Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (1) : 72-85    https://doi.org/10.1007/s11707-016-0614-z
RESEARCH ARTICLE
Embodied water analysis for Hebei Province, China by input-output modelling
Siyuan LIU1,2, Mengyao HAN3,4, Xudong WU4(), Xiaofang WU4, Zhi LI4, Xiaohua XIA5, Xi JI6()
1. Hebei Provincial Key Laboratory of Heavy Machinery Fluid Power Transmission and Control, Yanshan University, Qinhuangdao 066004, China
2. Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao 066004, China
3. Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
4. College of Engineering, Peking University, Beijing 100871, China
5. School of Economics, Renmin University of China, Beijing 100872, China
6. School of Economics, Peking University, Beijing 100871, China
 Download: PDF(506 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

With the accelerating coordinated development of the Beijing-Tianjin-Hebei region, regional economic integration is recognized as a national strategy. As water scarcity places Hebei Province in a dilemma, it is of critical importance for Hebei Province to balance water resources as well as make full use of its unique advantages in the transition to sustainable development. To our knowledge, related embodied water accounting analysis has been conducted for Beijing and Tianjin, while similar works with the focus on Hebei are not found. In this paper, using the most complete and recent statistics available for Hebei Province, the embodied water use in Hebei Province is analyzed in detail. Based on input-output analysis, it presents a complete set of systems accounting framework for water resources. In addition, a database of embodied water intensity is proposed which is applicable to both intermediate inputs and final demand. The result suggests that the total amount of embodied water in final demand is 10.62 billion m3, of which the water embodied in urban household consumption accounts for more than half. As a net embodied water importer, the water embodied in the commodity trade in Hebei Province is 17.20 billion m3. The outcome of this work implies that it is particularly urgent to adjust industrial structure and trade policies for water conservation, to upgrade technology and to improve water utilization. As a result, to relieve water shortages in Hebei Province, it is of crucial importance to regulate the balance of water use within the province, thus balancing water distribution in the various industrial sectors.

Keywords input-output analysis      Hebei Province      embodied water      embodied water intensity     
Corresponding Author(s): Xudong WU,Xi JI   
Just Accepted Date: 23 November 2016   Online First Date: 13 December 2016    Issue Date: 23 January 2018
 Cite this article:   
Siyuan LIU,Mengyao HAN,Xudong WU, et al. Embodied water analysis for Hebei Province, China by input-output modelling[J]. Front. Earth Sci., 2018, 12(1): 72-85.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-016-0614-z
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I1/72
Input Output
Intermediate use Final demand
Sector 1 Sector 2 Sector n Household Rural consumption Urban Government consumption Gross fixed
capital formation
Changes in inventories Outflows
Intermediate
inputs
Sector 1 Q1 Q2
Sector 2
Sector n
Value added Wages, taxes, surplus, etc Q3
Net environ-mental inputs Water Agricultural production Q0
Industrial production
Biological protection
Household use
Tab.1  Basic structure of systems input-output table
Fig.1  Embodied water flows for Sector i (kth water resource for example).
Fig.2  Embodied water intensity of 42 Sectors.
Fig.3  Water embodied in final demand by sector.
Fig.4  Embodied water in final demand by industry.
Fig.5  Water embodied in trade by sector. (a) Water avoided by imports. (b) Water embodied in exports.
Fig.6  Embodied water in trade balance.
Code Sector Code Sector
01 Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy (Agriculture) 22 Waste
02 Coal Mining and Dressing 23 Electric Power/Steam and Hot Water Production and Supply
03 Petroleum and Natural Gas Extraction 24 Gas Production and Supply Industry
04 Ferrous and Nonferrous Metals Mining and Dressing 25 Water Production and Supply Industry
05 Nonmetal and Other Minerals Mining and Dressing 26 Construction Industry
06 Food Processing, Food Production, Beverage Production, Tobacco Processing 27 Transport and Storage
07 Textile Industry 28 Post
08 Garments and Other Fiber Products, Leather, Furs, Down and Related Products 29 Information Transmission, Computer services and Software
09 Timber Processing, Bamboo, Cane, Palm and Straw Products, Furniture Manufacturing 30 Wholesale, Retail Trade
10 Papermaking and Paper Products, Printing and Record Medium Reproduction, Cultural, Educational and Sports Articles 31 Hotels, Catering Service
11 Petroleum Processing and Coking, Gas Production and Supply 32 Financial Industry
12 Chemical Products Related Industry 33 Real Estate
13 Nonmetal Mineral Products 34 Leasing and Commercial Services
14 Smelting and Pressing of Ferrous and Nonferrous Metals 35 Research and Experimental Development
15 Metal Products 36 Polytechnic Services
16 Ordinary Machinery, Equipment for Special Purpose 37 Water conservancy, Environment and Public Facilities Management
17 Transportation Equipment 38 Service to Households and Other Service
18 Electric Equipment and Machinery 39 Education
19 Electronic and Telecommunications Equipment 40 Health, Social Security and Social Welfare
20 Instruments, Meters Cultural and Office Machinery 41 Culture, Sports and Entertainment
21 Manufacture of Artwork and Other Manufactures 42 Public Management and Social Organization
  
Code Sector Agricultural production Industrial production Biological protection Household use Total
01 Farming, Forestry, Animal Husbandry, Fishery and Water Conservancy (Agriculture) 608.01 57.52 0.31 3.74 669.58
02 Coal Mining and Dressing 14.75 171.33 0.73 8.71 195.52
03 Petroleum and Natural Gas Extraction 7.29 134.60 0.54 6.44 148.87
04 Ferrous and Nonferrous Metals Mining and Dressing 10.98 94.10 0.66 7.84 113.58
05 Nonmetal and Other Minerals Mining and Dressing 13.43 146.31 0.98 11.68 172.40
06 Food Processing, Food Production, Beverage Production, Tobacco Processing 278.36 224.73 0.55 6.54 510.18
07 Textile Industry 197.36 236.20 0.72 8.64 442.92
08 Garments and Other Fiber Products, Leather, Furs, Down and Related Products 123.09 248.71 0.62 7.38 379.80
09 Timber Processing, Bamboo, Cane, Palm and Straw Products, Furniture Manufacturing 58.90 233.87 0.51 6.10 299.38
10 Papermaking and Paper Products, Printing and Record Medium Reproduction, Cultural, Educational and Sports Articles 72.68 185.71 0.71 8.50 267.60
11 Petroleum Processing and Coking, Gas Production and Supply 11.68 282.91 0.64 7.65 302.88
12 Chemical Products Related Industry 39.49 222.16 1.12 13.42 276.19
13 Nonmetal Mineral Products 14.46 254.34 0.91 10.87 280.58
14 Smelting and Pressing of Ferrous and Nonferrous Metals 11.24 233.94 1.04 12.48 258.70
15 Metal Products 11.44 230.75 0.82 9.84 252.85
16 Ordinary Machinery, Equipment for Special Purpose 11.98 351.63 0.87 10.43 374.91
17 Transportation Equipment 13.16 346.14 0.85 10.17 370.32
18 Electric Equipment and Machinery 13.24 291.47 0.87 10.39 315.97
19 Electronic and Telecommunications Equipment 12.64 485.89 0.76 9.10 508.39
20 Instruments, Meters Cultural and Office Machinery 12.52 374.12 0.78 9.37 396.79
21 Manufacture of Artwork and Other Manufactures 38.87 242.51 0.75 9.02 291.15
22 Waste 0.87 26.27 0.06 0.68 27.88
23 Electric Power/Steam and Hot Water Production and Supply 11.02 123.85 1.43 17.12 153.42
24 Gas Production and Supply Industry 11.51 266.70 0.99 11.88 291.08
25 Water Production and Supply Industry 9.23 163.06 864.71 10333.28 11370.28
26 Construction Industry 16.72 143.27 1.21 14.46 175.66
27 Transport and Storage 34.19 80.59 1.24 14.83 130.85
28 Post 21.00 111.91 1.81 21.68 156.40
29 Information Transmission, Computer services and Software 15.83 123.12 1.12 13.43 153.50
30 Wholesale, Retail Trade 14.32 37.23 0.66 7.94 60.15
31 Hotels, Catering Service 111.68 84.77 2.74 32.71 231.90
32 Financial Industry 16.78 51.72 1.04 12.39 81.93
33 Real Estate 5.19 28.97 0.80 9.51 44.47
34 Leasing and Commercial Services 67.69 63.67 1.56 18.69 151.61
35 Research and Experimental Development 12.19 119.39 1.46 17.48 150.52
36 Polytechnic Services 20.60 123.62 2.25 26.84 173.31
37 Water conservancy, Environment and Public Facilities Management 12.58 73.40 1.76 21.09 108.83
38 Service to Households and Other Service 19.21 80.98 2.63 31.40 134.22
39 Education 11.64 68.04 3.30 39.44 122.42
40 Health, Social Security and Social Welfare 14.24 151.46 1.14 13.68 180.52
41 Culture, Sports and Entertainment 22.79 78.67 2.00 23.94 127.40
42 Public Management and Social Organization 16.51 58.36 2.13 25.42 102.42
  
Source Final demand
Final consumption The total amount of capital formation Outflows Total
Rural household
consumption
Urban household
consumption
Government consumption Gross fixed
capital formation
Changes in
inventories
Agricultural production 1.54E+09 3.25E+09 4.13E+08 1.05E+09 ?1.54E+09 2.05E+10
Industrial production 1.87E+08 3.84E+08 1.68E+08 1.23E+09 1.79E+08 4.08E+09
Biological protection 2.25E+07 1.57E+08 4.01E+07 6.62E+07 4.33E+06 1.73E+08
Household use 2.69E+08 1.87E+09 4.79E+08 7.91E+08 5.17E+07 2.07E+09
Total 2.02E+09 5.67E+09 1.10E+09 3.13E+09 ?1.30E+09 2.68E+10 3.74E+10
  
1 Allan J A (1996). Policy responses to the closure of water resources. In: Howsam P, Carter R, eds. Water Policy: Allocation and Management in Practice. London: Chapman and Hall
2 CCSY (2008). China City Statistical Yearbook (2007).Beijing: China Statistical Publishing House (in Chinese)
3 Chapagain A K,  Hoekstra A Y (2011). The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol Econ, 70(4): 749–758
https://doi.org/10.1016/j.ecolecon.2010.11.012
4 Chen B, Chen  G Q (2007a). Resource analysis of the Chinese society 1980‒2002 based on exergy—Part 4: fishery and rangeland. Energy Policy, 35(4): 2079–2086
https://doi.org/10.1016/j.enpol.2006.08.004
5 Chen G Q, Chen  B (2007b). Resource analysis of the Chinese society 1980‒2002 based on energy—Part 5: resource structure and intensity. Energy Policy, 35(4): 2087–2095
https://doi.org/10.1016/j.enpol.2006.08.012
6 Chen G Q, Shao  L, Chen Z M,  Li Z, Zhang  B, ChenH,  Wu Z (2011). Low-carbon assessment for ecological wastewater treatment by a constructed wetland in Beijing. Ecol Eng, 37(4): 622–628
https://doi.org/10.1016/j.ecoleng.2010.12.027
7 Chen G Q, Chen  Z M (2010). Carbon emissions and resources use by Chinese economy 2007: a 135-sector inventory and input–output embodiment. Commun Nonlinear Sci Numer Simul, 15(11): 3647–3732
https://doi.org/10.1016/j.cnsns.2009.12.024
8 Chen G Q, Chen  Z M (2011a). Greenhouse gas emissions and natural resources use by the world economy: Ecological input–output modeling. Ecol Modell, 222(14): 2362–2376
https://doi.org/10.1016/j.ecolmodel.2010.11.024
9 Chen G Q, Guo  S, Shao L,  Li J S,  Chen Z M (2013). Three-scale input-output modeling for urban economy: carbon emission by Beijing 2007. Commun Nonlinear Sci Numer Simul, 18(9): 2493–2506
https://doi.org/10.1016/j.cnsns.2012.12.029
10 Chen G Q, Han  M Y (2015a). Global supply chain of arable land use: production-based and consumption-based trade imbalance. Land Use Policy, 49: 118–130
https://doi.org/10.1016/j.landusepol.2015.07.023
11 Chen G Q, Han  M Y (2015b). Virtual land use change in China 2002–2010: internal transition and trade imbalance. Land Use Policy, 47: 55–65
https://doi.org/10.1016/j.landusepol.2015.03.017
12 Chen G Q, Li  J S (2015). Virtual water assessment for Macao, China: highlighting the role of external trade. J Clean Prod, 93: 308–317
https://doi.org/10.1016/j.jclepro.2015.01.020
13 Chen Z M, Chen  G Q (2011b). Embodied carbon dioxide emission at supra-national scale: a coalition analysis for G7, BRIC, and the rest of the world. Energy Policy, 39(5): 2899–2909
https://doi.org/10.1016/j.enpol.2011.02.068
14 Chen Z M, Chen  G Q (2013). Virtual water accounting for the globalized world economy: national water footprint and international virtual water trade. Ecol Indic, 28(5): 142–149
https://doi.org/10.1016/j.ecolind.2012.07.024
15 Chen Z M, Chen  G Q, Xia X H, Xu S Y (2012). Global network of embodied water flow by systems input-output simulation. Front Earth Sci 6(3): 331–344
https://doi.org/10.1007/s11707-012-0305-3
16 Han M, Guo  S, Chen H,  Ji X, Li  J (2014a). Local-scale systems input-output analysis of embodied water for the Beijing economy in 2007. Front Earth Sci 8(3): 414–426
https://doi.org/10.1007/s11707-014-0430-2
17 Han M Y, Chen  G Q, Meng  J, Wu X D,  Alsaedi A,  Ahmad B (2016). Virtual water accounting for a building construction engineering project with nine sub-projects: a case in E-town, Beijing. J Clean Prod, 112(Part 5): 4691–4700
https://doi.org/10.1016/j.jclepro.2015.07.048
18 Han M Y, Chen  G Q, Mustafa  M T, Hayat  T, Shao L,  Li J S,  Xia X H,  Ji X (2015). Embodied water for urban economy: A three-scale input–output analysis for Beijing 2010. Ecol Modell, 318: 19–25
https://doi.org/10.1016/j.ecolmodel.2015.05.024
19 Han M Y, Sui  X, Huang Z L,  Wu X D,  Xia X H,  Hayat T,  Alsaedi A (2014b). Bibliometric indicators for sustainable hydropower development. Ecol Indic, 47: 231–238
https://doi.org/10.1016/j.ecolind.2014.01.035
20 Hoekstra A Y (2003). Virtual water trade: proceedings of the international expert meeting on virtual water trade. Value of water research report series, No. 12. Delft: IHE
21 HSY (2008). Hebei Statistical Yearbook 2007.Beijing: China Statistical Publishing House (in Chinese)
22 Klaassen L H (1973). Economic and social projects with environmental repercussions: a shadow project approach. Reg Urban Econ, 3(1): 83–102
https://doi.org/10.1016/0034-3331(73)90020-1
23 Kumar M D, Singh  O P (2005). Virtual water in global food and water policy making: is there a need for rethinking? Water Resour Manage, 19(6): 759–789
https://doi.org/10.1007/s11269-005-3278-0
24 Lambooy T (2011). Corporate social responsibility: sustainable water use. J Clean Prod, 19(8): 852–866
https://doi.org/10.1016/j.jclepro.2010.09.009
25 Leontief W W (1936). Quantitative input and output relations in the economic systems of the United States. Rev Econ Stat, 18(3): 105–125
https://doi.org/10.2307/1927837
26 Li X, Feng  K, Siu Y L,  Hubacek K (2012). Energy-water nexus of wind power in China: the balancing act between CO2 emissions and water consumption. Energy Policy, 45(11): 440–448
https://doi.org/10.1016/j.enpol.2012.02.054
27 Ma J, Hoekstra  A Y, Wang  H, Chapagain A K,  Wang D (2006). Virtual versus real water transfers within China. Philos Trans R Soc Lond B Biol Sci, 361(1469): 835–842
https://doi.org/10.1098/rstb.2005.1644
28 Mekonnen M M, Hoekstra  A Y (2010). A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol Earth Syst Sci, 14(7): 1259–1276
https://doi.org/10.5194/hess-14-1259-2010
29 Mekonnen M M, Hoekstra  A Y (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrol Earth Syst Sci, 15(5): 1577–1600
https://doi.org/10.5194/hess-15-1577-2011
30 Mekonnen M M, Hoekstra  A Y (2012). The blue water footprint of electricity from hydropower. Hydrol Earth Syst Sci, 16(1): 179–187
https://doi.org/10.5194/hess-16-179-2012
31 Odum H T (1971). Environment, power and society.New York: Wiley-Interscience
32 Odum H T (1996). Environmental accouting: emergy and environmental decision making.New York: Wiley-Interscience
33 Odum H T, Brown  M T, Brandt-Williams  S (2000a). Handbook of emergy evaluation: a compendium of data for emergy computation issued in a series of folios; Folio #1 Introduction and global budget.  University of Florida, Gainesville, FL
34 Odum H T, Brown  M T, Brandt-Williams  S (2000b). Handbook of emergy evaluation: a compendium of data for emergy computation issued in a series of folios; Folio #2 Emergy of Global Processes.  University of Florida, Gainesville, FL
35 Odum H T, Odum  B (2003). Concepts and methods of ecological engineering. Ecol Eng, 20(5): 339–361
https://doi.org/10.1016/j.ecoleng.2003.08.008
36 Pang M, Zhang  L, Ulgiati S,  Wang C (2015). Ecological impacts of small hydropower in China: insights from an emergy analysis of a case plant. Energy Policy, 76: 112–122
https://doi.org/10.1016/j.enpol.2014.10.009
37 Shao L, Chen  G Q (2013). Water footprint assessment for wastewater treatment: method, indicator, and application. Environ Sci Technol, 47(14): 7787–7794
https://doi.org/10.1021/es402013t
38 Shao L, Chen  G Q, Hayat  T, Alsaedi A (2014). Systems ecological accounting for wastewater treatment engineering: method, indicator and application. Ecol Indic, 47: 32–42
https://doi.org/10.1016/j.ecolind.2014.04.026
39 Shao L, Wu  Z, Zeng L,  Chen Z M,  Zhou Y, Chen  G Q (2013). Embodied energy assessment for ecological wastewater treatment by a constructed wetland. Ecol Modell, 252: 63–71
https://doi.org/10.1016/j.ecolmodel.2012.09.004
40 Stelling G S, Duinmeijer  S P A (2003). A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int J Numer Methods Fluids, 43(12): 1329–1354
https://doi.org/10.1002/fld.537
41 Wang C, Zhang  L, Chang Y,  Pang M (2015a). Biomass direct-fired power generation system in China: an integrated energy, GHG emissions, and economic evaluation for Salix. Energy Policy, 84: 155–165
https://doi.org/10.1016/j.enpol.2015.04.025
42 Wang P, Chen  G Q (2015). Environmental dispersion in a tidal wetland with sorption by vegetation.  Communications in Nonlinear Science & Numerical Simulation, 22(s 1–3): 348–366
43 Wang P, Chen  G Q (2016). Transverse concentration distribution in Taylor dispersion: Gill’s method of series expansion supported by concentration moments. Int J Heat Mass Transfer, 95: 131–141
https://doi.org/10.1016/j.ijheatmasstransfer.2015.11.091
44 Wang P, Li  Z, Wu X,  An Y (2015b). Taylor dispersion in a packed pipe with wall reaction: based on the method of Gill’s series solution. Int J Heat Mass Transfer, 91: 89–97
https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.068
45 Wang Y, Li  W, Wang Y,  Fu J (2015c). Integrate actions for water resources protection in Beijing-Tianjin-Hebei Region. China Water Resources, (1): 1–37
46 Wei W D, Wu  X D, Wu  X F, Xi  Q M, Ji  X, Li G P (2016). Regional study on investment for transmission infrastructure in China based on the State Grid data. Front Earth Sci., 
https://doi.org/10.1007/s11707-016-0581-4
47 Wichelns D (2001). The role of ‘virtual water’ in efforts to achieve food security and other national goals, with an example from Egypt. Agric Water Manage, 49(2): 131–151
https://doi.org/10.1016/S0378-3774(00)00134-7
48 Winnie G L, Hoekstra  A Y, Meer  T HVan   Der (2009). The water footprint of bioenergy. Proceedings of the National Academy of Sciences of the United States of America, 106(25): 10219–10223
49 Wu X D, Xia  X H, Chen  G Q, Wu  X F, Chen  B (2016a). Embodied energy analysis for coal-based power generation system-highlighting the role of indirect energy cost. Appl Energy, (In press) 
https://doi.org/10.1016/j.apenergy.2016.03.027
50 Wu X D, Yang  Q, Chen G Q,  Hayat T,  Alsaedi A (2016b). Progress and prospect of CCS in China: using learning curve to assess the cost-viability of a 2×600 MW retrofitted oxyfuel power plant as a case study. Renew Sustain Energy Rev, 60: 1274–1285
https://doi.org/10.1016/j.rser.2016.03.015
51 Wu X F, Chen  G Q, Wu  X D, Yang  Q, Alsaedi A,  Hayat T,  Ahmad B (2015). Renewability and sustainability of biogas system: cosmic exergy based assessment for a case in China. Renew Sustain Energy Rev, 51: 1509–1524
https://doi.org/10.1016/j.rser.2015.07.051
52 Wu X F, Wu  X D, Li  J S, Xia  X H, Mi  T, Yang Q,  Chen G Q,  Chen B, Hayat  T, Alsaedi A (2014). Ecological accounting for an integrated “pig–biogas–fish” system based on emergetic indicators. Ecol Indic, 47: 189–197
https://doi.org/10.1016/j.ecolind.2014.04.033
53 Xia X H, Hu  Y, Chen G Q,  Alsaedi A,  Hayat T,  Wu X D (2015). Vertical specialization, global trade and energy consumption for an urban economy: a value added export perspective for Beijing. Ecol Modell, 318: 49–58
https://doi.org/10.1016/j.ecolmodel.2014.11.005
54 Zhang B, Chen  G Q (2010). Physical sustainability assessment for the China society: exergy-based systems account for resources use and environmental emissions. Renew Sustain Energy Rev, 14(6): 1527–1545
https://doi.org/10.1016/j.rser.2010.01.021
55 Zhang B, Chen  Z M, Zeng  L, Qiao H,  Chen B (2015). Demand-driven water withdrawals by Chinese industry: a multi-regional input-output analysis. Front Earth Sci, 10(1): 1–16
56 Zhang B, Li  J S, Peng B H (2014a). Multi-regional input-output analysis for China’s regional CH4 emissions. Front Earth Sci, 8(1): 163–180
https://doi.org/10.1007/s11707-014-0408-0
57 Zhang L, Hu  Q, Zhang F (2014b). Input-output modeling for urban energy consumption in Beijing: dynamics and comparison. PLoS ONE, 9(3): e89850
https://doi.org/10.1371/journal.pone.0089850
58 Zhang L X, Wang  C B, Bahaj  A S (2014c). Carbon emissions by rural energy in China. Renew Energy, 66(3): 641–649
https://doi.org/10.1016/j.renene.2014.01.005
59 Zhang Z Y, Yang  H, Shi M J,  Zehnder A J B,  Abbaspour K C (2011). Analyses of impacts of China’s international trade on its water resources and uses. Hydrol Earth Syst Sci, 15(9): 2871–2880
https://doi.org/10.5194/hess-15-2871-2011
60 Zhou S Y, Chen  H, Li S C (2010). Resources use and greenhouse gas emissions in urban economy: ecological input-output modeling for Beijing 2002. Commun Nonlinear Sci Numer Simul, 15(10): 3201–3231
https://doi.org/10.1016/j.cnsns.2009.11.026
[1] Ying LIU, Xudong WU, Xudong SUN, Chenghe GUAN, Bo ZHANG, Xiaofang WU. Exports-driven primary energy requirements and the structural paths of Chinese regions[J]. Front. Earth Sci., 2020, 14(4): 803-815.
[2] Jing MING, Xiawei LIAO, Xu ZHAO. Grey water footprint for global energy demands[J]. Front. Earth Sci., 2020, 14(1): 201-208.
[3] Jiashuo LI,Ran LUO,Qing YANG,Haiping YANG. Inventory of CO2 emissions driven by energy consumption in Hubei Province: a time-series energy input-output analysis[J]. Front. Earth Sci., 2016, 10(4): 717-730.
[4] Mengyao HAN,Xi JI. Alternative industrial carbon emissions benchmark based on input-output analysis[J]. Front. Earth Sci., 2016, 10(4): 731-739.
[5] Bo ZHANG,Z. M. CHEN,L. ZENG,H. QIAO,B. CHEN. Demand-driven water withdrawals by Chinese industry: a multi-regional input-output analysis[J]. Front. Earth Sci., 2016, 10(1): 13-28.
[6] Mengyao HAN,Shan GUO,Hui CHEN,Xi JI,Jiashuo LI. Local-scale systems input-output analysis of embodied water for the Beijing economy in 2007[J]. Front. Earth Sci., 2014, 8(3): 414-426.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed