Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2018, Vol. 12 Issue (3) : 600-610    https://doi.org/10.1007/s11707-017-0685-5
RESEARCH ARTICLE
The aliphatic hydrocarbon distributions of terrestrial plants around an alpine lake: a pilot study from Lake Ximencuo, Eastern Qinghai-Tibet Plateau
Yang PU(), Jihong JIA, Jicheng CAO
School of Geographical Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China
 Download: PDF(974 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

As part of an investigation of the sources of aliphatic hydrocarbons to the sediments of alpine Lake Ximencuo, leaves of the eight dominant vascular plants were collected and their hydrocarbon contents were analyzed. A series of unsaturated aliphatic hydrocarbons were identified in the plant leaves; in particular, Festuca sp. contain a series of n-alkadienes that have rarely been reported in previous studies. The comparison of n-alkane proxies (ACL27–33, ACLT, Paq, and CPI) and d13Corg among plant leaves, surface soils, and lake sediments suggests that organic proxies have been altered to varying degrees during the transport and burial process of organic materials. It is believed that microbial reworking and source changes have great impacts on organic proxies in the alpine lake system. In addition, the cluster analysis for plant leaves depending on n-alkane compositions and the ACLT proxy generates similar results. Accordingly, we postulate that the average chain length of plant waxes might be a potential indicator of plant classification in regions such as the Qinghai-Tibet Plateau.

Keywords plant leaves      alpine lake      n-alkanes      n-alkadienes      Qinghai-Tibet Plateau (QTP)     
Corresponding Author(s): Yang PU   
Just Accepted Date: 07 December 2017   Online First Date: 05 January 2018    Issue Date: 05 September 2018
 Cite this article:   
Yang PU,Jihong JIA,Jicheng CAO. The aliphatic hydrocarbon distributions of terrestrial plants around an alpine lake: a pilot study from Lake Ximencuo, Eastern Qinghai-Tibet Plateau[J]. Front. Earth Sci., 2018, 12(3): 600-610.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-017-0685-5
https://academic.hep.com.cn/fesci/EN/Y2018/V12/I3/600
Fig.1  Location of the Nianbaoyeze area on the eastern Qinghai-Tibet (a) Plateau and the setting of Lake Ximencuo (b). The extensive areas west and north of the Plateau are dominated by westerlies and the summer monsoons, including the East Asia monsoon and Indian monsoon.
No. Species Family Plant Life-Form Sampling Location
Plant-1 Potentilla fruticosa Rosaceae Deciduous Shrub Hillside
Plant-2 Salix oritrepha Salicaceae Deciduous Shrub Hillside
Plant-3 Hippophae rhamnoides Elaeagnaceae Deciduous Shrub Piedmont
Plant-4 Kobresia sp. Cyperaceae Perennial Herb Near the Lakeshore
Plant-5 Ajuga ovalifolia Lamiaceae Annual Herb Near the Lakeshore
Plant-6 Lancea tibetica Scrophulariaceae Annual Herb Near the Lakeshore
Plant-7 Festuca sp. Gramineae Perennial Herb Piedmont
Plant-8 Rumex acetosa Polygonaceae Perennial Herb Piedmont
Tab.1  Detailed information about the 8 terrestrial plants collected from the Ximencuo region
Fig.2  Distributions of the n-alkanes in the leaves of eight dominant plants around Lake Ximencuo (the gray bars emphasize the dominant carbon numbers).
Fig.3  Chromatograms of the n-alkene and n-alkadiene distributions in leaves of Festuca sp.
Fig.4  Mass spectra of the n-alkadiene series identified in leaves of Festuca sp.
Name Carbon range Carbon maximum Carbon preference Type of double-bond
Salix oritrepha C24–C30 C26 Even Preference Monoalkene
Ajuga Ovalifolia C27–C31 C29 Odd Preference Monoalkene
Festuca sp. C25–C31 C29 Odd Preference Monoalkene
  C25–C29 ? Odd Preference Dialkene
Tab.2  General information of the unsaturated hydrocarbon series identified in eight plant leaves
Fig.5  The comparison of n-alkane indexes (CPI, ACLT, ACL27–33, Paq, and d13Corg) between plant leaves, surface soils, and lake sediments. The dotted lines denote the monotonic trend of organic proxies.
Fig.6  Cluster analysis showing affinities between the eight terrestrial plants in this study, presented in terms of squared Euclidean distances that depended on their leaf wax n-alkane compositions (a) and ACLT (b).
1 Aichner B, Herzschuh U, Wilkes H, Schulz H M, Wang Y, Plessen B, Mischke S, Diekmann B, Zhang C (2012). Ecological development of Lake Donggi Cona, north-eastern Tibetan Plateau, since the late glacial on basis of organic geochemical proxies and non-pollen palynomorphs. Palaeogeogr Palaeoclimatol Palaeoecol, 313–314(1): 140–149
https://doi.org/10.1016/j.palaeo.2011.10.015
2 Andersson R A, Kuhry P, Meyers P, Zebühr Y, Crill P, Mörth M (2011). Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the eastern European Russian Arctic. Org Geochem, 42(9): 1065–1075
https://doi.org/10.1016/j.orggeochem.2011.06.020
3 Bush R T, McInerney F A (2013). Leaf wax n-alkane distributions in and across modern plants: implications for paleoecology and chemotaxonomy. Geochim Cosmochim Acta, 117: 161–179
https://doi.org/10.1016/j.gca.2013.04.016
4 Bush R T, McInerney F A (2015). Influence of temperature and C4 abundance on n-alkane chain length distributions across the central USA. Org Geochem, 79: 65–73
https://doi.org/10.1016/j.orggeochem.2014.12.003
5 Cui J, Huang J, Xie S (2008). Characteristics of seasonal variations of leaf n-alkanes and n-alkenes in modern higher plants in Qingjiang, Hubei Province, China. Chin Sci Bull, 53(17): 2659–2664
6 Ficken K J, Li B, Swain D L, Eglinton G (2000). An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31(7–8): 745–749
https://doi.org/doi.org/10.1016/S0146-6380(00)00081-4
7 Feakins S J, Peters T, Wu M S, Shenkin A, Salinas N, Girardin C A J, Bentley L P, Blonder B, Enquist B J, Martin R E, Asner G P, Malhi Y (2016). Production of leaf wax n-alkanes across a tropical forest elevation transect. Org Geochem, 100: 89–100
https://doi.org/10.1016/j.orggeochem.2016.07.004
8 Finch P, Freeman G (2001). Simulated diagenesis of plant cuticles — Implications for organic fossilisation. J Anal Appl Pyrolysis, 58–59: 229–235
https://doi.org/10.1016/S0165-2370(00)00182-0
9 Hietala T, Laakso S, Rosenqvist H (1995). Epicuticular waxes of Salix species in relation to their overwintering survival and biomass productivity. Phytochemistry, 40(1): 23–27
https://doi.org/10.1016/0031-9422(95)00263-7
10 Kaplan J O, Prentice I C, Buchmann N (2002). The stable carbon isotope composition of the terrestrial biosphere: modeling at scales from the leaf to the globe. Global Biogeochem Cycles, 16(4): 1060
https://doi.org/10.1029/2001GB001403
11 Li R, Luo G, Meyers P A, Gu Y, Wang H, Xie S (2012). Leaf wax n-alkane chemotaxonomy of bamboo from a tropical rain forest in Southwest China. Plant Syst Evol, 298(4): 731–738
https://doi.org/10.1007/s00606-011-0584-2
12 Lichtfouse É, Derenne S, Mariotti A, Largeau C (1994). Possible algal origin of long chain odd n-alkanes in immature sediments as revealed by distributions and carbon isotope ratios. Org Geochem, 22(6): 1023–1027
https://doi.org/10.1016/0146-6380(94)90035-3
13 Liu H, Liu W (2016). n-Alkane distributions and concentrations in algae, submerged plants and terrestrial plants from the Qinghai-Tibetan Plateau. Org Geochem, 99: 10–22
https://doi.org/10.1016/j.orggeochem.2016.06.003
14 Metzger P, Berkaloff C, Casadevall E, Coute A (1985). Alkadiene- and botryococcene- producing races of wild strains of Botryococcus braunii. Phytochemistry, 24(10): 2305–2312
https://doi.org/10.1016/S0031-9422(00)83032-0
15 Metzger P, Templier J, Largeau C, Casadevall E (1986). An n-alkatriene and some n-alkadienes from the A race of the green alga Botryococcus braunii. Phytochemistry, 25(8): 1869–1872
https://doi.org/10.1016/S0031-9422(00)81165-6
16 Meyers P A (2003). Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Org Geochem, 34(2): 261–289
https://doi.org/10.1016/S0146-6380(02)00168-7
17 Meyers P A, Ishiwatari R (1993). Lacustrine organic geochemistry—An overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem, 20(7): 867–900
https://doi.org/10.1016/0146-6380(93)90100-P
18 Nishida I, Murata N (1996). Chilling sensitivity in plants and cyanobacteria: the crucial contribution of membrane lipids. Annu Rev Plant Physiol Plant Mol Biol, 47(1): 541–568
https://doi.org/10.1146/annurev.arplant.47.1.541
19 Peng T, Li J, Song C, Guo B, Liu J, Zhao Z, Zhang J (2016). An integrated biomarker perspective on Neogene–Quaternary climatic evolution in NE Tibetan Plateau: implications for the Asian aridification. Quat Int, 399: 174–182
https://doi.org/10.1016/j.quaint.2015.04.020
20 Poynter J G, Farrimond P, Brassell S C, Eglinton G (1989). Aeolian-derived higher plant lipids in the marine sedimentary record: links with paleoclimate. In: Leinen M, Sarnthein M, eds. Palaeoclimatology and Palaeometeorology: Modern and Past Patterns of Global Atmosphere Transport. NATO ASI Series (Series C: Mathematical and Physical Sciences), Dordrecht: Springer, 282: 435–462
21 Pu Y, Nace T, Meyers P A, Zhang H, Wang Y, Zhang C L, Shao X (2013). Paleoclimate changes of the last 1000 yr on the eastern Qinghai–Tibetan Plateau recorded by elemental, isotopic, and molecular organic matter proxies in sediment from glacial Lake Ximencuo. Palaeogeogr Palaeoclimatol Palaeoecol, 379–380: 39–53
https://doi.org/10.1016/j.palaeo.2013.03.023
22 Pu Y, Wang C, Meyers P A (2017). Origins of biomarker aliphatic hydrocarbons in sediments of alpine Lake Ximencuo, China. Palaeogeogr Palaeoclimatol Palaeoecol, 475: 106–114
https://doi.org/10.1016/j.palaeo.2017.03.011
23 Pu Y, Zhang H, Wang Y, Lei G, Nace T, Zhang S (2011). Climatic and environmental implications from n-alkanes in glacially eroded lake sediments in Tibetan Plateau: an example from Ximen Co. Chin Sci Bull, 56(14): 1503–1510
https://doi.org/10.1007/s11434-011-4454-7
24 Stoianova-Ivanova B, Mladenova K, Malova I (1971). Long chain conjugated alkadienes; a new component of plant waxes. Phytochemistry, 10(10): 2525–2528
https://doi.org/10.1016/S0031-9422(00)89900-8
25 Stökl J, Paulus H, Dafni A, Schulz C, Francke W, Ayasse M (2005). Pollinator attracting odour signals in sexually deceptive orchids of the Ophrys fusca group. Plant Syst Evol, 254(1–2): 105–120
https://doi.org/10.1007/s00606-005-0330-8
26 Tarasov P E, Müller S, Zech M, Andreeva D, Diekmann B, Leipe C (2013). Last glacial vegetation reconstructions in the extreme-continental eastern Asia: potentials of pollen and n-alkane biomarker analyses. Quat Int, 290–291: 253–263
https://doi.org/10.1016/j.quaint.2012.04.007
27 Vogts A, Moossen H, Rommerskirchen F, Rullkötter J (2009). Distribution patterns and stable carbon isotopic composition of alkanes and alkan-1-ols from plant waxes of African rain forest and savanna C3 species. Org Geochem, 40(10): 1037–1054
https://doi.org/10.1016/j.orggeochem.2009.07.011
28 Wang N, Zong Y, Brodie C R, Zheng Z (2014). An examination of the fidelity of n-alkanes as a palaeoclimate proxy from sediments of Palaeolake Tianyang, South China. Quat Int, 333: 100–109
https://doi.org/10.1016/j.quaint.2014.01.044
29 Wang X, Siegert F, Zhou A, Franke J (2013). Glacier and glacial lake changes and their relationship in the context of climate change, Central Tibetan Plateau 1972–2010. Global Planet Change, 111: 246–257
https://doi.org/10.1016/j.gloplacha.2013.09.011
30 Wang Y, Liu X, Herzschuh U (2010). Asynchronous evolution of the Indian and East Asian Summer Monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth Sci Rev, 103(3–4): 135–153
https://doi.org/10.1016/j.earscirev.2010.09.004
31 Weete J D (1976). Algal and fungal waxes. In: Kolattukudy P E, ed. Chemistry and Biochemistry of' hiatural Wases. Amsterdam: Elsevier, 349–418
32 Yao T, Pu J, Lu A, Wang Y, Yu W (2007). Recent glacial retreat and its impact on hydrological processes on the Tibetan Plateau, China, and surrounding regions. Arct Antarct Alp Res, 39(4): 642–650
https://doi.org/10.1657/1523-0430(07-510)[YAO]2.0.CO;2
33 Zhou W, Xie S, Meyers P A, Zheng Y (2005). Reconstruction of late glacial and Holocene climate evolution in southern China from geolipids and pollen in the Dingnan peat sequence. Org Geochem, 36(9): 1272–1284
https://doi.org/10.1016/j.orggeochem.2005.04.005
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed