–461
30 Tavani S, Storti F, Salvini F (2006). Double-edge fault-propagation folding: geometry and kinematics. Journal of Structural Geology, 28(1): 19–35
31 Xu Z Q, Li S T, Zhang J X, Yang J S, He B Z, Li H B, Lin C S, Cai Z H (2011). Paleo-Asian and Tethyan tectonic systems with docking the Tarim block. Yanshi Xuebao, 27(1): 1–22 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed