Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (1) : 24-36    https://doi.org/10.1007/s11707-017-0631-6
RESEARCH ARTICLE
Seasonal variation of the global mixed layer depth: comparison between Argo data and FIO-ESM
Yutong ZHANG1, Haiming XU1(), Fangli QIAO3, Changming DONG2()
1. College of Atmospheric Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
2. College of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
3. First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China
 Download: PDF(5573 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The present study evaluates a simulation of the global ocean mixed layer depth (MLD) using the First Institute of Oceanography-Earth System Model (FIO-ESM). The seasonal variation of the global MLD from the FIO-ESM simulation is compared to Argo observational data. The Argo data show that the global ocean MLD has a strong seasonal variation with a deep MLD in winter and a shallow MLD in summer, while the spring and fall seasons act as transitional periods. Overall, the FIO-ESM simulation accurately captures the seasonal variation in MLD in most areas. It exhibits a better performance during summer and fall than during winter and spring. The simulated MLD in the Southern Hemisphere is much closer to observations than that in the Northern Hemisphere. In general, the simulated MLD over the South Atlantic Ocean matches the observation best among the six areas. Additionally, the model slightly underestimates the MLD in parts of the North Atlantic Ocean, and slightly overestimates the MLD over the other ocean basins.

Keywords mixed layer depth      FIO-ESM model      seasonal variation     
Corresponding Author(s): Haiming XU,Changming DONG   
Just Accepted Date: 16 March 2017   Online First Date: 06 April 2017    Issue Date: 23 January 2018
 Cite this article:   
Yutong ZHANG,Haiming XU,Fangli QIAO, et al. Seasonal variation of the global mixed layer depth: comparison between Argo data and FIO-ESM[J]. Front. Earth Sci., 2018, 12(1): 24-36.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0631-6
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I1/24
Fig.1  Annual-mean MLD from FIO-ESM simulation and Argo data.
Season North Pacific North Atlantic North Indian South Atlantic South Pacific South Indian
Spring 0.81 0.68 0.65 0.85 0.80 0.84
Summer 0.87 0.85 0.85 0.84 0.70 0.71
Fall 0.81 0.83 0.71 0.90 0.74 0.87
Winter 0.80 0.61 0.62 0.89 0.81 0.86
Tab.1  Spatial correlation coefficients between observed and simulated MLD in each season of each ocean basin
Fig.2  Seasonal variation in MLD distribution in FIO-ESM simulation and Argo observation in the North Pacific Ocean (100°E–70°W, 0°–60°N) in four seasons: spring (a?b), summer (c?d), fall (e?f), and winter (g?h).
Fig.3  Same as Fig. 2, except for the North Atlantic Ocean (70°W–24°E, 0°–60°N).
Fig.4  Same as Fig. 2, except for the North Indian Ocean (24°–100°E, 0°–30°N).
Fig.5  Same as Fig. 2, except for the South Atlantic Ocean (70°W–24°E, 0°–60°S).
Fig.6  Same as Fig. 2, except for the South Pacific Ocean (120°E–70°W, 0°–60°S).
Fig.7  Same as Fig. 2, except for the South Indian Ocean (24°–120°E, 0°–60°S).
Fig.8  Scatter diagram comparing model and observations in the six oceans in spring. (a: the North Pacific Ocean; b: the South Pacific Ocean; c: the North Atlantic Ocean; d: the South Atlantic Ocean; e: the North Indian Ocean; f: the South Indian Ocean).
Fig.9  Same as Fig. 8, except in summer.
Fig.10  Same as Fig. 8, except in fall.
Fig.11  Same as Fig. 8, except in winter.
Fig.12  Comparison of MLD deviation and relative errors in each season for the six oceans.
1 Alexander M A,  Timlin M S,  Scott J D (2001). Winter-to-winter recurrence of sea surface temperature, salinity and mixed layer depth anomalies. Prog Oceanogr, 49(1‒4): 41–61
https://doi.org/10.1016/S0079-6611(01)00015-5
2 An Y Z, Zhang  R, Wang H Z (2012). Study on calculation and spatio-temporal variations of global ocean mixed layer depth. Chin J Geophys, 55(7): 2249–2258 (in Chinese)
3 Collins W D, Rasch  P J, Boville  B A (2004). Description of the NCAR Community Atmosphere Model (CAM3.0). National Center for Atmospheric Research, tn-464+str: tn-485+str
4 de Boyer Montégut C,  Gurvan M,  Fischer A S (2004). Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans, 109(C12): C12003
https://doi.org/10.1029/2004JC002378
5 Deser C, Alexander  M A, Timlin  M S (1996). Upper-ocean thermal variations in the North Pacific during 1970‒1991. J Clim, 9(8): 1840–1855
https://doi.org/ 10.1175/1520-0442(1996)009<1840:UOTVIT>2.0.CO;2
6 Ezer (2000). On the seasonal mixed layer simulated by a basin-scale ocean model and the Mellor Yamada turbulence scheme. Journal of Geophysical Research: Atmospheres, 105(C7): 16843–16856
7 Holte J, Talley  L (2009). A new algorithm for finding mixed layer depths with applications to Argo data and subantarctic mode water formation. J Atmos Ocean Technol, 26(9): 1920–1939
https://doi.org/10.1175/2009JTECHO543.1
8 Huang C J, Qiao  F L, Dai  D (2014). Evaluating CMIP5 simulations of mixed layer depth during summer. Journal of Geophysical Research: Oceans, 119(4): 2568–2582
9 Huang C J, Qiao  F L, Shu  Q, Song Z (2012). Evaluating austral summer mixed-layer response to surface wave-induced mixing in the Southern Ocean. Journal of Geophysical Research: Oceans, 117(C11): 24–33
https://doi.org/10.1029/2012JC007892
10 Huang C J, Qiao  F L, Song  Z Y (2008). The effect of the wave-induced mixing on the upper ocean temperature in a climate model. Acta Oceanol Sin, 27(3): 104–111
11 Kantha L H, Clayson  C A (1994). An improved mixed layer model for geophysical applications. Journal of Geophysical Research: Oceans, C12(99): 25235–25266
https://doi.org/10.1029/94JC02257
12 Kara A B, Rochford  P A, Hurlburt  H E (2000). An optimal definition for ocean mixed layer depth. J Geophys Res, D, Atmospheres, 105(C7): 16803–16821
https://doi.org/10.1029/2000JC900072
13 Kara A B, Rochford  P A, Hurlburt  H E (2003). Mixed layer depth variability over the global ocean. Journal of Geophysical Research: Oceans, 108(C3): 3079
https://doi.org/10.1029/2000JC000736
14 Kelly K A, Qiu  B (1995). Heat flux estimates for the Western North Atlantic. Part I: Assimilation of satellite data into a mixed layer model. J Phys Oceanogr, 25(10): 2344–2360
https://doi.org/10.1175/1520-0485(1995)025<2344:HFEFTW>2.0.CO;2
15 Kolodziejczyk N, Reverdin  G, Lazar A (2015). Interannual variability of the mixed layer winter convection and spice injection in the eastern subtropical North Atlantic. J Phys Oceanogr, 45(2): 504–525
https://doi.org/10.1175/JPO-D-14-0042.1
16 Lu J, Qiao  F L, Wei  Z X (2008). Study on distributions of mixed layer depth in the world ocean in summer—Comparison between Argo data and Levitus data. Advanced in Marine Science, 26(2): 145–155 (in Chinese)
17 Martin P J (1985). Simulation of the mixed layer at OWS November and Papa with several models. Journal of Geophysical Research: Oceans, 90(C1): 903–916
https://doi.org/10.1029/JC090iC01p00903
18 Noh Y, Lee  W S (2008). Mixed and mixing layer depths simulated by an OGCM. J Oceanogr, 64(2): 217–225
https://doi.org/10.1007/s10872-008-0017-1
19 Ohno Y, Iwasaka  N, Kobashi F,  Sato Y (2009). Mixed layer depth climatology of the North Pacific based on Argo observations. J Oceanogr, 65(1): 1–16
https://doi.org/10.1007/s10872-009-0001-4
20 Oleson K, Niu  G, Yang Z (2008). Improvements to the Community Land Model and their impact on the hydrological cycle. J Geophys Res, D, Atmospheres, 113(113): 811–827
21 Perry A H, Walker  J M (1977). The Ocean-Atmosphere System. New York: Long-man Inc, 1–160
22 Prasad T G (2004). A comparison of mixed-layer dynamics between the Arabian Sea and Bay of Bengal: one-dimensional model results. J Geophys Res, D, Atmospheres, 109(C3): 325–347
https://doi.org/10.1029/2003JC002000
23 Price J F, Weller  R A, Pinkel  R (1986). Diurnal cycling: observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing. Journal of Geophysical Research: Oceans, 91(C7): 8411–8427
https://doi.org/10.1029/JC091iC07p08411
24 Qiao F L, Huang  C J (2012). Comparison between vertical shear mixing and surface wave-induced mixing in the extratropical ocean. Journal of Geophysical Research: Oceans, 117(C11): C00J16
https://doi.org/10.1029/2012JC007930
25 Qiao F L, Song  Z Y, Bao  Y (2013). Development and evaluation of an Earth System Model with surface gravity waves. Journal of Geophysical Research: Oceans, 118(9): 4514–4524
26 Qiao F L, Yang  Y, Xia C (2008). The role of surface waves in the ocean mixed layer. Marine Journal: English edition, 18(3): 30–37
27 Qiao F, Yuan  Y, Yang Y,  Zheng Q,  Xia C, Ma  J (2004). Wave-induced mixing in the upper ocean: distribution and application to a global ocean circulation model. Geophys Res Lett, 31(11): 293–317 
https://doi.org/10.1029/2004GL019824
28 Shu Q, Qiao  F L, Song  Z Y (2013). The hindcast and forcast of Arctic sea ice from FIO-ESM. Acta Oceanol Sin, 35(5): 37–45
29 Smith R, Jones  P, Briegleb B (2010). The Parallel Ocean Program (POP) reference manual. Los Alamos National Laboratory, LAUR-10-01853
30 Song Z Y, Qiao  F L, Wang  C (2011). The correctness to the spuriously simulated semi-annual cycle of the sea surface temperature in the equatorial eastern Pacific. Sci China Earth Sci, 54(3): 438–444
https://doi.org/10.1007/s11430-011-4176-3
31 Song Z Y, Qiao  F L, Yang  Y Z (2007). An improvement of the too cold tongue in the tropical Pacific with the development of an ocean-wave-atmosphere coupled numerical model. Prog Nat Sci, 17(5): 576–583
https://doi.org/10.1080/10020070708541038
32 Sprintall J, Roemmich  D (1999). Characterizing the structure of the surface layer in the Pacific Ocean. Journal of Geophysical Research: Oceans, 104(C10): 23297–23311
https://doi.org/10.1029/1999JC900179
33 Sprintall J, Tomczak  M (1992). Evidence of the barrier layer in the surface layer of the tropics. J Geophys Res, D, Atmospheres, 97(C5): 7305–7316
https://doi.org/10.1029/92JC00407
34 Thomson R E, Fine  I V (2010). Estimating mixed layer depth from oceanic profile data. J Atmos Ocean Technol, 20(20): 319–329
35 Yang Y Z, Qiao  F L, Zhao  W (2005). MASNUM ocean wave numerical model in spherical coordinates and its application. Acta Oceanol Sin, 27(2): 1–7
[1] Yintao LU, Xinghua ZANG, Hong YAO, Shichao ZHANG, Shaobin SUN, Fang LIU. Assessment of trace metal contamination in groundwater in a highly urbanizing area of Shenfu New District, Northeast China[J]. Front. Earth Sci., 2018, 12(3): 569-582.
[2] Sergey V. TROFIMENKO,Victor G. BYKOV,Nikolay V. SHESTAKOV,Nikolay N. GRIB,Hiroaki TAKAHASHI. A new insight into the nature of seasonal variations in coordinate time series of GPS sites located near active faults[J]. Front. Earth Sci., 2016, 10(3): 560-569.
[3] Hongxia LIU, Shihua QI, Dan YANG, Ying HU, Feng LI, Jia LIU, Xinli XING. Soil concentrations and soil-air exchange of organochlorine pesticides along the Aba profile, east of the Tibetan Plateau, western China[J]. Front Earth Sci, 2013, 7(4): 395-405.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed