Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2021, Vol. 15 Issue (4) : 754-769    https://doi.org/10.1007/s11707-020-0868-3
RESEARCH ARTICLE
Characteristics and formation mechanism of siltstone-mudstone rhythmic sedimentary sections in the Lower Silurian Longmaxi Formation in the Changning area, South Sichuan Basin, southwest China
Gaoxiang WANG1,2, Lei CHEN1(), Yang YANG3, Cui JING3, Man CHEN3, Xiucheng TAN1, Xin CHEN1, Di CAO1, Zibo WEI1, Minglong LI1, Dong HUANG4,5,6
1. School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China
2. PetroChina Southwest Oil & Gasfield Company, Chengdu 610051, China
3. Sichuan Changning Natural Gas Development Co. Ltd, Chengdu 610051, China
4. Shale Gas Evaluation and Exploitation Key Laboratory of Sichuan Province, Chengdu 610091, China
5. Technology Innovation Center of Shale Gas Exploration and Development in Complex Structural Areas (Ministry of Natural Resources), Chengdu 610091, China
6. Sichuan Keyuan Testing Center of Engineering Technology, Chengdu 610091, China
 Download: PDF(14111 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Lower Member of the Longmaxi Formation is generally dominated by siliceous shale, but recently we found some siltstone-mudstone rhythm sections developed in the Lower Member of the Longmaxi Formation. The study of formation mechanism of siltstone-mudstone rhythmic sedimentary sections may provide new insights into the shale sedimentary environment. Therefore, we studied the characteristics and formation mechanism of siltstone-mudstone rhythmic sedimentary sections in the Lower Member of the Longmaxi Formation in the Changning area based on core observation, thin section identification, major elements and trace elements analysis. The results show the following: 1) Two siltstone-mudstone rhythmic sedimentary sections are characterized by frequent interbed between black or gray-black shale and light gray siltstone, abundant argillaceous laminas and silty laminas, with obvious lithological boundaries having developed. Horizontal laminas and rhythmic laminas are well-developed in the shale layer, while the wavy laminas are well-developed in the siltstone layer. 2) The major compositional elements are SiO2, Al2O3 and CaO, followed by Fe2O3, MgO, K2O and Na2O. 3) Compared with the world average shale, these siltstone-mudstone rhythmic sedimentary sections are rich in Mo, U and Ba, but less in V, Co, Ni, Cu. Compared with the shale layer, the siltstone layer has lower contents of V, Co and Ni. 4). The geochemical redox indices, Mo-U and CIA values suggest the formation of the siltstone-mudstone rhythmic sedimentary sections are related to influences from bottom currents in an oxic condition with a warm and humid paleoclimate.

Keywords shale      Longmaxi Formation      bottom current deposit      Sichuan Basin     
Corresponding Author(s): Lei CHEN   
Online First Date: 01 June 2021    Issue Date: 20 January 2022
 Cite this article:   
Gaoxiang WANG,Lei CHEN,Yang YANG, et al. Characteristics and formation mechanism of siltstone-mudstone rhythmic sedimentary sections in the Lower Silurian Longmaxi Formation in the Changning area, South Sichuan Basin, southwest China[J]. Front. Earth Sci., 2021, 15(4): 754-769.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-020-0868-3
https://academic.hep.com.cn/fesci/EN/Y2021/V15/I4/754
Fig.1  (a) The thickness contour of the Longmaxi shale in the Sichuan Basin and the location of the drilling wells N1, N2 and N3 (Guo and Zhang, 2014). (b) Lithology column of the Wufeng Formation to the Longmaxi Formation in the N1 well.
Fig.2  Macroscopic characteristics of the siltstone-mudstone rhythmic sedimentary sections in the Lower Member of the Longmaxi Formation from the N1 well. (a): Section-A, 2453.93?2454.25 m; (b): Section-B, 2460.96?2461.54 m.
Fig.3  Macroscopic characteristics of the siltstone-mudstone rhythmic sedimentary sections in the Lower Member of the Longmaxi Formation from the N2 well and N3 well. (a): Horizontal laminas developed in shale layer, 3124.63?3124.93 m, N2 well; (b).:Wave laminas developed in siltstone layer, 3105.04-3105.30 m, N2 well; (c): Shale and siltstone are in direct sharp contact, 3131.17?3131.52 m, N2 well; (d): Silty strips had developed in high frequency, 2063.15?2063.42 m, N3 well.
Fig.4  Sedimentary structures of the siltstone-mudstone rhythmic sedimentary sections in the Lower Member of the Longmaxi Formation from the N1 well. (a) Rhythmic laminas developed in shale layer, 2453.93?2453.99 m. (b) Boulder-clays developed in siltstone layer, 2454.05?2454.12 m. (c) Shale and siltstone in gradual contact. Silty lenticle developed in silty mudstone, and obvious gradation from coarser to finer, 2461.08?2461.14 m. (d) Wave laminas developed in the siltstone layer, 2450.11?2540.13 m. (e) The flamelike structure developed in the top of shale layer, 2454.17?2454.19 m. (f) Wave laminas developed in siltstone layer, with thickness ranging from 0.05 mm to 0.25 mm. A small scouring surface can be observed at the bottom of siltstone. Siltstone in abrupt contact with shale, showing wavy interface, 2461.04?2461.09 m. (g) Oblique interface between siltstone and shale can be found, 2461.13?2461.17 m.
Fig.5  Thin section showing characteristics of siltstone-mudstone rhythmic sedimentary sections in the Lower Member of the Longmaxi Formation from the N1 well. (a) Horizontal rhythmic laminas developed and silty laminas are thick, with thickness reaching up to about 1.5 mm. Silty laminas gradually thickened from the bottom up. Argillaceous laminas are thin, with thickness about 0.5 mm, 2453.96 m. (b) Obvious boundary between shale and siltstone, 2454.05 m. (c) Silty boulder-clays and silty laminas in argillaceous siltstone and the thickness of silty laminas are about 1.5 mm, 2454.08 m. (d) Flamelike structure and argillaceous lenticle were found in the shale, and the size of the lenticle was about 2 × 0.5 mm, 2454.17 m. (e) Argillaceous horizontal laminas developed with a thickness about 0.25 mm, 2460.98 m. (f) Wavy boundary between siltstone and shale, and bioturbated structures can be seen in siltstone, 2461.07 m. (g) Lithologic interface of shale and siltstone is oblique crossing, 2461.16 m. (h) Horizontal rhythmic laminas. Thickness of the argillaceous laminas are uniform with thickness about 0.3 mm, while the silty laminas show a gradually thinning trend from the bottom up with thickness between 1 mm and 2 mm, 2161.48 m.
Fig.6  Sedimentary sequences of siltstone-mudstone rhythmic sedimentary sections in the Lower Member of the Longmaxi Formation from the N1 well.
Sample Depth/m Lithology Na2O MgO Al2O3 SiO2 MnO2 K2O CaO TiO2 P2O5 Fe2O3
A-1 2454.00 shale 1.31 2.82 14.09 57.49 0.05 3.78 6.69 0.67 0.11 4.19
A-2 2454.03 siltstone 1.62 4.13 6.25 53.08 0.19 1.06 13.73 0.27 0.09 4.51
A-3 2454.08 shale 1.46 3.50 9.65 53.91 0.13 2.06 11.34 0.42 0.11 4.67
A-4 2454.12 shale 1.33 3.30 12.84 53.68 0.08 3.05 9.00 0.62 0.11 5.13
A-5 2454.18 shale 1.70 3.42 6.16 57.77 0.17 1.06 11.91 0.30 0.09 4.93
A-6 2454.19 shale 1.46 2.95 12.11 58.41 0.08 3.05 7.99 0.60 0.11 4.84
A-7 2454.21 shale 1.40 2.85 14.22 57.92 0.05 3.72 6.20 0.67 0.11 4.67
Average   1.47 3.28 10.76 56.04 0.11 2.54 9.55 0.50 0.11 4.71
Sample Depth/m Lithology Na2O MgO Al2O3 SiO2 MnO2 K2O CaO TiO2 P2O5 Fe2O3
B-1 2461.02 shale 1.20 4.27 12.54 54.92 0.11 3.29 6.99 0.60 0.11 5.43
B-2 2461.06 siltstone 0.93 7.98 6.52 37.80 0.28 1.54 16.72 0.32 0.09 6.27
B-3 2461.11 shale 0.93 8.33 5.52 36.69 0.30 1.29 17.84 0.27 0.09 6.43
B-4 2461.14 shale 0.74 8.30 7.37 35.94 0.27 1.89 16.88 0.32 0.09 6.30
B-5 2461.17 siltstone 0.89 8.17 4.80 37.61 0.32 1.08 17.88 0.23 0.07 6.41
B-6 2461.21 siltstone 0.86 8.23 5.04 37.74 0.30 1.14 17.88 0.23 0.07 6.06
B-7 2461.24 siltstone 0.90 8.05 5.16 38.64 0.30 1.16 17.50 0.23 0.07 6.04
B-8 2461.35 siltstone 1.02 7.67 5.48 40.44 0.28 1.24 16.74 0.25 0.09 5.86
B-9 2461.40 siltstone 1.21 5.52 7.59 51.81 0.19 1.81 11.62 0.37 0.09 4.94
B-10 2461.44 shale 1.56 3.05 12.64 63.58 0.06 3.23 4.10 0.58 0.11 4.10
Average   1.03 6.96 7.26 43.52 0.24 1.77 14.41 0.34 0.09 5.78
Tab.1  Statistics of major elements in the siltstone-mudstone rhythmic sedimentary sections in the Lower Member of the Longmaxi Formation of N1 well
Fig.7  Vertical variations of Al-standardized trace elements of Section-A in Lower Member of the Longmaxi Formation of N1 well.
Fig.8  Vertical variations of Al-standardized trace elements of Section-B in Lower Member of the Longmaxi Formation.
Sample Depth/m Lithology V Co Ni Cu Rb Sr Mo Ba Th U Cr
A-1 2454.00 shale 88.10 10.40 34.50 25.90 148.00 155.00 5.04 773.00 15.80 3.92 64.50
A-2 2454.03 siltstone 27.90 3.82 15.60 9.38 43.30 304.00 3.14 325.00 8.48 1.87 30.90
A-3 2454.08 shale 55.50 8.57 25.60 16.10 91.30 236.00 3.57 524.00 10.70 2.29 44.10
A-4 2454.12 shale 85.40 12.90 33.10 20.50 126.00 187.00 3.99 716.00 14.00 3.25 60.40
A-5 2454.18 shale 28.40 4.35 11.80 14.60 46.00 262.00 1.64 358.00 8.76 2.18 21.90
A-6 2454.19 shale 77.10 10.70 33.80 29.00 129.00 187.00 4.87 693.00 18.40 4.06 63.00
A-7 2454.21 shale 80.70 11.40 39.00 25.40 157.00 150.00 5.40 861.00 18.00 4.05 345.00
Average   63.30 8.88 27.63 20.13 105.80 211.57 3.95 607.14 13.45 3.09 89.97
Sample Depth/m Lithology V Co Ni Cu Rb Sr Mo Ba Th U Cr
B-1 2461.02 shale 63.90 10.50 34.40 21.70 131.00 179.00 3.87 730.00 15.60 4.22 530.00
B-2 2461.06 siltstone 27.50 5.14 15.50 11.60 69.80 274.00 1.62 551.00 7.89 1.78 311.00
B-3 2461.11 shale 22.10 6.16 18.10 10.20 60.10 294.00 1.18 577.00 6.53 1.45 209.00
B-4 2461.14 shale 30.70 5.22 14.70 10.10 88.50 253.00 1.30 631.00 7.56 1.58 249.00
B-5 2461.17 siltstone 13.50 3.09 9.83 8.00 49.50 283.00 1.04 666.00 6.66 1.33 217.00
B-6 2461.21 siltstone 18.00 3.06 8.52 7.11 52.50 302.00 1.21 517.00 7.81 1.40 161.00
B-7 2461.24 siltstone 17.40 3.02 9.20 6.79 53.20 306.00 1.31 519.00 6.85 1.36 168.00
B-8 2461.35 siltstone 19.00 3.23 11.20 10.00 53.30 302.00 1.50 495.00 7.59 1.56 145.00
B-9 2461.40 siltstone 34.10 5.92 15.50 14.10 74.70 230.00 1.72 502.00 10.90 2.74 220.00
B-10 2461.44 shale 77.20 9.10 32.70 21.10 144.00 140.00 3.31 726.00 16.10 3.89 325.00
Average   32.34 5.44 16.97 12.07 77.66 256.30 1.81 591.40 9.35 2.13 253.50
Tab.2  Statistics of trace elements in the siltstone-mudstone rhythmic sedimentary sections in the Lower Member of the Longmaxi Formation from the N1 well
Fig.9  Redox index and CIA values of the Section-A in the Lower Member of the Longmaxi Formation from the N1 well.
Fig.10  Redox index and CIA values of Section-B in the Lower Member of the Longmaxi Formation from the N1 well.
Fig.11  Cross plot of Mo-EF versus U-EF for the siltstone-mudstone rhythmic sedimentary sections in the Lower Member of the Longmaxi Formation from the N1 well. Particulate shuttle and redox fields from Algeo and Tribovillard (2009).
Fig.12  Sedimentary model of siltstone-mudstone rhythmic sedimentary sections in the Lower Member of the Longmaxi Formation of Changning area.
1 T J Algeo, P J Marenco, M R Saltzman (2016). Co-evolution of ocean, climate, and the biosphere during the “Ordovician Revolution”: a review. Palaeogeogr Palaeoclimatol Palaeoecol, 458: 1–11
https://doi.org/10.1016/j.palaeo.2016.05.015
2 T J Algeo, N Tribovillard (2009). Environmental analysis of paleoceanographic systems based on molybdenum-uranium covariation. Chem Geol, 268(3-4): 211–225
https://doi.org/10.1016/j.chemgeo.2009.09.001
3 A C Aplin, J H S Macquaker (2011). Mudstone diversity: origin and implications for source, seal, and reservoir properties in petroleum systems. AAPG Bull, 95(12): 2031–2059
https://doi.org/10.1306/03281110162
4 L Chen, Y C Lu, S Jiang, J Q Li, T L Guo, C Luo (2015a). Heterogeneity of the Lower Silurian Longmaxi marine shale in the southeast Sichuan Basin of China. Mar Pet Geol, 65: 232–246
https://doi.org/10.1016/j.marpetgeo.2015.04.003
5 L Chen, G X Wang, Y Yang, C Jing, M Chen, X C Tan (2019). Geochemical characteristics of bentonite and its influence on shale reservoir quality in Wufeng-Longmaxi Formation, south Sichuan Basin, China. Energ Fuel, 33(12): 12366–12373
https://doi.org/10.1021/acs.energyfuels.9b03510
6 L Chen, Y C Lu, S Jiang, J Q Li, T L Guo, C Luo, F C Xing (2015b). Sequence stratigraphy and its application in marine shale gas exploration: a case study of the Lower Silurian Longmaxi Formation in the Jiaoshiba shale gas field and its adjacent area in southeast Sichuan Basin, SW China. J Nat Gas Sci Eng, 27: 410–423
https://doi.org/10.1016/j.jngse.2015.09.016
7 L Chen, Y C Lu, J Q Li, X S Guo, S Jiang, C Luo (2020). Comparative study on the Lower Silurian Longmaxi marine shale in the Jiaoshiba shale gas field and the Pengshui area in the southeast Sichuan Basin, China. Geosci J, 24(1): 61–71
https://doi.org/10.1007/s12303-019-0014-y
8 X Chen, J Y Rong, Y Li, A J Boucot (2004). Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition. Palaeogeogr Palaeoclimatol Palaeoecol, 204(3-4): 353–372
https://doi.org/10.1016/S0031-0182(03)00736-3
9 H Couto, J Knight, A Lourenco (2013). Late Ordovician ice-marginal processes and sea-level change from the north Gongwana platform: Evidence from the Valongo Anticline (northern Portugal). Palaeogeogr Palaeoclimatol Palaeoecol, 375: 1–15
https://doi.org/10.1016/j.palaeo.2013.02.006
10 J X Dai, C N Zou, S M Liao, D Z Dong, Y Y Ni, J L Huang, W Wu, D Y Gong, S P Huang, G Y Hu (2014). Geochemistry of the extremely high thermal maturity Longmaxi shale gas, southern Sichuan Basin. Org Geochem, 74: 3–12
https://doi.org/10.1016/j.orggeochem.2014.01.018
11 C Drummond, H Sheets (2001). Taphonomic reworking and stratal organization of tempestite deposition: Ordovician Kope Formation, northern Kentucky, U.S.A. J Sediment Res, 71(4): 621–627
https://doi.org/10.1306/101600710621
12 T L Guo, H R Zhang (2014). Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan basin. Pet Explor Dev, 41(1): 31–40
https://doi.org/10.1016/S1876-3804(14)60003-3
13 Y H Guo, Z F Li, D H Li, T M Zhang, Z C Wang, J F Yu, J T Xi (2004). Lithofacies palaeogeography of the Early Silurian in Sichuan area. J Palaeogeogr, 6(1): 20–29 (in Chinese)
14 J Han, Q S Cai, Y Li, X W Li (2019). Forming environment and development model of high-quality marine shale: a case of the Wufeng-Longmaxi Formations shale in Zigui-Xintan section in the Middle Yangtze region. J Palaeogeogr, 21(04): 661–674 (in Chinese)
15 T H He, S F Lu, W H Li, D Q Sun, W Q Pan, B A Zhang, Z Z Tan, J F Ying (2020). Paleoweathering, hydrothermal activity and organic matter enrichment during the formation of earliest Cambrian black strata in the northwest Tarim Basin, China. J Petrol Sci Eng, 189: 106987
https://doi.org/10.1016/j.petrol.2020.106987
16 B Jones, D A C Manning (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol, 111(1–4): 111–129
https://doi.org/10.1016/0009-2541(94)90085-X
17 S Jiang, X L Tang, S X Long, J McLennan, Z L Jiang, Z Q Jiang, Z Y Xu, L Chen, G Xue, X Shi, Z L He (2017). Reservoir quality, gas accumulation and completion quality assessment of Silurian Longmaxi marine shale gas play in the Sichuan Basin, China. J Nat Gas Sci Eng, 39: 203–215
https://doi.org/10.1016/j.jngse.2016.08.079
18 Y Z Li, X Z Wang, B Wu, G Q Li, D L Wang (2016). Sedimentary facies of marine shale gas formations in Southern China: The Lower Silurian Longmaxi Formation in the Southern Sichuan Basin. J Earth Sci, 27(5): 807–822
https://doi.org/10.1007/s12583-015-0592-1
19 C Liang, Z X Jiang, Y C Cao, M H Wu, L Guo, C M Zhang (2016). Deep-water depositional mechanisms and significance for unconventional hydrocarbon exploration: A case study from the lower Silurian Longmaxi shale in the southeastern Sichuan Basin. AAPG Bull, 100(5): 773–794
https://doi.org/10.1306/02031615002
20 S G Liu, Z B Li, W Sun, B Deng, Z L Luo, G Z Wang, Z Q Yong, Q M Huang (2011). Basic geological features of superimposed basin and hydrocarbon accumulation in Sichuan, China. Chinese J Geology, 46(1): 233–257 (in Chinese)
21 Y Liu, B Wu, Q S Gong, H Y Cao (2019). Geochemical characteristics of the lower Silurian Longmaxi Formation on the Yangtze Platform, South China: implications for depositional environment and accumulation of organic matters. J Asian Earth Sci, 184: 104003
https://doi.org/10.1016/j.jseaes.2019.104003
22 Y B Lu, Y Q Ma, Y X Wang, Y C Lu (2017). The sedimentary response to the major geological events and lithofacies characteristics of Wufeng Formation-Longmaxi Formation in the Upper Yangtze area. Earth Sci, 42(07): 1169–1184 (in Chinese)
23 X H Ma, J Xie (2018). The progress and prospects of shale gas exploration and development in southern Sichuan Basin, NW China. Pet Explor Dev, 45(1): 182–182
https://doi.org/10.1016/S1876-3804(18)30018-1
24 Y Q Ma, M J Fan, Y C Lu, X S Guo, H Y Hu, L Chen, C Wang, X C Liu (2016). Geochemistry and sedimentology of the Lower Silurian Longmaxi mudstone in southwestern China: implications for depositional controls on organic matter accumulation. Mar Pet Geol, 75: 291–309
https://doi.org/10.1016/j.marpetgeo.2016.04.024
25 J H S Macquaker, S J Bentley, K M Bohacs (2010). Wave-enhanced sediment gravity flows and mud dispersal across continental shelves: reappraising sediment transport processes operating in ancient mudstone successions. Geology, 38(10): 947–950
https://doi.org/10.1130/G31093.1
26 H M Nesbitt, G M Young (1982). Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 299(5885): 715–717
https://doi.org/10.1038/299715a0
27 J R Price, M A Velbel (2003). Chemical weathering indices applied to weathering profiles developed on heterogeneous felsic metamorphic parent rocks. Chem Geol, 202(3-4): 397–416
https://doi.org/10.1016/j.chemgeo.2002.11.001
28 Z Qiu, C N Zou (2020). Unconventional petroleum sedimentary: connotation and prospect. Acta Sedimentol Sin, 38(01): 1–29 (in Chinese)
29 J Y Rong, Y Wang, R B Zhan, J K Fan, B Huang, P Tang, Y Li, X L Zhang, R C Wu, G X Wang, X Wei (2019). Silurian integrative stratigraphy and timescale of China. Sci China Earth Sci, 62(1): 89–111 (in Chinese)
https://doi.org/10.1007/s11430-017-9258-0
30 C A Shan, T S Zhang, Y Wei, Z Zhang (2017). Gas shale reservoir characteristics of Ordovician‒Silurian in the north of middle Yangtze area, China. Front Earth Sci, 11(1): 184–201
https://doi.org/10.1007/s11707-016-0565-4
31 G Shanmugam (2011). New Perspectives on Deep-water Sandstone: Origin, Recognition, Initiation and Reservoir Quality. Burlington: Elsevier
32 G Shanmugam (2000). 50 years of the turbidite paradigm: deep-water processes and facies models: a critical perspective. Mar Pet Geol, 17(2): 285–342
33 Y Shu, Y C Lu, L Chen, C Wang, B Q Zhang (2020). Factors influencing shale gas accumulation in the lower Silurian Longmaxi formation between the north and South Jiaoshiba area, Southeast Sichuan Basin, China. Mar Pet Geol, 111: 905–917
https://doi.org/10.1016/j.marpetgeo.2019.06.029
34 L B Smith, J Schieber, R D Wilson (2019). Shallow-water onlap model for the deposition of Devonian black shales in New York, USA. Geology, 47: 279–283
35 W B Su, W D Huff, F R Ettensohn, X M Liu, J E Zhang, Z M Li (2009). K-bentonite, black shale and flysh successions at the Ordivician-Silurian transition, South China: possible sedimentary responses to the accretion of Cathaysia to the Yangtze Block and its implications for the evolution of Gondwana. Gondwana Res, 15(1): 111–130
https://doi.org/10.1016/j.gr.2008.06.004
36 N Tribovillard, T J Algeo, T Lyons, A Riboulleau (2006). Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol, 232(1‒2): 12–32
https://doi.org/10.1016/j.chemgeo.2006.02.012
37 S F Wang, C N Zou, D Z Dong, Y M Wang, J L Huang, Z J Guo (2014a). Biogenic silica of organic-rich shale in Sichuan Basin and its significance for shale gas. Acta Scuentiarum Naturalium Universitatis Pekinensis, 50(03): 476–486 (in Chinese)
38 Y M Wang, D Z Dong, X J Li, J L Huang, S F Wang, W Wu (2015). Stratigraphic sequence and sedimentary characteristics of Lower Silurian Longmaxi Formation in Sichuan Basin and its peripheral areas. Natural Gas Industry B, 2(2‒3): 222–232 (in Chinese)
https://doi.org/10.1016/j.ngib.2015.07.014
39 Y M Wang, X J Li, D Z Dong, C C Zhang, S F Wang, J L Huang, Q Z Guan (2016). Development mechanism of fracture pores in marine shale and its geological significance. Natural Gas Geoscien, 27(9): 1602–1610 (in Chinese)
40 Z F Wang, Y F Zhang, X L Liang, F Cheng, Q H Jin, W Liu, H B Zhang, H P Li (2014b). Characteristics of shale lithofacies formed under different hydrodynamic conditions in the Wufeng-Longmaxi Formation, Sichuan Basin. Acta Petrol Sin, 35(4): 623–632 (in Chinese)
41 R T Wilkin, M A Arthur, W E Dean (1997). History of water column anoxia in the Black Sea indicated by pyrite framboids size distributions. Earth Planet Sci Lett, 148(3‒4): 517–525
https://doi.org/10.1016/S0012-821X(97)00053-8
42 P B Wingenall (1994). Black Shales. Oxford: Clarendon Press
43 C N Yan, Z J Jin, J H Zhao, W Du, Q Y Liu (2018). Influence of sedimentary environment on organic matter enrichment in shale: a case study of the Wufeng and Longmaxi Formations of Sichuan Basin, China. Mar Pet Geol, 92: 880–894
https://doi.org/10.1016/j.marpetgeo.2018.01.024
44 D T Yan, D Z Chen, Q C Wang, J G Wang (2010). Large-scale climate fluctuations in the latest Ordovician on the Yangtze block, south China. Geology, 38(7): 599–602
https://doi.org/10.1130/G30961.1
45 D T Yan, D Z Chen, Q C Wang, J G Wang (2009). Geochemical changes across the Ordovician-Silurian transition on the Yangtze platform, South China. Sci China, 52(1): 38–54
https://doi.org/10.1007/s11430-008-0143-z
46 G M Young, H M Nesbitt (1998). Processes controlling the distribution of Ti and Al in weathering profiles, siliciclastic sediments and sedimentary rocks. J Sediment Res, 68(3): 448–455
https://doi.org/10.2110/jsr.68.448
47 Y D Zhang, R B Zhan, Y Y Zhen, Z H Wang, F W Yuan, X Fang, X Ma, J P Zhang (2019). Ordovician integrative stratigraphy and timescale of China. Sci China Earth Sci, 62(1): 61–88 (in Chinese)
https://doi.org/10.1007/s11430-017-9279-0
48 J H Zhao, Z J Jin, Z K Jin, X Wen, Y K Geng, C N Yan, H K Nie (2017). Depositional environment of shale in Wufeng and Longmaxi Formations, Sichuan Basin. Acta Petrol Sin, 2(3): 209–221
https://doi.org/10.1016/j.ptlrs.2017.04.003
49 J H Zhao, Z J Jin, Z K Jin, X Wen, C N Yan, H K Nie (2016). Lithofacies types and sedimentary environment of shale in Wufeng-Longmaxi Formation, Sichuan Basin. Acta Petrol Sin, 37(5): 572–586
50 C N Zou, D Z Dong, S J Wang, J Z Li, X J Li, Y M Wang, D H Li, K M Cheng (2010). Geological characteristics and resource potential of shale gas in China. Pet Explor Dev, 37(6): 641–653
https://doi.org/10.1016/S1876-3804(11)60001-3
51 C N Zou, D Z Dong, Y M Wang, X J Li, J L Huang, S F Wang, Q Z Guan, C C Zhang, H Y Wang, H L Liu, W H Bai, F Liang, W Lin, Q Zhao, D X Liu, Z Yang, P P Liang, S S Sun, Z Qiu (2015). Shale gas in China: characteristics, challenges and prospects (I). Pet Explor Dev, 42(6): 753–767
https://doi.org/10.1016/S1876-3804(15)30072-0
52 C N Zou, D Z Dong, Y M Wang, X J Li, J L Huang, S F Wang, Q Z Guan, C C Zhang, H Y Wang, H L Liu, W H Bai, F Liang, W Lin, Q Zhao, D X Liu, Z Yang, P P Liang, S S Sun, Z Qiu (2016). Shale gas in China: characteristics, challenges and prospects (II). Pet Explor Dev, 43(2): 182–196
https://doi.org/10.1016/S1876-3804(16)30022-2
[1] Jianwei LV, Songhang ZHANG, Ning YANG, Chunbo FU, Xinlu YAN, Yang LI. Paleoenvironment controls on organic matter accumulation in transitional shales from the eastern Ordos Basin, China[J]. Front. Earth Sci., 2021, 15(4): 737-753.
[2] Haoran XU, Wei JU, Xiaobing NIU, Shengbin FENG, Yuan YOU, Hui YANG, Sijia LIU, Wenbo LUAN. Prediction of natural fracture in shale oil reservoir based on R/S analysis and conventional logs[J]. Front. Earth Sci., 2021, 15(3): 705-718.
[3] Longhui BAI, Bo LIU, Jianguo YANG, Shansi TIAN, Boyang WANG, Saipeng HUANG. Differences in hydrocarbon composition of shale oils in different phase states from the Qingshankou Formation, Songliao Basin, as determined from fluorescence experiments[J]. Front. Earth Sci., 2021, 15(2): 438-456.
[4] Shikui GAO, Quanzhong GUAN, Dazhong DONG, Fang HUANG. Environmental risks of shale gas exploitation and solutions for clean shale gas production in China[J]. Front. Earth Sci., 2021, 15(2): 406-422.
[5] Rongze YU, Wei GUO, Lin DING, Meizhu WANG, Feng CHENG, Xiaowei ZHANG, Shangwen ZHOU, Leifu ZHANG. Quantitative characterization of horizontal well production performance with multiple indicators: a case study on the Weiyuan shale gas field in the Sichuan Basin, China[J]. Front. Earth Sci., 2021, 15(2): 395-405.
[6] Weidong XIE, Meng WANG, Hua WANG, Ruying MA, Hongyue DUAN. Diagenesis of shale and its control on pore structure, a case study from typical marine, transitional and continental shales[J]. Front. Earth Sci., 2021, 15(2): 378-394.
[7] Shuai TANG, Jinchuan ZHANG, Weiyao ZHU. Quantitative evaluation of organic richness from correlation of well logs and geochemical data: a case study of the Lower Permian Taiyuan shales in the southern North China Basin[J]. Front. Earth Sci., 2021, 15(2): 360-377.
[8] Shangbin CHEN, Huijun WANG, Yang WANG, Tianguo JIANG, Yingkun ZHANG, Zhuo GONG. Differences in shale gas accumulation process and its significance in exploration of Lower Silurian Longmaxi Formation in northeast Yunnan[J]. Front. Earth Sci., 2021, 15(2): 343-359.
[9] Xin CHEN, Lei CHEN, Xiucheng TAN, Shu JIANG, Chao WANG. Impact of pyrite on shale gas enrichment—a case study of the Lower Silurian Longmaxi Formation in southeast Sichuan Basin[J]. Front. Earth Sci., 2021, 15(2): 332-342.
[10] Lulu XU, Saipeng HUANG, Zaoxue LIU, Yaru WEN, Xianghui ZHOU, Yanlin ZHANG, Xiongwei LI, Deng WANG, Fan LUO, Cheng CHEN. Geological controls of shale gas accumulation and enrichment mechanism in Lower Cambrian Niutitang Formation of western Hubei, Middle Yangtze, China[J]. Front. Earth Sci., 2021, 15(2): 310-331.
[11] Xin NIE, Yu WAN, Da GAO, Chaomo ZHANG, Zhansong ZHANG. Evaluation of the in-place adsorbed gas content of organic-rich shales using wireline logging data: a new method and its application[J]. Front. Earth Sci., 2021, 15(2): 301-309.
[12] Xiangzeng WANG, Junping ZHOU, Xiao SUN, Shifeng TIAN, Jiren TANG, Feng SHEN, Jinqiao WU. The influences of composition and pore structure on the adsorption behavior of CH4 and CO2 on shale[J]. Front. Earth Sci., 2021, 15(2): 283-300.
[13] Jingwei CUI, Rukai ZHU, Zhiguo MAO, Shixiang LI. Accumulation of unconventional petroleum resources and their coexistence characteristics in Chang7 shale formations of Ordos Basin in central China[J]. Front. Earth Sci., 2019, 13(3): 575-587.
[14] Haihai HOU, Longyi SHAO, Yonghong LI, Zhen LI, Wenlong ZHANG, Huaijun WEN. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China[J]. Front. Earth Sci., 2018, 12(1): 148-159.
[15] Chang’an SHAN,Tingshan ZHANG,Yong WEI,Zhao ZHANG. Shale gas reservoir characteristics of Ordovician-Silurian formations in the central Yangtze area, China[J]. Front. Earth Sci., 2017, 11(1): 184-201.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed