Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2020, Vol. 14 Issue (3) : 512-521    https://doi.org/10.1007/s11707-020-0816-2
RESEARCH ARTICLE
Acoustics in urban parks: Does the structure of narrow urban parks matter in designing a calmer urban landscape?
Shahla TASHAKKOR, Atefeh CHAMANI(), Mozhgan Ahmadi NADOUSHAN, Minoo MOSHTAGHIE
Environmental Sciences Department, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan 81595-158, Iran
 Download: PDF(3273 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Urban parks can function as a proper sink of noise pollution. However, lack of universally-agreed upon methodologies and differing urban conditions have fueled controversy surrounding the effectuation of this urban park function around the world. Hence, to address this controversy in narrow urban parks (with a mean width of ~109 m) in Isfahan City, Central Iran, noise levels (Lq30) were measured along two longitudinal transects placed along the interior northern river-and adjacent to the southern edge of the parks bordered by a heavily-conjected road. We used statistical tests and models to determine the association of noise levels measured along the northern transect with the distance to, and the intensity of noise emitted from, the road, vegetation biomass, and vegetation height within two 50 and 100 m buffer rings drawn around northern sites and the richness of bird species. The average Lq30 values differed significantly between the southern (~73.21 dB) and northern (~66.43 dB) transects and correlated negatively with species richness (r(98) = −0.324, p<0.01). Three variables including mean NDVIwithin the 100 m buffer ring, distance from the road and mean Lq30 values of the nearest three southern sites were included to build the best predictive multiple-linear regression model through the step-wise procedure with r2 of 0.52. These findings suggest that further attempts aiming to alleviate the parks’ interior noise level should be attentive to distance to road, traffic at the nearest road part, and the interior vegetation characteristics.

Keywords noise pollution      multiple-linear regression      NDVI      vegetation height      Isfahan     
Corresponding Author(s): Atefeh CHAMANI   
Online First Date: 11 September 2020    Issue Date: 04 December 2020
 Cite this article:   
Shahla TASHAKKOR,Atefeh CHAMANI,Mozhgan Ahmadi NADOUSHAN, et al. Acoustics in urban parks: Does the structure of narrow urban parks matter in designing a calmer urban landscape?[J]. Front. Earth Sci., 2020, 14(3): 512-521.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-020-0816-2
https://academic.hep.com.cn/fesci/EN/Y2020/V14/I3/512
Fig.1  Geographical location of Isfahan Province and case study parks.
Fig.2  Distribution of noise measurement sites.
Variables Descriptive statistics Correlation with
Ni-Leq30
Normality (2-tailed)
No. Min Max Mean Std. Test Sig.
N-Leq30 50 62.4 69.7 66.43 1.73 0.098 0.19 1
S-Leq30 50 70.19 77.09 73.21 1.60 0.39 1 0.070 0.20 1
3S-Leq30 50 71.59 76.20 73.37 1.18 0.45 1 0.102 0.20 1
Distance 50 65.96 169.09 109.24 22.83 -0.42 1 0.123 0.55 1
H-50 50 0.10 7.09 3.43 0.74 -0.25 1 0.123 0.56 1
H-100 50 0.40 7.29 3.52 0.71 -0.43 1 0.106 0.20 1
NDVI-50 50 0.13 0.42 0.26 0.06 -0.311 0.104 0.19 1
NDVI-100 50 0.14 0.39 0.29 0.51 -0.541 0.103 0.20 1
Tab.1  Descriptive statistics of dependent and independent variables and results of normality test
Species name Southern transect Northern transect Species name Southern transect Northern transect
# of sites the species was seen Total # of individuals # of sites the species was seen Total # of individuals # of sites the species was seen Total # of individuals # of sites the species was seen Total # of individuals
Corvus corone 44 235 44 218 Sylvia communis 0 0 1 1
Corvus frugilegus 19 52 14 31 Sylvia atricapilla 0 0 1 1
Passer domesticus 46 475 50 558 Sylvia nisoria 0 0 1 1
Motacilla alba 13 20 17 20 C. coccothraustes 0 0 1 1
Pica pica 24 73 27 63 Caruelis chloris 0 0 1 1
Spilopelia senegalensis 24 48 17 30 Luscinia megarhynchos 0 0 2 3
Hyppolais languida 0 0 2 2 Pycnonotus leucotis 0 0 2 2
Phlloscopus collybita 10 15 5 8 Phoenicurus phoenicurus 0 0 2 2
A. arundinaceus 1 1 0 0 Turdus philomelos 0 0 1 1
Acridotheres tristis 2 4 3 4 Turdus ruficollis 0 0 1 2
Sturnus rulgaris 18 39 27 58 Streptopelia dacaocto 1 2 1 2
Fringilla coelbs 0 0 3 8 Motacilla flava 0 0 1 1
Dendrocopos syricus 5 6 8 8 Accipiter nisus 1 1 0 0
Parus major 3 4 3 6 Lanius collurio 0 0 1 1
Columba livia 7 17 3 5 Upupa epops 1 1 5 8
Motacilla cinerea 0 0 1 1 Oriolus oriolus 1 1 3 3
columba palumbus 4 5 11 22 Psittacula krameri 0 0 2 4
lanius isabellinus 0 0 1 1 Falco tinnunculus 0 0 1 1
Passer montanus 0 0 1 2 Remiz pendulinus 0 0 1 0
Muscicapa striata 0 0 1 1 Erithacus rubecula 0 0 1 1
Apus apus 23 86 36 167 Troglodytes troglodytes 0 0 1 1
Hippolais pallida 7 13 6 11 Merops apiaster 0 0 1 1
Tab.2  Name of species observed, number of sites in which the species was observed (richness column) and the total number of individuals (observation column)
Fig.3  Distribution of vegetation height (left) and NDVI (right) as well as 50 and 100-m buffer rings placed around northern sites; note that 50-m buffer rings were only shown in the NDVI layouts and 100-m buffer rings were shown in the vegetation height layouts for better representation of objects.
Variable Coeff. Statistics Shapiro-Wilk
Dependent Independent S.E. R2 F Sig. t Sig. VIF Stat. Sig.
N-Leq30 Constant ???67.80 16.5 0.52 16.3 0.00 ??4.73 0.00 0.40 0.09
NDVI-100 −182.7 44.3 −4.10 0.00 1.09
3S-Leq30 ????0.60 0.16 ??3.67 0.01 1.02
Distance ?−0.18 0.08 −2.31 0.02 1.01
Tab.3  Parameters of the best performing stepwise MLR model (For abbreviations see the legend of Table 1)
1 M Arana, R San Martín, M San Martin, E Aramendía (2010). Strategic noise map of a major road carried out with two environmental prediction software packages. Environ Monit Assess, 163(1–4): 503–513
https://doi.org/10.1007/s10661-009-0853-5
2 A Asgarian, B J Amiri, Y Sakieh (2015). Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach. Urban Ecosyst, 18(1): 209–222
https://doi.org/10.1007/s11252-014-0387-7
3 A Asgarian, A Soffianian, S, Pourmanafi M Bagheri (2018) Evaluating the spatial effectiveness of alternative urban growth scenarios in protecting cropland resources: a case of mixed agricultural-urbanized landscape in central Iran. Sustainable Cities and Society, 43: 197–207
4 K Attenborough (2002). Sound propagation close to the ground. Annu Rev Fluid Mech, 34(1): 51–82
https://doi.org/10.1146/annurev.fluid.34.081701.143541
5 L D Bloemsma, A H Wijga, J O Klompmaker, N A Janssen, H A Smit, G H Koppelman, B Brunekreef, E Lebret, G Hoek, U Gehring (2019). The associations of air pollution, traffic noise and green space with overweight throughout childhood: the PIAMA birth cohort study. Environ Res, 169: 348–356
https://doi.org/10.1016/j.envres.2018.11.026
6 L Carrasco, A W O’Neil, R D Morton, C S Rowland (2019). Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine. Remote Sens, 11(3): 288
https://doi.org/10.3390/rs11030288
7 A Chiesura (2004). The role of urban parks for the sustainable city. Landsc Urban Plan, 68(1): 129–138
https://doi.org/10.1016/j.landurbplan.2003.08.003
8 J Chronopoulos, A Tsiotsios, K Mouzakis, G Balotis, M Papafotiou (2002). The impact of design on traffic noise control in an urban park. In: International Conference on Urban Horticulture
9 D L Evans, J H Drew, L M Leemis (2017) The Distribution of the Kolmogorov–Smirnov, Cramer–von Mises, and Anderson–Darling test statistics for exponential populations with estimated parameters. Computational Probability Applications:165–190
10 E Fernandez-Juricic (2001). Avian spatial segregation at edges and interiors of urban parks in Madrid, Spain. Biodivers Conserv, 10(8): 1303–1316
https://doi.org/10.1023/A:1016614625675
11 G M Gandhi, S Parthiban, N Thummalu, A Christy (2015). NDVI: vegetation change detection using remote sensing and GIS—a case study of Vellore District. Procedia Comput Sci, 57: 1199–1210
https://doi.org/10.1016/j.procs.2015.07.415
12 J A González-Oreja , C Bonache-Regidor, A A D L Fuente-Diaz-Ordaz (2010). Far from the noisy world? Modelling the relationships between park size, tree cover and noise levels in urban green spaces of the city of Puebla, Mexico. Interciencia, 35(7): 486–492
13 J A González-Oreja, A A De La Fuente-Díaz-Ordaz, L Hernández-Santín, C Bonache-Regidor, D Buzo-Franco (2012). Can human disturbance promote nestedness? Songbirds and noise in urban parks as a case study. Landsc Urban Plan, 104(1): 9–18
https://doi.org/10.1016/j.landurbplan.2011.09.001
14 N Gorelick, M Hancher, M Dixon, S Ilyushchenko, D Thau, R Moore (2017). Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens Environ, 202: 18–27
https://doi.org/10.1016/j.rse.2017.06.031
15 M Greenberg, M J Lewis (2000). Brownfields redevelopment, preferences and public involvement: a case study of an ethnically mixed neighbourhood. Urban Stud, 37(13): 2501–2514
https://doi.org/10.1080/00420980020080661
16 G Hall (2015). Pearson’s correlation coefficient. Other Words, 1(9)
17 M Hemami, A Zayeri, N Sharifianpour (2009). The effect of urban park and area on birds species of Isfahan. In: Third National Conference on Green Ambient and Urban Landscape. Kish Island, Iran, Organization of Municipalities and Rural Management, Ministry of Interior
18 K V Horoshenkov, A Khan, H Benkreira (2013). Acoustic properties of low growing plants. J Acoust Soc Am, 133(5): 2554–2565
https://doi.org/10.1121/1.4798671
19 Iranian Bureau of Statistics (2015). Statistical yearbook of Isfahan Province
20 Isfahan Ziba (2015). The worrying statistics of Isfahan City
21 N Jafari, A Abdolahnejad, A Ebrahimi, B Bina, S Mortezaie (2015). Geographic information system based noise study in crowded areas of Isfahan city in 2010–2011. International Journal of Environmental Health Engineering, 4(1): 24
22 H S Jang, S C Lee, J Y Jeon, J Kang (2015). Evaluation of road traffic noise abatement by vegetation treatment in a 1: 10 urban scale model. J Acoust Soc Am, 138(6): 3884–3895
https://doi.org/10.1121/1.4937769
23 F Khademi, K Behfarnia (2016) Evaluation of concrete compressive strength using artificial neural network and multiple linear regression models. International Journal of Optimization in Civil Engineering, 6(3): 423–432
24 C C Konijnendijk, M Annerstedt, A B, Nielsen S Maruthaveeran (2013) Benefits of urban parks: a systematic review. A Report for IFPRA
25 K C Lam, S L Ng, W C Hui, P K Chan (2005). Environmental quality of urban parks and open spaces in Hong Kong. Environ Monit Assess, 111(1–3): 55–73
https://doi.org/10.1007/s10661-005-8039-2
26 L R Larson, V Jennings, S A Cloutier (2016). Public parks and wellbeing in urban areas of the United States. PLoS One, 11(4): e0153211
https://doi.org/10.1371/journal.pone.0153211
27 T Lillesand, R W Kiefer, J Chipman (2015). Remote Sensing and Image Interpretation. New York: John Wiley & Sons
28 K Loughran (2018). Urban parks and urban problems: an historical perspective on green space development as a cultural fix. Urban Stud
https://doi.org/10.1177/0042098018763555
29 S Low, D Taplin, S Scheld (2009). Rethinking Urban Parks: Public Space and Cultural Diversity. Austin: University of Texas Press
30 E Margaritis, J Kang (2017). Relationship between green space-related morphology and noise pollution. Ecol Indic, 72: 921–933
https://doi.org/10.1016/j.ecolind.2016.09.032
31 E Margaritis, J Kang, K Filipan, D Botteldooren (2018). The influence of vegetation and surrounding traffic noise parameters on the sound environment of urban parks. Appl Geogr, 94: 199–212
https://doi.org/10.1016/j.apgeog.2018.02.017
32 R Mazaheri (2018). Noise pollution in Isfahan City, central Iran: finding the association between noise levels and surrounding urban landscape characteristics. Dissertation for the Doctoral Degree. Gorgan: Gorgan university of Agriculture and Natural resources
33 T Mexia, J Vieira, A Príncipe, A Anjos, P Silva, N Lopes, C Freitas, M Santos-Reis, O Correia, C Branquinho, P Pinho (2018). Ecosystem services: Urban parks under a magnifying glass. Environ Res, 160: 469–478
https://doi.org/10.1016/j.envres.2017.10.023
34 Millennium Ecosystem Assessment M (2005). Ecosystems and human well-being: synthesis. Ecosystems, 2005: 1–100
35 M Moein, A Asgarian, Y, Sakieh A Soffianian (2018). Scenario-based analysis of land-use competition in central Iran: finding the trade-off between urban growth patterns and agricultural productivity. Sustainable Cities and Society, 39: 557–567
36 D Patón, F Romero, J Cuenca, J C Escudero (2012). Tolerance to noise in 91 bird species from 27 urban gardens of Iberian Peninsula. Landsc Urban Plan, 104(1): 1–8
https://doi.org/10.1016/j.landurbplan.2011.09.002
37 M Polak, J Wiącek, M Kucharczyk, R Orzechowski (2013). The effect of road traffic on a breeding community of woodland birds. Eur J For Res, 132(5–6): 931–941
https://doi.org/10.1007/s10342-013-0732-z
38 M Rashidi, A Chamani, M Moshtaghi (2019). The influence of transport infrastructure development on bird diversity and abundance. Ekologia (Bratisl), 38(2): 178–188
https://doi.org/10.2478/eko-2019-0014
39 G Rey Gozalo, J M Barrigón Morillas, J Trujillo Carmona, D Montes González, P Atanasio Moraga, V Gómez Escobar, R Vílchez-Gómez, J A Méndez Sierra, C Prieto-Gajardo (2016). Study on the relation between urban planning and noise level. Appl Acoust, 111: 143–147
https://doi.org/10.1016/j.apacoust.2016.04.018
40 Y Sakieh, S Jaafari, M Ahmadi, A Danekar (2017). Green and calm: Modeling the relationships between noise pollution propagation and spatial patterns of urban structures and green covers. Urban For Urban Green, 24: 195–211
https://doi.org/10.1016/j.ufug.2017.04.008
41 D Schuyler (1986). The New Urban Landscape: The Redefinition of City Form in Nineteenth Century America. Baltimore: The Johns Hopkins University Press
42 B Szeremeta, P H T Zannin (2009). Analysis and evaluation of soundscapes in public parks through interviews and measurement of noise. Sci Total Environ, 407(24): 6143–6149
https://doi.org/10.1016/j.scitotenv.2009.08.039
43 Y Tian, X Yao, L Chen (2019). Analysis of spatial and seasonal distributions of air pollutants by incorporating urban morphological characteristics. Comput Environ Urban Syst, 75: 35–48
https://doi.org/10.1016/j.compenvurbsys.2019.01.003
44 T van Renterghem, K Attenborough, M Maennel, J Defrance, K Horoshenkov, J Kang, I Bashir, S Taherzadeh, B Altreuther, A Khan, Y Smyrnova, H S Yang (2014). Measured light vehicle noise reduction by hedges. Appl Acoust, 78: 19–27
https://doi.org/10.1016/j.apacoust.2013.10.011
45 T van Renterghem, D Botteldooren, K Verheyen (2012). Road traffic noise shielding by vegetation belts of limited depth. J Sound Vibrat, 331(10): 2404–2425
https://doi.org/10.1016/j.jsv.2012.01.006
46 N Weber, D Haase, U Franck (2014). Assessing modelled outdoor traffic-induced noise and air pollution around urban structures using the concept of landscape metrics. Landsc Urban Plan, 125: 105–116
https://doi.org/10.1016/j.landurbplan.2014.02.018
47 M M F Wong, J C H Fung, P P S Yeung (2019). High-resolution calculation of the urban vegetation fraction in the Pearl River Delta from the Sentinel-2 NDVI for urban climate model parameterization. Geoscience Letters, 6(1): 2
https://doi.org/10.1186/s40562-019-0132-4
48 P H T Zannin, A M C Ferreira, B Szeremetta (2006). Evaluation of noise pollution in urban parks. Environ Monit Assess, 118(1–3): 423–433
https://doi.org/10.1007/s10661-006-1506-6
[1] Yi HE, Haowen YAN, Lei MA, Lifeng ZHANG, Lisha QIU, Shuwen YANG. Spatiotemporal dynamics of the vegetation in Ningxia, China using MODIS imagery[J]. Front. Earth Sci., 2020, 14(1): 221-235.
[2] Zhitao WU, Mingyue WANG, Hong ZHANG, Ziqiang DU. Vegetation and soil wind erosion dynamics of sandstorm control programs in the agro-pastoral transitional zone of northern China[J]. Front. Earth Sci., 2019, 13(2): 430-443.
[3] Yongfeng WANG, Zhaohui XUE, Jun CHEN, Guangzhou CHEN. Spatio-temporal analysis of phenology in Yangtze River Delta based on MODIS NDVI time series from 2001 to 2015[J]. Front. Earth Sci., 2019, 13(1): 92-110.
[4] Ştefan BILAŞCO, Corina GOVOR, Sanda ROŞCA, Iuliu VESCAN, Sorin FILIP, Ioan FODOREAN. GIS model for identifying urban areas vulnerable to noise pollution: case study[J]. Front. Earth Sci., 2017, 11(2): 214-228.
[5] Zhengjia LIU,Mei HUANG. Assessing spatio-temporal variations of precipitation-use efficiency over Tibetan grasslands using MODIS and in-situ observations[J]. Front. Earth Sci., 2016, 10(4): 784-793.
[6] Qing XU,Hongyuan ZHANG,Yongcun CHENG. Multi-sensor monitoring of Ulva prolifera blooms in the Yellow Sea using different methods[J]. Front. Earth Sci., 2016, 10(2): 378-388.
[7] Peng LI,Luguang JIANG,Zhiming FENG,Sage SHELDON,Xiangming XIAO. Mapping rice cropping systems using Landsat-derived Renormalized Index of Normalized Difference Vegetation Index (RNDVI) in the Poyang Lake Region, China[J]. Front. Earth Sci., 2016, 10(2): 303-314.
[8] Youzhi AN,Wei GAO,Zhiqiang GAO,Chaoshun LIU,Runhe SHI. Trend analysis for evaluating the consistency of Terra MODIS and SPOT VGT NDVI time series products in China[J]. Front. Earth Sci., 2015, 9(1): 125-136.
[9] Alfonso BLANCO, John J. QU, William E. ROPER. Spectral signatures of hydrilla from a tank and field setting[J]. Front Earth Sci, 2012, 6(4): 453-460.
[10] Christopher K. WRIGHT, Kirsten M. de BEURS, Geoffrey M. HENEBRY. Combined analysis of land cover change and NDVI trends in the Northern Eurasian grain belt[J]. Front Earth Sci, 2012, 6(2): 177-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed