Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2019, Vol. 13 Issue (3) : 656-667    https://doi.org/10.1007/s11707-019-0754-z
RESEARCH ARTICLE
A pan-sharpening method based on the ADMM algorithm
Yingxia CHEN1,2, Tingting WANG1, Faming FANG1, Guixu ZHANG1()
1. Department of Computer Science, East China Normal University, Shanghai 200062, China
2. School of Computer Science, Yangtze University, Jingzhou 434023, China
 Download: PDF(2112 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pan-sharpening is a method of integrating low-resolution multispectral images with corresponding high-resolution panchromatic images to obtain multispectral images with high spectral and spatial resolution. A novel variational model for pan-sharpening is proposed in this paper. The model is mainly based on three hypotheses: 1) the pan-sharpened image can be linearly represented by the corresponding panchromatic image; 2) the low-resolution multispectral image is down-sampled from the high-resolution multispectral image through the down-sampling operator; and 3) the satellite image has the low-rank property. Three energy components corresponding to these assumptions are integrated into a variational framework to obtain a total energy function. We adopt the alternating direction method of multipliers (ADMM) to optimize the total energy function. The experimental results show that the proposed method performs better than other mainstream methods in spectral and spatial information preserving aspect.

Keywords pan-sharpening      multispectral image      panchromatic image      variational framework      energy function      ADMM     
Corresponding Author(s): Guixu ZHANG   
Just Accepted Date: 24 July 2019   Online First Date: 16 September 2019    Issue Date: 15 October 2019
 Cite this article:   
Yingxia CHEN,Tingting WANG,Faming FANG, et al. A pan-sharpening method based on the ADMM algorithm[J]. Front. Earth Sci., 2019, 13(3): 656-667.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-019-0754-z
https://academic.hep.com.cn/fesci/EN/Y2019/V13/I3/656
Fig.1  The histogram of singular values of the 800 satellite images.
Fig.2  PSNR versus the three parameters ( σ, β, and μ).
Method UIQI ERGAS SCC Q4 RMSE RASE QAVE CC PSNR
Wavelet 0.9361 3.3184 0.9195 0.7883 0.0500 13.2271 0.9376 0.9797 26.0147
P+ XS 0.9146 3.8601 0.9188 0.6890 0.0584 15.4288 0.9160 0.8934 24.6774
VWP 0.9451 3.0253 0.9490 0.7834 0.0456 12.0656 0.9463 0.9721 26.8130
AVWP 0.8989 4.1665 0.9131 0.6592 0.0630 16.6468 0.9010 0.8844 24.0174
SIRF 0.9719 2.6590 0.9561 0.8421 0.0400 10.5729 0.9657 0.8961 27.9601
PanNet 0.9114 2.1016 0.8754 0.7397 0.0647 17.0925 0.9121 0.8544 23.7879
Ours 0.9688 2.2133 0.9686 0.8498 0.0332 8.7649 0.9691 0.9955 29.5891
Reference 1 0 1 1 0 0 1 1
Tab.1  Quantitative comparison corresponds to Fig. 3
Fig.3  Comparison of pan-sharpened results (source: QuickBird) on reduced-resolution image. (a) Ground truth. (b) PAN image. (c) LMS image. (d)–(j) Pan-sharpened images obtained by Wavelet, P+ XS, VWP, AVWP, SIRF, PanNet, and the proposed method, respectively. The PAN image has 400 × 400 pixels.
Fig.4  Comparison of pan-sharpened results (source: QuickBird) on reduced-resolution image. (a) Ground truth. (b) PAN image. (c) LMS image. (d)–(j) Pan-sharpened images obtained by Wavelet, P+ XS, VWP, AVWP, SIRF, PanNet, and the proposed method, respectively. The PAN image has 400 × 400 pixels.
Fig.5  Comparison of pan-sharpened results (source: QuickBird) on reduced-resolution image. (a) Ground truth. (b) PAN image. (c) LMS image. (d) - (j) Pan-sharpened images obtained by Wavelet, P+ XS, VWP, AVWP, SIRF, PanNet, and the proposed method, respectively. The PAN image has 400 × 400 pixels.
Method UIQI ERGAS SCC Q4 RMSE RASE QAVE CC PSNR
Wavelet 0.8675 2.2173 0.9323 0.7705 0.0327 8.6919 0.8688 0.9853 29.6993
P+ XS 0.8638 2.4935 0.9173 0.7099 0.0363 9.6459 0.8659 0.9103 28.7948
VWP 0.8769 2.0567 0.9482 0.7658 0.0301 7.9937 0.8793 0.9623 30.4267
AVWP 0.8608 2.5959 0.9127 0.7054 0.0377 9.9983 0.8629 0.9061 28.4831
SIRF 0.8975 3.1881 0.8767 0.7393 0.0471 12.5010 0.8841 0.5545 26.5427
PanNet 0.8254 2.9575 0.8847 0.7572 0.0445 11.8133 0.8290 0.8701 27.0342
Ours 0.9006 1.6749 0.9665 0.8405 0.0249 6.6207 0.9009 0.9954 32.0636
Reference 1 0 1 1 0 0 1 1
Tab.2  Quantitative comparison corresponds to Fig. 4
Method UIQI ERGAS SCC Q4 RMSE RASE QAVE CC PSNR
Wavelet 0.9080 1.9118 0.9311 0.6882 0.0354 7.2914 0.9062 0.9861 29.0304
P+ XS 0.8940 2.0781 0.9302 0.6966 0.0377 7.7795 0.8934 0.9267 28.4676
VWP 0.9068 1.8145 0.9404 0.7050 0.0333 6.8725 0.9060 0.9659 29.5443
AVWP 0.8876 2.1993 0.9220 0.6822 0.0398 8.2038 0.8874 0.9239 28.0063
SIRF 0.9322 2.4184 0.8914 0.6777 0.0460 9.4892 0.9081 0.6496 26.7420
PanNet 0.8606 2.5447 0.8800 0.7004 0.0491 10.1236 0.8623 0.8641 26.1799
Ours 0.9329 1.5262 0.9590 0.7308 0.0286 5.8978 0.9301 0.9954 30.8728
Reference 1 0 1 1 0 0 1 1
Tab.3  Quantitative comparison corresponds to Fig. 5
Method 128 × 128 256 × 256 512 × 512 1024 × 1024
P+ XS 0.7907 2.0996 17.4970 71.6790
VWP 3.2861 7.2393 48.8443 209.2139
AVWP 0.5977 2.0372 20.1318 82.2107
SIRF 6.4465 16.4128 87.3009 358.3514
Ours 0.4278 1.8064 11.1365 52.1653
Tab.4  The computational costs comparison (s)
Fig.6  Comparison of pan-sharpened results (source: QuickBird) on full-resolution image. (a) LMS image. (b) PAN image. (c)–(j) Pan-sharpened images obtained by Wavelet, P+ XS, VWP, AVWP, PanNet, SIRF, and the proposed method, respectively. The PAN image has 512 × 512 pixels.
Fig.7  Comparison of pan-sharpened results (source: QuickBird) on full-resolution image. (a) LMS image. (b) PAN image. (c)–(j) Pan-sharpened images obtained by Wavelet, P+ XS, VWP, AVWP, PanNet, SIRF, and the proposed method, respectively. The PAN image has 512 × 512 pixels.
Fig.8  Zoomed-in red-square area. (a) Pan-sharpened image obtained by SIRF in Fig. 6. (b) Pan-sharpened image obtained by our proposed method in Fig. 6. (c) Pan-sharpened image obtained by SIRF in Fig. 7. (d) Pan-sharpened image obtained by our proposed method in Fig. 7.
1 L Alparone, S Baronti, A Garzelli, F Nencini (2004). A global quality measurement of pan-sharpened multispectral imagery. IEEE Geosci Remote Sens Lett, 1(4): 313–317
https://doi.org/10.1109/LGRS.2004.836784
2 L Alparone, L Wald, J Chanussot, C Thomas, P Gamba, L M Bruce (2007). Comparison of pansharpening algorithms: outcome of the 2006 GRS-S data-fusion contest. IEEE Trans Geosci Remote Sens, 45(10): 3012–3021
https://doi.org/10.1109/TGRS.2007.904923
3 B Aiazzi, L Alparone, S Baronti, A Garzelli (2002). Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Trans Geosci Remote Sens, 40(10): 2300–2312
https://doi.org/10.1109/TGRS.2002.803623
4 H Aly, J Sharma (2014). A regularized model-based optimization framework for pan-sharpening. IEEE Trans Image Process, 23(6): 2596–2608
https://doi.org/10.1109/TIP.2014.2316641
5 C Ballester, V Caselles, L Igual, J Verdera, B Roug (2006). A variational model for P+XS image fusion. Int J Comput Vis, 69(1): 43–58
https://doi.org/10.1007/s11263-006-6852-x
6 S Boyd, N Parikh, E Chu, B Peleato, J Eckstein (2010). Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn, 3(1): 1–122
https://doi.org/10.1561/2200000016
7 K Bredies, D A Lorenz (2008). Soft-thresholding. J Fourier Anal Appl, 14(5–6): 813–837
https://doi.org/10.1007/s00041-008-9041-1
8 J Cai, E Candes, Z Shen (2010). A singular value thresholding algorithm for matrix completion. SIAM J Optim, 20(4): 1956–1982
https://doi.org/10.1137/080738970
9 E Candes, X Li, Y Ma, J Wright (2011). Robust principal component analysis. J Assoc Comput Mach, 58(3): 1–37
https://doi.org/10.1145/1970392.1970395
10 C Chen, Y Li, W Liu, J Huang (2015). SIRF: simultaneous satellite image registration and fusion in a unified framework. IEEE Transactions on Image Processing, A Publication of the IEEE Signal Processing Society, 24(11): 4213
11 C Chen, Y Li, W Liu, J Huang (2014). Image fusion with local spectral consistency and dynamic gradient sparsity. IEEE Conference on Computer Vision & Pattern Recognition, 2760–2765
12 M Choi (2006). A new intensity-hue-saturation fusion approach to image fusion with a tradeoff parameter. IEEE Trans Geosci Remote Sens, 44(6): 1672–1682
https://doi.org/10.1109/TGRS.2006.869923
13 X Ding, Y Jiang, Y Huang, J Paisley (2014). Pan-sharpening with a Bayesian nonparametric dictionary learning model. In: Proceeding of 17th International Conference of Artificial Intelligence and Statistics, 176–184
14 W Dong, G Shi, X Li (2013). Nonlocal image restoration with bilateral variance estimation: a low-rank approach. IEEE Trans Image Process, 22(2): 700–711
https://doi.org/10.1109/TIP.2012.2221729
15 F Fang, F Li, C Shen, G Zhang (2013). A variational approach for pan-sharpening. IEEE Trans Image Process, 22(7): 2822–2834
https://doi.org/10.1109/TIP.2013.2258355
16 T Goldstein, B O’Donoghue, S Setzer, R Baraniuk (2014). Fast alternating direction optimization methods. SIAM J Imaging Sci, 7(3): 225–231
https://doi.org/10.1137/120896219
17 C Laben, B Brower (2000). Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. Websterny Uspenfieldny. USA: Eastman Kodak Company, 275–299
18 X Lu, J Zhang (2014). Panchromatic and multispectral images fusion based on modified GS-SWT. Geoscience & Remote Sensing Symposium (IGARSS), 2530–2533
19 G Masi, D Cozzolino, L Verdoliva, G Scarpa (2016). Pansharpening by convolutional neural networks. Remote Sens, 8(7): 594
https://doi.org/10.3390/rs8070594
20 M Metwalli, A Nasr, O Faragallah, E E Rabaie, A Abbas (2014). Efficient pan-sharpening of satellite images with the contourlet transform. Int J Remote Sens, 35(5): 1979–2002
https://doi.org/10.1080/01431161.2013.873832
21 M E Mezouar, N Taleb, K Kpalma, J Ronsin (2011). An IHS-based fusion for color distortion reduction and vegetation enhancement in IKONOS imagery. IEEE Trans Geosci Remote Sens, 49(5): 1590–1602
https://doi.org/10.1109/TGRS.2010.2087029
22 M Moller, T Wittman, A Bertozzi, M Burger (2013). A variational approach for sharpening high dimensional images. SIAM J Imaging Sci, 5(1): 150–178
https://doi.org/10.1137/100810356
23 M Moller, T Wittman, A Bertozzi (2008). Variational wavelet pan-sharpening. IEEE Trans Geosci Remote Sens, 1–9
24 J Park, K Kim, K Yang (2001). Image fusion using multiresolution analysis. IEEE Int Geosci Remote Se, 2(2): 864–866
25 J Pushparaj, A Hegde (2016). Evaluation of pan-sharpening methods for spatial and spectral quality. Appl Geomatics, 9(1): 1–12
https://doi.org/10.1007/s12518-016-0179-2
26 S Rahmani, M Strait, D Merkurjev, M Moeller, T Wittman (2010). An adaptive HIS pan-sharpening method. IEEE Geosci Remote Sens Lett, 7(4): 746–750
https://doi.org/10.1109/LGRS.2010.2046715
27 V Shah, N Younan, R King (2008). An efficient pan-sharpening method via a combined adaptive PCA approach and contourlets. IEEE Trans Geosci Remote Sens, 46(5): 1323–1335
https://doi.org/10.1109/TGRS.2008.916211
28 V Shah, N Younan, R King (2007). An adaptive PCA-based approach to pan-sharpening. Remote Sens, 6748: 1–9
29 A Toet, M Hogervorst (2003). Performance comparison of different gray level image fusion schemes through a universal image quality index. In: Kadar I (Ed.), Signal Processing, Sensor Fusion, and Target Recognition XII, SPIE-5096, 552–561
30 G Vivone, L Alparone, J Chanussot, M Mura, A Garzelli (2015). A critical comparison among pansharpening algorithms. IEEE Trans Geosci Remote Sens, 53(5): 2265–2586
https://doi.org/10.1109/TGRS.2014.2361734
31 Q Wang, D Yu, Y Shen (2009). An overview of image fusion metrics. IEEE Instrumentation & Measurement Technology Conference, Singapore, 918–923
32 S Wang, Z Zhang (2012). Colorization by Matrix Completion. In: Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence (AAAI'12), AAAI Press, 1169–1175
33 Z Wang, A Bovik (2002). A universal image quality index. IEEE Signal Process Lett, 9(3): 81–84
https://doi.org/10.1109/97.995823
34 Y Wei, Q Yuan, H Shen, L Zhang (2017). Boosting the accuracy of multispectral image pansharpening by learning a deep residual network. IEEE Geosci Remote Sens Lett, 14(10): 1795–1799
35 J Yang, X Fu, Y Hu, Y Huang, X Ding, J Paisley (2017). PanNet: A deep network architecture for pan-sharpening. Proceedings of IEEE International Conference on Computer Vision.,1753–1761
36 D Yocky (1995). Image merging and data fusion by means of the discrete two-dimensional wavelet transform. J Opt Soc Am A Opt Image Sci Vis, 12(9): 1834–1841
https://doi.org/10.1364/JOSAA.12.001834
37 Q Yuan, Y Wei, X Meng, H Shen, L Zhang (2018). A multiscale and multidepth convolutional neural network for remote sensing imagery pan-sharpening. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(3): 978–989
38 B Zhang (2010). Study on image fusion based on different fusion rules of wavelet transform. International Conference on Advanced Computer Theory & Engineering, 3(7): 649–653
39 H Zhang, D Roy (2016). Computationally inexpensive Landsat 8 operational land imager (OLI) pansharpening. Remote Sens, 8(3): 180
https://doi.org/10.3390/rs8030180
40 J Zhou, D Civco, J Silander (1998). A wavelet transform method to merge Landsat TM and SPOT panchromatic data. Int J Remote Sens, 19(4): 743–757
https://doi.org/10.1080/014311698215973
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed