Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2017, Vol. 11 Issue (2) : 248-267    https://doi.org/10.1007/s11707-017-0597-4
RESEARCH ARTICLE
Passive Super-Low Frequency electromagnetic prospecting technique
Nan WANG1,2, Shanshan ZHAO1, Jian HUI1, Qiming QIN1()
1. Institute of Remote Sensing and GIS, School of Earth and Space Sciences, Peking University, Beijing 100871, China
2. Key Laboratory of Technology in Geospatial Information Processing and Application System, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China
 Download: PDF(2740 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Super-Low Frequency (SLF) electromagnetic prospecting technique, adopted as a non-imaging remote sensing tool for depth sounding, is systematically proposed for subsurface geological survey. In this paper, we propose and theoretically illustrate natural source magnetic amplitudes as SLF responses for the first step. In order to directly calculate multi-dimensional theoretical SLF responses, modeling algorithms were developed and evaluated using the finite difference method. The theoretical results of three-dimensional (3-D) models show that the average normalized SLF magnetic amplitude responses were numerically stable and appropriate for practical interpretation. To explore the depth resolution, three-layer models were configured. The modeling results prove that the SLF technique is more sensitive to conductive objective layers than high resistive ones, with the SLF responses of conductive objective layers obviously showing uprising amplitudes in the low frequency range. Afterwards, we proposed an improved Frequency-Depth transformation based on Bostick inversion to realize the depth sounding by empirically adjusting two parameters. The SLF technique has already been successfully applied in geothermal exploration and coalbed methane (CBM) reservoir interpretation, which demonstrates that the proposed methodology is effective in revealing low resistive distributions. Furthermore, it siginificantly contributes to reservoir identification with electromagnetic radiation anomaly extraction. Meanwhile, the SLF interpretation results are in accordance with dynamic production status of CBM reservoirs, which means it could provide an economical, convenient and promising method for exploring and monitoring subsurface geo-objects.

Keywords Super-Low Frequency (SLF)      three-dimensional modeling      frequency-depth transformation      geothermal exploration      coalbed methane (CBM)      electromagnetic radiation (EMR)     
Corresponding Author(s): Qiming QIN   
Just Accepted Date: 12 January 2017   Online First Date: 20 March 2017    Issue Date: 19 May 2017
 Cite this article:   
Nan WANG,Shanshan ZHAO,Jian HUI, et al. Passive Super-Low Frequency electromagnetic prospecting technique[J]. Front. Earth Sci., 2017, 11(2): 248-267.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0597-4
https://academic.hep.com.cn/fesci/EN/Y2017/V11/I2/248
Fig.1  Model design and numerical algorithm evaluations. (a) 1-D model with four layers; (b) apparent resistivity responses of the four-layer model in 1-D, 2-D (TE mode), and 3-D responses (XY mode); (c) apparent resistivity responses of COMMEMI Model 3D-1 using our 2-D, 3-D algorithms and other algorithms from Russia, USA, and Germany (Zhdanov et al., 1997).
Fig.2  Normalized SLF magnetic amplitude responses of the layered model (Fig. 1(a)) calculated by 1-D, 2-D, and 3-D numerical algorithms.
Fig.3  3-D geo-electrical model and its normalized SLF magnetic amplitude responses. (a) XOZ profile; (b) XOY profile. Two black points represent acquisition sites; (c) 2-D and 3-D SLF magnetic responses in different modes and directions for the site above the low resistive anomaly; (d) 2-D and 3-D SLF magnetic responses in different modes and directions for the site above the high resistive anomaly.
Fig.4  Depth resolution analysis of the SLF technique using the three-layer model. (a) SLF magnetic responses of models with different objective resistivity; (b) SLF magnetic responses of “high resistive objective layer” models with different burial depths; (c) SLF magnetic responses of “low resistive objective layer” models with different burial depths. The dotted lines in all figures represent the trend lines.
Fig.5  Comparative results using Bostick inversion and improved Bostick inversion with the proposed Frequency-Depth transformation. (a) The objective layer is 1 W·m; (b) the objective layer is 10 W·m; (c) the objective layer is 500 W·m.
Fig.6  (a) 1-D synthetic models with three layers (the first layers have different thicknesses); (b) the SLF responses in the depth domain (depth of the second objective layers’ were set as 200 m, 400 m, and 1000 m). The star represents the acquisition site. Different dotted lines represent the trend lines and the arrows point at the intersection points of trend lines and SLF responses.
Fig.7  Super-Low Frequency remote sensing system: (a) high-resolution remote sensor; (b) the processing unit; (c) the portable power supply.
Fig.8  Working flowchart of the SLF EM prospecting technique.
Fig.9  (a) Geological settings of the Peking University geothermal area. The red text represents the position of Well jr168; (b) Drilling data of Well jr168.
Stratum nameBottom depth
/m
Temperature /°CAverage warming rate
/(°C·10?2 m?1)
Quaternary System (Q)191
Ordovician System (O)30223?240.18
Cambrian System (?)164231?360.63
Qingbaikou System (Qn)227946?512.45
Jixian System (Jx)3218.6855?662.01
Tab.1  Drilling data of Well jr168
Fig.10  (a) The raw SLF signal with 50 Hz interference indicated by the black dotted circle; (b) the SLF interpreted curve is obtained by the EMD method and wavelet de-noising methods.
Fig.11  SLF interpretation result of the geothermal reservoir in Well jr168. The black dotted line defines the slightly changing trend line. The red line defines the cubic polynomial fitting curve, and the black arrows shows the key turning points. ? is Cambrian System and Qn is Qingbaikou System. Three forms in the Jixian System (Jx) are Jxt, Jxh, and Jxw (geothermal reservoirs).
Fig.12  (a) Drilling data of a well test in the study area; (b) gas content distribution map of No. 3 coal layer in a district of Qinshui Basin, as well as sites of two coalbed methane wells (i.e., red points). The line represented the fault F1.
Fig.13  SLF interpretation results of two producing coalbed methane wells. (a) The SLF interpretation result of Well 01; (b) the SLF interpretation result of Well 02. The dotted lines show slow-varying trend lines, and the red lines show cubic polynomial fitting curves of the SLF results. The dotted boxes represent the interpreted reservoir distributions.
1 Aprea C, Booker J, Smith J (1997). The forward problem of electromagnetic induction: accurate finite-difference approximations for two-dimensional discrete boundaries with arbitrary geometry. Geophys J Int, 129(1): 29–40
https://doi.org/10.1111/j.1365-246X.1997.tb00936.x
2 Atzberger C (2013). Advances in remote sensing of agriculture: context description, existing operational monitoring systems and major information needs. Remote Sens, 5(2): 949–981
https://doi.org/10.3390/rs5020949
3 Avdeev D B (2005). Three-dimensional electromagnetic modelling and inversion from theory to application. Surv Geophys, 26(6): 767–799
https://doi.org/10.1007/s10712-005-1836-x
4 Berdichevsky M N, Dmitriev V I, Zhdanov M S (2010). Possibilities and problems of modern magnetotellurics. Izv Phys Solid Earth, 46(8): 648–654 doi:10.1134/S1069351310080021
5 Börner R U (2010). Numerical modelling in geo-electromagnetics: advances and challenges. Surv Geophys, 31(2): 225–245 doi:10.1007/s10712-009-9087-x
7 Congalton R, Gu J, Yadav K, Thenkabail P, Ozdogan M (2014). Global land cover mapping: a review and uncertainty analysis. Remote Sens, 6(12): 12070–12093 doi:10.3390/rs61212070
8 Cui R B, Qin Q M, Li B S, Wang Q P (2009). Design and development of passive super low frequency electromagnetic data processing software. In: 2009 IEEE International Geoscience And Remote Sensing Symposium, Vols 1-5 IEEE International Symposium on Geoscience and Remote Sensing IGARSS. (345 E 47TH ST, New York, NY 10017 USA: IEEE), 627–630
9 Frid V, Rabinovitch A, Bahat D (2003). Fracture induced electromagnetic radiation. J Phys D Appl Phys, 36(13): 1620–1628
https://doi.org/10.1088/0022-3727/36/13/330
10 Frid V, Vozoff K (2005). Electromagnetic radiation induced by mining rock failure. Int J Coal Geol, 64(1‒2): 57–65
https://doi.org/10.1016/j.coal.2005.03.005
11 Gomez-Treviño E (1996). Approximate depth averages of electrical conductivity from surface magnetotelluric data. Geophys J Int, 127(3): 762–772 doi:10.1111/j.1365-246X.1996.tb04055.x
12 Greiling R O, Obermeyer H (2010). Natural electromagnetic radiation (EMR) and its application in structural geology and neotectonics. J Geol Soc India, 75(1): 278–288
https://doi.org/10.1007/s12594-010-0015-y
13 He X Q, Nie B S, Chen W X, Wang E Y, Dou L M, Wang Y H, Liu M J, Hani M (2012). Research progress on electromagnetic radiation in gas-containing coal and rock fracture and its applications. Saf Sci, 50(4): 728–735
https://doi.org/10.1016/j.ssci.2011.08.044
14 Heise W, Caldwell T G, Bibby H M, Bannister S C (2008). Three-dimensional modelling of magnetotelluric data from the Rotokawa geothermal field, Taupo Volcanic Zone, New Zealand. Geophys J Int, 173(2): 740–750
https://doi.org/10.1111/j.1365-246X.2008.03737.x
15 Huang H P, Won I J (2003). Detecting metal objects in magnetic environments using a broadband electromagnetic method. Geophysics, 68(6): 1877–1887 doi:10.1190/1.1635040
16 Liu H, Sang S, Wang G, Li M, Xu H, Liu S, Li J, Ren B, Zhao Z, Xie Y (2014). Block scale investigation on gas content of coalbed methane reservoirs in southern Qinshui basin with statistical model and visual map. J Petrol Sci Eng, 114: 1–14
https://doi.org/10.1016/j.petrol.2013.08.039
17 Liu M J, He X Q (2001). Electromagnetic response of outburst-prone coal. Int J Coal Geol, 45(2-3): 155–162
https://doi.org/10.1016/S0166-5162(00)00030-6
18 Mackie R L, Madden T R, Wannamaker P E (1993). Three-dimensional magnetotelluric modeling using difference equations—Theory and comparisons to integral equation solutions. Geophysics, 58(2): 215–226
https://doi.org/10.1190/1.1443407
19 Meju M A (2002). Geoelectromagnetic exploration for natural resources: Models, case studies and challenges. Surv Geophys, 23(2‒3): 133–206 doi:10.1023/A:1015052419222
20 Melesse A M, Weng Q, Thenkabail P S, Senay G B (2007). Remote sensing sensors and applications in environmental resources mapping and modelling. Sensors (Basel Switzerland), 7(12): 3209–3241
https://doi.org/10.3390/s7123209
21 Moore T A (2012). Coalbed methane: a review. Int J Coal Geol, 101: 36–81
https://doi.org/10.1016/j.coal.2012.05.011
22 Ouchi K (2013). Recent trend and advance of synthetic aperture radar with selected topics. Remote Sens, 5(2): 716–807
https://doi.org/10.3390/rs5020716
23 Qin  Q M, Li  B S, Cui  R B, Jiang  H B, Wang  Q P, Zhang  Z X (2010). Analysis of factors affecting natural source SLF electromagnetic exploration at geothermal wells. Chinese Journal of Geophysics, 53(3): 685–694doi: 10.3969/j.issn.0001-5733.2010.03.023(in Chinese)
24 Rodríguez J, Esparza F J, Gómez-Treviño E (2010). 2-D Niblett-Bostick magnetotelluric inversion. Geologica Acta, 8(1): 15–30 doi: 10.1344/105.000001513
25 Schmucker U (1987). Substitute conductors for electromagnetic response estimates. Pure Appl Geophys, 125(2‒3): 341–367
https://doi.org/10.1007/BF00874501
26 Shan Z, Qi Q, Nan W, Li C, Yan B, Cheng Y (2014). Analysis and design of passive super low frequency detection system. In: 2014 IEEE Geoscience and Remote Sensing Symposium. (IGARSS). Proceedings (Piscataway, NJ, USA: IEEE), 5056–5059
27 Siripunvaraporn W, Egbert G, Lenbury Y (2002). Numerical accuracy of magnetotelluric modeling: a comparison of finite difference approximations. Earth Planets Space, 54(6): 721–725 doi:10.1186/BF03351724
28 Slonecker T, Fisher G B, Aiello D P, Haack B (2010). Visible and infrared remote imaging of hazardous waste: a review. Remote Sens, 2(11): 2474–2508
https://doi.org/10.3390/rs2112474
29 Spichak V, Manzella A (2009). Electromagnetic sounding of geothermal zones. J Appl Geophys, 68(4): 459–478
https://doi.org/10.1016/j.jappgeo.2008.05.007
30 Su X B, Lin X, Liu S, Zhao M, Song Y (2005). Geology of coalbed methane reservoirs in the Southeast Qinshui Basin of China. Int J Coal Geol, 62(4): 197–210
https://doi.org/10.1016/j.coal.2005.01.002
31 van Genderen J L (2011). Advances in environmental remote sensing: sensors, algorithms, and applications. Int J Digit Earth, 4(5): 446–447
https://doi.org/10.1080/17538947.2011.598701
32 Wang E Y, He X Q, Liu X, Li Z, Wang C, Xiao D (2011). A non-contact mine pressure evaluation method by electromagnetic radiation. J Appl Geophys, 75(2): 338–344
https://doi.org/10.1016/j.jappgeo.2011.06.028
33 Wang E Y, Jia H L, Song D Z, Li N, Qian W H (2014). Use of ultra-low-frequency electromagnetic emission to monitor stress and failure in coal mines. Int J Rock Mech Min Sci, 70: 16–25
https://doi.org/10.1016/j.ijrmms.2014.02.004
34 Wang N, Qin Q M, Chen L, Bai Y B, Zhao S S, Zhang C Y (2014a). Dynamic monitoring of coalbed methane reservoirs using Super-Low Frequency electromagnetic prospecting. Int J Coal Geol, 127: 24–41
https://doi.org/10.1016/j.coal.2014.03.002
35 Wang N, Qin Q M, Chen L, Bai Y B, Zhao S S, Zhang C Y (2014b). Passive Super-Low Frequency Remote Sensing Technique For Monitoring Coal-Bed Methane Reservoirs. In: 2014 IEEE International Geoscience And Remote Sensing Symposium (IGARSS) IEEE International Symposium on Geoscience and Remote Sensing IGARSS. (345 E 47TH ST, NEW YORK, NY 10017 USA: IEEE), 867–870
36 Wang N, Qin Q M, Xie C, Chen L, Bai Y B (2013). Coal-Bed Methane Reservoir Identification Using The Natural Source Super-Low Frequency Remote Sensing. In: 2013 IEEE International Geoscience And Remote Sensing Symposium (IGARSS) IEEE International Symposium on Geoscience and Remote Sensing IGARSS. (345 E 47TH ST, NEW YORK, NY 10017 USA: IEEE), 4022–4025
37 Yavuz M E, Teixeira F L (2009). Ultrawideband microwave sensing and imaging using time-reversal techniques: a review. Remote Sens, 1(3): 466–495
https://doi.org/10.3390/rs1030466
38 Zhdanov M S, Varentsov I M, Weaver J T, Golubev N G, Krylov V A (1997). Methods for modelling electromagnetic fields Results from COMMEMI—the international project on the comparison of modelling methods for electromagnetic induction. J Appl Geophys, 37(3‒4): 133–271 doi:10.1016/S0926-9851(97)00013-X
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed