Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2019, Vol. 13 Issue (2) : 422-429    https://doi.org/10.1007/s11707-018-0738-4
RESEARCH ARTICLE
The 2015/16 El Niño-related glacier changes in the tropical Andes
Bijeesh Kozhikkodan VEETTIL1,2(), Jefferson Cardia SIMÕES3
1. Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2. Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3. Centro Polar e Climático, Universidade Federal do Rio Grande do Sul (UFRGS), CEP, 91501-970 Porto Alegre, Brazil
 Download: PDF(673 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Significant changes in the area and snowline altitude of two glacierized mountains – Nevado Champara (Cordillera Blanca, Peru) and Cerro Tilata (Cordillera Real, Bolivia) – in the tropical Andes, before and after the recent El Niño in 2015/16 period, have been analysed using Sentinel 2A and Landsat data. It is seen that the recent El Niño has been accompanied by higher fluctuation in glacier coverage on Nevado Champara and the loss of glacier coverage on Cerro Tilata was very high during the past 16 years. Rise in snowline altitude of selected glaciers was very high after the 2015/16 El Niño. Increase in the area covered by snow and ice during the La Niña periods were not enough to cover the ice loss occurred during the previous El Niño events and the strongest El Niño in 2015/16 was followed by a significant loss of ice-covered areas in the tropical Andes. Freshwater resources in this region will be affected in the near future if the current trends in glacier decline continue. Adaptation strategies needs to be implemented to reduce the impacts of the continuing loss of glacierized on regional communities in the tropical Andean region.

Keywords ENSO      tropical Andes      glacier loss      snowline altitude      Sentinel 2A     
Corresponding Author(s): Bijeesh Kozhikkodan VEETTIL   
Just Accepted Date: 10 January 2019   Online First Date: 28 February 2019    Issue Date: 16 May 2019
 Cite this article:   
Bijeesh Kozhikkodan VEETTIL,Jefferson Cardia SIMÕES. The 2015/16 El Niño-related glacier changes in the tropical Andes[J]. Front. Earth Sci., 2019, 13(2): 422-429.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-018-0738-4
https://academic.hep.com.cn/fesci/EN/Y2019/V13/I2/422
Fig.1  (a) Glacierized areas of the outer tropics; (b) glacierized peaks considered for this study (glaciers shown within the red polygon were considered to estimate snowline altitudes).
Item Weak Moderate Strong Very strong
El Niño 2004–2005 2002–2003 2015–2016
2006–2007 2009–2010
2014–2015
La Niña 2005–2006 2011–2012 2007–2008
2008–2009 2010–2011
2016–2017
Tab.1  Occurrences of El Niño and La Niña since for the period between May 2001 and October 2017 based on the running 3-month mean SST anomaly for the Niño 3.4 region (5°N–5°S, 120°W–170°W). El Niño (or La Niña) is defined as 5 consecutive overlapping 3-month periods at or above+0.5° (or –0.5°). Classification: weak (±0.5° to±0.9°), moderate (±1.0° to±1.4°), strong (±1.5° to±1.9°) and very strong (≥2.0°)
Fig.2  Changes in snowline altitude since 2002.
Fig.3  Changes in glacier area since 2002.
1 E PAnderson, J Marengo, RVillalba, SHalloy, BYoung, DCordero, FGast, E Jaimes, DRuiz (2011). Consequences of climate change for ecosystems and ecosystem services in the tropical Andes. In: Herzog S K, Martínez R, Jørgensen P M, Tiessen H, eds. Climate Change and Biodiversity in the Tropical Andes. San Jose dos Campos and Paris: Inter-American Institute for Global Change Research and Scientific Committee on Problems of the Environment
2 YArnaud, F Muller, MVuille, PRibstein (2001). El Niño – Southern Oscillation (ENSO) influence on a Sajama volcano glacier (Bolivia) from 1936 to 1998 as seen from Landsat data and aerial photography. J Geophys Res, 106(D16): 17773–17784
https://doi.org/10.1029/2001JD900198
3 MBaraer, B G Mark, J M McKenzie, T Condom, JBury, K IHuh, CPortocarrero, JGómez, SRathay (2012). Glacier recession and water resources in Peru’s Cordillera Blanca. J Glaciol, 58(207): 134–150
https://doi.org/10.3189/2012JoG11J186
4 MBaraer, J McKenzie, B GMark, RGordon, JBury, T Condom, JGomez, SKnox, S K Fortner (2015). Contribution of groundwater to the outflow from ungauged glaciarized catchments: a multi-site study in the tropical Cordillera Blanca, Peru. Hydrol Processes, 29(11): 2561–2581
https://doi.org/10.1002/hyp.10386
5 R SBradley, M Vuille, H FDiaz, WVergara (2006). Threats to water supplies in the topical Andes. Science, 312(5781): 1755–1756
https://doi.org/10.1126/science.1128087
6 J TBury, B G Mark, J M McKenzie, A French, MBaraer, K IHuh, M AZapata Luyo, R JGómez López (2011). Glacier recession and human vulnerability in the Yanamarey watershed of the Cordillera Blanca, Peru. Clim Change, 105(1–2): 179–206 doi:10.1007/s10584-010-9870-1
7 WBuytaert, R Celleri, Bde Bievre, FCisneros, GWyseure, JDeckers, RHofstede (2006). Human impact on the hydrology of the Andean paramos. Earth Sci Rev, 79(1–2): 53–72
https://doi.org/10.1016/j.earscirev.2006.06.002
8 MCarey (2005). Living and dying with glaciers: people’s historical vulnerability to avalanches and outburst floods in Peru. Global Planet Change, 47(2–4): 122–134
https://doi.org/10.1016/j.gloplacha.2004.10.007
9 PChevallier, B Pouyaud, WSuarez, TCondom (2011). Climate change threats to environment in the tropical Andes: glaciers and water resources. Reg Environ Change, 11(S1): 179–187
https://doi.org/10.1007/s10113-010-0177-6
10 SJCook, I Kougkoulos, LAEdwards, JDortch, DHoffmann (2016). Glacier change and glacial lake outburst flood risk in the Bolivian Andes. The Cryosphere, 10: 2399–2413 doi:10.5194/tc-10-2399-2016
11 ODangles, A Rabatel, MKraemer, GZeballos, ASoruco, DJacobsen, FAnthelme (2017). Ecosystem sentinels for climate change? Evidence of wetland cover changes over the last 30 years in the tropical Andes. PLoS One, 12(5): e0175814
https://doi.org/10.1371/journal.pone.0175814
12 P REpstein, H F Diaz, S Elias, GGrabherr, N EGraham, W J MMartens, EMosley-Thompson, JSusskind (1998). Biological and physical signs of climate change: focus on mosquito-borne diseases. Bull Am Meteorol Soc, 79(3): 409–417 doi:10.1175/1520-0477(1998)079<0409:BAPSOC>2.0.CO;2
13 VFavier, P Wagnon, PRibstein (2004). Glaciers in the outer and inner tropics: a different behaviour but a common response to climate forcing. Geophys Res Lett, 31(16): L16403
https://doi.org/10.1029/2004GL020654
14 BFrancou, M Vuille, VFavier, BCáceres (2004). New evidence for an ENSO impact on low latitude glaciers: Antizana 15, Andes of Ecuador, 0°28'S. J Geophys Res, 109(D18 D18106): D18106
https://doi.org/10.1029/2003JD004484
15 BFrancou, M Vuille, PWagnon, JMendoza, J ESicart (2003). Tropical climate change recorded by a glacier in the central Andes during the last decades of the twentieth century: Chacaltaya, Bolivia, 16°S. J Geophys Res, 108(D5): 4154
https://doi.org/10.1029/2002JD002959
16 HFrey, F Paul, TStrozzi (2012). Compilation of a glacier inventory for the western Himalayas from satellite data: methods, challenges, and results. Remote Sens Environ, 124: 832–843
https://doi.org/10.1016/j.rse.2012.06.020
17 R DGarreaud, M Vuille, RCompagnucci, JMarengo (2009). Present-day South American climate. Palaeogeogr Palaeoclimatol Palaeoecol, 281(3–4): 180–195
https://doi.org/10.1016/j.palaeo.2007.10.032
18 MHuss, B Bookhagen, CHuggel, DJacobsen, R SBradley, J JClague, MVuille, WBuytaert, D RCayan, GGreenwood, B KMark, A MMilner, RWeingartner, MWinder (2017). Toward mountains without permanent snow and ice. Earths Futur, 5(5): 418–435
https://doi.org/10.1002/2016EF000514
19 B GMark, J Bury, J MMcKenzie, AFrench, MBaraer (2010). Climate change and tropical Andean glacier recession: evaluating hydrologic changes and livelihood vulnerability in the Cordillera Blanca, Peru. Ann Assoc Am Geogr, 100(4): 794–805
https://doi.org/10.1080/00045608.2010.497369
20 FMaussion, M Gurgiser, MGroßhauser, GKaser, BMarzeion (2015). ENSO influence on surface energy and mass balance at Shallap Glacier, Cordillera Blanca, Peru. Cryosphere, 9(4): 1663–1683 doi:10.5194/tc-9-1663-2015
21 Mountain Research Initiative EDW Working Group (2015). Elevation-dependent warming in mountain regions of the world. Nat Clim Chang, 5(5): 424–430
https://doi.org/10.1038/nclimate2563
22 M HPolk, K R Young, M Baraer, B GMark, J MMcKenzie, JBury, M Carey (2017). Exploring hydrologic connections between tropical mountain wetlands and glacier recession in Peru’s Cordillera Blanca. Appl Geogr, 78: 94–103
https://doi.org/10.1016/j.apgeog.2016.11.004
23 GPoveda, W Rojas, M LQuiñones, DVélez, R IMantilla, DRuiz, J S Zulunga, G L Rua (2001). Coupling between annual and ENSO timescales in the malaria-climate association in Colombia. Environ Health Perspect, 109: 489–493
24 ARabatel, A Bermejo, ELoarte, ASoruco, JGomez, GLeonardini, CVincent, J ESicart (2012). Can snowline be used as an indicator of the equilibrium line and mass balance for glaciers in the outer tropics? J Glaciol, 58(212): 1027–1036
https://doi.org/10.3189/2012JoG12J027
25 ARabatel, B Francou, ASoruco, JGomez, BCáceres, J LCeballos, RBasantes, MVuille, J ESicart, CHuggel, MScheel, YLejeune, YArnaud, MCollet, TCondom, GConsoli, VFavier, VJomelli, RGalarraga, GGinot, LMaisincho, JMendoza, MMenegoz, ERamírez, PRibstein, WSuarez, MVillacis, PWagnon (2013). Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. Cryosphere, 7(1): 81–102
https://doi.org/10.5194/tc-7-81-2013
26 ERamírez, B Francou, PRibstein, MDescloitres, RGuérin, JMendoza, RGallaire, BPouyaud, EJordan (2001). Small glaciers disappearing in the tropical Andes: a case-study in Bolivia: Glaciar Chacaltaya (16°S). J Glaciol, 47(157): 187–194 doi:10.3189/172756501781832214
27 SRangecroft, S Harrison, KAnderson, JMagrath, A PCastel, PPacheco (2013). Climate change and water resources in arid mountains: an example from the Bolivian Andes. Ambio, 42(7): 852–863
https://doi.org/10.1007/s13280-013-0430-6
28 WSilverio, J M Jaquet (2005). Glacial cover mapping (1987–1996) of the Cordillera Blanca (Peru) using satellite imagery. Remote Sens Environ, 95(3): 342–350
https://doi.org/10.1016/j.rse.2004.12.012
29 L DSomers, R P Gordon, J M McKenzie, L K Lautz, O Wigmore, AGlose, RGlas, C Aubry-Wake, BMark, MBaraer, TCondom (2016). Quantifying groundwater–surface water interactions in a proglacial valley, Cordillera Blanca, Peru. Hydrol Processes, 30(17): 2915–2929
https://doi.org/10.1002/hyp.10912
30 ASoruco, C Vincent, ARabatel, BFrancou, EThibert, J ESicart, TCondom (2015). Contribution of glacier runoff to water resources of La Paz city, Bolivia (16oS). Ann Glaciol, 56(70): 147–154
https://doi.org/10.3189/2015AoG70A001
31 WTad Pfeffer, A AArendt, ABliss, TBolch, J GCogley, A SGardner, J OHagen, RHock, G Kaser, CKienholz, E SMiles, GMoholdt, NMölg, FPaul, V Radić, PRastner, B HRaup, JRich, M, the Randolph Consortium Sharp (2014). The Randolph glacier inventory: a globally complete inventory of glaciers. J Glaciol, 60(221): 537–552 doi:10.3189/2014JoG13J176
32 L GThompson, M E Davis, E Mosley-Thompson, EBeaudon, S EPorter, SKutuzov, P NLin, V NMikhalenko, K RMountain (2017). Impacts of recent warming and the 2015/2016 El Niño on tropical Peruvian ice fields. J Geophys Res D Atmospheres,
https://doi.org/10.1002/2017JD026592
33 B KVeettil, U F Bremer, de S F Souza, É L B Maier , J C Simões (2016b). Influence of ENSO and PDO on mountain glaciers in the outer tropics: case studies in Bolivia. Theor Appl Climatol, 125(3–4): 757–768
https://doi.org/10.1007/s00704-015-1545-4
34 B KVeettil, U F Bremer, S F Souza, É L B Maier, J C Simões (2016a). Variations in annual snowline and area of an ice-covered stratovolcano in the Cordillera Ampato, Peru, using remote sensing data (1986–2014). Geocarto Int, 31(5): 544–556
https://doi.org/10.1080/10106049.2015.1059902
35 B KVeettil, de S FSouza, J C Simões, S F Ruiz-Pereira (2017d). Decadal evolution of glaciers and glacial lakes in the Apolobamba-Carabaya region, tropical Andes (Bolivia-Peru). Geogr Ann, Ser A, 99(3): 193–206 doi:10.1080/04353676.2017.1299577
36 B KVeettil, U Kamp (2017). Remote sensing of glaciers in the tropical Andes: a review. Int J Remote Sens, 38(23): 7101–7137
https://doi.org/10.1080/01431161.2017.1371868
37 B KVeettil, É L B Maier , U F Bremer, de S F Souza (2014). Combined influence of PDO and ENSO on northern Andean glaciers: a case study on the Cotopaxi ice-covered volcano, Ecuador. Clim Dyn, 43(12): 3439–3448
https://doi.org/10.1007/s00382-014-2114-8
38 B KVeettil, S Wang, U FBremer, de S FSouza, J CSimões (2017b). Recent trends in annual snowline variations in the northern wet outer tropics: case studies from southern Cordillera Blanca, Peru. Theor Appl Climatol, 129(1–2): 213–227
https://doi.org/10.1007/s00704-016-1775-0
39 B KVeettil, S Wang, de S FSouza, U FBremer, J CSimões (2017a). Glacier monitoring and glacier-climate interactions in the tropical Andes: A review. J S Am Earth Sci, 77: 218–246
https://doi.org/10.1016/j.jsames.2017.04.009
40 B KVeettil, S Wang, J CSimões, S R PPereira, S FSouza (2017c). Regional climate forcing and topographic influence on glacier shrinkage: eastern cordilleras of Peru. Int J Climatol, doi:10.1002/joc.5226
41 WVergara, A M Deeb, A M Valencia, R S Bradley, B Francou, AZarzar, AGrünwaldt, S MHaeussling (2007). Economic impacts of rapid glacier retreat in the Andes. Eos (Wash DC), 88(25): 261–264
https://doi.org/10.1029/2007EO250001
42 MVuille, C M arey, CHuggel, WBuytaert, ARabatel, DJacobson, ASoruco, MVillacis, CYarleque, O ETimm, TCondom, NSalzmann, J ESicart (2018). Rapid decline of snow and ice in the tropical Andes – Impacts, uncertainties and challenges ahead. Earth Sci Rev, 176: 195–213
https://doi.org/10.1016/j.earscirev.2017.09.019
43 MVuille, B Francou, PWagnon, IJuen, G Kaser, B GMark, R SBradley (2008). Climate change and tropical Andean glaciers: past, present and future. Earth Sci Rev, 89(3–4): 79–96
https://doi.org/10.1016/j.earscirev.2008.04.002
44 MZemp, H Frey, IGärtner-Roer, S UNussbaumer, MHoelzle, FPaul, W Haeberli, FDenzinger, A PAhlstrom, BAnderson, SBajracharya, CBaroni, L NBraun, B ECáceres, GCasassa, GCobos, L RDávila, HDelgado Granados, M NDemuth, LEspizua, AFischer, KFujita, BGadek, AGhazanfar, J OHagen, PHolmlund, NKarimi, ZLi, M Pelto, PPitte, V VPopovnin, C APortocarrero, RPrinz, C VSangewar, ISeverskiy, OSigurdsson, ASoruco, RUsubaliev, CVincent (2015). Historically unprecedented global glacier decline in the early 21st century. J Glaciol, 61(228): 745–762
https://doi.org/10.3189/2015JoG15J017
45 GZhang, T Yao, SPiao, TBolch, HXie, D Chen, YGao, C MO’Reilly, C KShum, KYang, S Yi, YLei, WWang, Y He, KShang, XYang, H Zhang (2017). Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys Res Lett, 44(1): 252–260
https://doi.org/10.1002/2016GL072033
[1] Xiaoping LIU, Shuli CHEN, Li ZHUO, Jun LI, Kangning HUANG. Multi-sensor image registration by combining local self-similarity matching and mutual information[J]. Front. Earth Sci., 2018, 12(4): 779-790.
[2] Yuefeng LI, Ziniu XIAO, Wenjing SHI, Qi ZHONG, Qiguang WANG, Huanlian LI. Interannual variations in length of day and atmospheric angular momentum, and their seasonal associations with El Niño/Southern Oscillation-like sea surface temperature patterns[J]. Front. Earth Sci., 2017, 11(4): 751-764.
[3] S.R. FASSNACHT, J.I. LÓPEZ-MORENO, C. MA, A.N. WEBER, A.K.D. PFOHL, S.K. KAMPF, M. KAPPAS. Spatio-temporal snowmelt variability across the headwaters of the Southern Rocky Mountains[J]. Front. Earth Sci., 2017, 11(3): 505-514.
[4] Yufeng GE, J. Alex THOMASSON, Ruixiu SUI, James WOOTEN. Regression-kriging for characterizing soils with remote-sensing data[J]. Front Earth Sci, 2011, 5(3): 239-244.
[5] Yufeng GE, J. Alex THOMASSON, Ruixiu SUI. Remote sensing of soil properties in precision agriculture: A review[J]. Front Earth Sci, 2011, 5(3): 229-238.
[6] Keyan FANG, Xiaohua GOU, Fahu CHEN, Fen ZHANG, Yingjun LI, Jianfeng PENG, . Comparisons of drought variability between central High Asia and monsoonal Asia: Inferred from tree rings[J]. Front. Earth Sci., 2010, 4(3): 277-288.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed