Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (2) : 381-400    https://doi.org/10.1007/s11707-021-0909-6
RESEARCH ARTICLE
Comparing the performances of WRF QPF and PERSIANN-CCS QPEs in karst flood simulation and forecasting by coupling the Karst-Liuxihe model
Ji LI1,2(), Daoxian YUAN1,2, Yuchuan SUN1, Jianhong LI2
1. Chongqing Jinfo Mountain Karst Ecosystem National Observation and Research Station, School of Geographical Sciences, Southwest University, Chongqing 400715, China
2. Key Laboratory of Karst Dynamics (MNR & Guangxi) Institute of Karst Geology, CAGS, Guilin 541004, China
 Download: PDF(25158 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Long-term rainfall data are crucial for flood simulations and forecasting in karst regions. However, in karst areas, there is often a lack of suitable precipitation data available to build distributed hydrological models to forecast karst floods. Quantitative precipitation forecasts (QPFs) and estimates (QPEs) could provide rational methods to acquire the available precipitation data for karst areas. Furthermore, coupling a physically based hydrological model with QPFs and QPEs could greatly enhance the performance and extend the lead time of flood forecasting in karst areas. This study served two main purposes. One purpose was to compare the performance of the Weather Research and Forecasting (WRF) QPFs with that of the Precipitation Estimations through Remotely Sensed Information based on the Artificial Neural Network-Cloud Classification System (PERSIANN-CCS) QPEs in rainfall forecasting in karst river basins. The other purpose was to test the feasibility and effective application of karst flood simulation and forecasting by coupling the WRF and PERSIANN models with the Karst-Liuxihe model. The rainfall forecasting results showed that the precipitation distributions of the 2 weather models were very similar to the observed rainfall results. However, the precipitation amounts forecasted by WRF QPF were larger than those measured by the rain gauges, while the quantities forecasted by the PERSIANN-CCS QPEs were smaller. A postprocessing algorithm was proposed in this paper to correct the rainfall estimates produced by the two weather models. The flood simulations achieved based on the postprocessed WRF QPF and PERSIANN-CCS QPEs coupled with the Karst-Liuxihe model were much improved over previous results. In particular, coupling the postprocessed WRF QPF with the Karst-Liuxihe model could greatly extend the lead time of flood forecasting, and a maximum lead time of 96 h is adequate for flood warnings and emergency responses, which is extremely important in flood simulations and forecasting.

Keywords WRF QPF      PERSIANN-CCS QPEs      the Karst-Liuxihe model      flood simulation and forecasting      karst river basin     
Corresponding Author(s): Ji LI   
About author: Tongcan Cui and Yizhe Hou contributed equally to this work.
Online First Date: 25 November 2021    Issue Date: 26 August 2022
 Cite this article:   
Ji LI,Daoxian YUAN,Yuchuan SUN, et al. Comparing the performances of WRF QPF and PERSIANN-CCS QPEs in karst flood simulation and forecasting by coupling the Karst-Liuxihe model[J]. Front. Earth Sci., 2022, 16(2): 381-400.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0909-6
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I2/381
Fig.1  Sketch image of the Liujiang watershed. (a) Gauge distribution (modified from Yang et al., 2008); (b) the DEM image; (c) land use types; (d) soil types.
Fig.2  The karst landform evolution of the Liujiang Basin (modified from Zheng and Lan, 2019).
Thickness (h)/m Saturated water content (θsat)/(g·cm−3) Saturation permeability coefficient (θs)/(mm·h−1) Karst fissure width (wd)/cm Macro crack volume ratio (V)/% Field capacity (θfc)/mm
2.5–8 0.15–0.3.5 110–400 0.1–10 0.08–0.25 0.26–0.48
Tab.1  Initial hydrogeological parameters

(a) Initial parameter value range of the epikarst zone

Landforms Karst strongly developed Karst moderately developed Karst poorly developed
Closed depression 0.62–0.85 0.45–0.65 0.15–0.18
Not closed depression 0.34–0.67 0.32–0.55 0.18–0.28
Monadnock, platform 0.25–0.35 0.22–0.35 0.20–0.25
Gully, slope 0.01–0.25 0.01–0.24 0.01–0.25
  (b) The rainfall infiltration coefficient for different karst development characteristics
Fig.3  The flow chart of the parameter sensitivity analysis.
Fig.4  The rainfall results of the 3 precipitation products.
Fig.5  Karst flood simulation outputs through parameter optimization based on the improved PSO algorithm.
Floods Model parameter types Nash–Sutcliffe coefficient (C) Correlation coefficient (R) Process relative error (P%) Peak flow relative error (E%) Coefficient of water balance (W) Peak time error (T)/h
1994060700 Initial 0.65 0.58 37 32 0.76 −6
Optimized 0.93 0.87 14 2 0.95 −4
1995052100 Initial 0.58 0.61 35 33 0.57 −5
Optimized 0.85 0.9 20 3 0.81 −3
1996060600 Initial 0.61 0.62 35 35 0.74 −4
Optimized 0.9 0.93 18 5 0.86 −5
1997060400 Initial 0.59 0.6 31 34 0.72 −5
Optimized 0.84 0.95 13 2 0.95 −4
1998051600 Initial 0.62 0.58 25 35 0.76 −5
Optimized 0.83 0.95 10 2 1.05 −2
1999061700 Initial 0.62 0.55 27 38 0.56 −6
Optimized 0.89 0.93 15 3 0.8 −5
2000052100 Initial 0.54 0.68 26 31 0.58 −6
Optimized 0.89 0.89 8 2 0.83 −3
2001051500 Initial 0.6 0.65 26 35 0.65 −5
Optimized 0.91 0.89 12 2 0.82 −4
2002042600 Initial 0.65 0.68 28 29 0.67 −5
Optimized 0.86 0.9 14 4 0.87 −2
2003060600 Initial 0.63 0.65 24 26 0.65 −5
Optimized 0.92 0.85 9 3 0.86 −4
2004070300 Initial 0.58 0.62 25 39 0.67 −6
Optimized 0.88 0.92 13 4 0.85 −3
2005061400 Initial 0.54 0.65 38 45 0.52 −6
Optimized 0.87 0.92 10 3 1.08 −5
2006060400 Initial 0.66 0.71 28 43 0.61 −7
Optimized 0.91 0.89 11 5 0.92 −5
2007070800 Initial 0.63 0.66 32 38 0.71 −5
Optimized 0.89 0.93 14 4 1.12 −3
2008060900 Initial 0.65 0.68 29 32 0.67 −5
Optimized 0.96 0.94 5 3 0.94 −3
2009060908 Initial 0.67 0.61 28 34 0.79 −4
Optimized 0.95 0.92 17 4 0.9 −2
2010071208 Initial 0.6 0.65 26 36 0.83 −6
Optimized 0.88 0.91 15 2 0.89 −4
2011060109 Initial 0.65 0.83 25 21 0.89 −5
Optimized 0.95 0.92 16 3 1.02 −7
2012060220 Initial 0.69 0.54 31 27 0.75 −6
Optimized 0.93 0.91 8 5 0.89 −6
2013060114 Initial 0.7 0.84 28 38 0.79 −5
Optimized 0.95 0.94 7 6 0.92 −4
average value Initial 0.62 0.65 29 34 0.69 −6
Optimized 0.91 0.91 12 3 0.92 −3
Tab.2  Evaluation indices for the karst flood simulation outputs
Fig.6  The flood simulation results of flood based on the coupled model.
Floods Rainfall types Nash–Sutcliffe coefficient (C) Correlation coefficient (R) Process relative error (P)% Peak flow relative error (E)/% Coefficient of water balance (W) Peak time error (T)/h
200806090000 WRF 0.72 0.8 25 18 1.02 −9
PP-WRF 0.78 0.82 20 13 0.95 −7
PERSIANN 0.76 0.83 21 6 0.92 −10
PP-PERSIANN 0.83 0.88 18 5 0.94 −4
200906090800 WR 0.81 0.82 24 20 1.12 −6
PP-WRF 0.83 0.83 20 14 1.06 −4
PERSIANN 0.82 0.81 28 18 0.79 −6
PP-PERSIANN 0.85 0.87 22 12 0.85 −3
201106010900 WRF 0.79 0.81 26 14 1.15 −7
PP-WRF 0.83 0.83 20 10 1.08 −6
PERSIANN 0.85 0.85 21 12 0.92 −8
PP-PERSIANN 0.91 0.87 19 6 0.94 −6
201206022000 WRF 0.78 0.82 18 13 1.28 −10
PP-WRF 0.81 0.83 10 11 1.15 −8
PERSIANN 0.86 0.84 16 15 0.78 −7
PP-PERSIANN 0.92 0.89 9 6 0.85 −4
201306011400 WRF 0.78 0.82 13 21 1.2 −8
PP-WRF 0.82 0.85 9 12 1.12 −6
PERSIANN 0.82 0.89 12 17 0.85 −5
PP-PERSIANN 0.86 0.91 8 9 0.87 −4
average value WRF 0.78 0.81 21 17 1.15 −8
PP-WRF 0.81 0.83 16 12 1.07 −6
PERSIANN 0.82 0.84 20 14 0.85 −7
PP-PERSIANN 0.87 0.88 15 8 0.89 −4
Tab.3  The evaluation indices of karst flood simulations using the original WRF QPF and PERSIANN-CCS QPEs and their postprocessed values
Floods Type Average precipitation/mm Relative bias %
200806090200 Rain gauge 1.37
WRF QPF 1.55 13
PERSIANN-CCS QPEs 1.22 −11
200906090800 Rain gauge 0.74
WRF QPF 0.88 19
PERSIANN-CCS QPEs 0.62 −16
201106010900 Rain gauge 0.42
WRF QPF 0.46 10
PERSIANN-CCS QPEs 0.39 −7
201206022000 Rain gauge 0.78
WRF QPF 0.95 22
PERSIANN-CCS QPEs 0.63 −19
201306011400 Rain gauge 0.53
WRF QPF 0.65 23
PERSIANN-CCS QPEs 0.43 −20
average value Rain gauge 0.77
WRF QPF 0.9 17
PERSIANN-CCS QPEs 0.66 −14
Tab.4  Quantitative rainfall comparison results of the 3 precipitation products
Floods Rainfall types Nash–Sutcliffe coefficient (C) Correlation coefficient (R) Process relative error (P)/% Peak flow relative error (E)/% Coefficient of water balance (W) Peak time error (T)/h
200806090000 Rain gauge 0.96 0.94 5 3 0.94 −3
WRF 0.78 0.82 20 13 0.95 −7
PERSIANN 0.83 0.88 18 5 0.94 −4
200906090800 Rain gauge 0.95 0.92 17 4 0.9 −2
WRF 0.83 0.83 20 14 1.06 −4
PERSIANN 0.85 0.87 22 12 0.85 −3
201106010900 Rain gauge 0.95 0.92 16 3 1.02 −7
WRF 0.83 0.83 20 10 1.08 −6
PERSIANN 0.91 0.87 19 6 0.94 −6
201206022000 Rain gauge 0.93 0.91 8 5 0.89 −6
WRF 0.81 0.83 10 11 1.15 −8
PERSIANN 0.92 0.89 9 6 0.85 −4
201306011400 Rain gauge 0.95 0.94 7 6 0.92 −4
WRF 0.82 0.85 9 12 1.12 −6
PERSIANN 0.86 0.91 8 9 0.87 −4
average value Rain gauge 0.95 0.93 11 4 0.93 −3
WRF 0.81 0.83 16 12 1.07 −6
PERSIANN 0.87 0.88 15 8 0.89 −4
Tab.5  Evaluation indices of karst flood simulations using the three precipitation products
Flood Potential evaporation (Ep) Evaporation coefficient (λ) Wilting percentage (Cwl) Saturated water content (θsat) Saturation permeability coefficient (θs) Macro crack volume ratio (V)
2008060900 0.18 0.26 0.11 0.94 0.92 0.78
Field capacity (θfc) Soil layer thickness (z) Saturated hydraulic conductivity (Ks) Soil coefficient (b) Bottom slope (Sp) Bottom width (Sw)
0.88 0.73 0.82 0.64 0.53 0.6
Slope roughness (n) Channel roughness (n1) Depletion coefficient (ω) Permeability coefficient (K) Specific yield of the aquifer (χ) Thickness of the karst aquifer (h)
0.47 0.45 0.36 0.8 0.75 0.72
Tab.6  Parameter sensitivity analysis of the coupled model
1 M Ahlgrimm, R M Forbes, J J Morcrette, R A Neggers (2016). ARM’s Impact on Numerical Weather Prediction at ECMWF, Meteorol Monogr 57: 28.1–28.13
2 N Bartsotas, E Nikolopoulos, E Anagnostou, G Kallos (2017). Improving satellite quantitative precipitation estimates through the use of high-resolution numerical weather predictions: similarities and contrasts between the Alps and Blue Nile region. In: EGU General Assembly Conference Abstracts, 19th EGU General Assembly, EGU 2017, Vienna, Austria
3 M M Bitew, M Gebremichael (2011). Evaluation of satellite rainfall products through hydrologic simulation in a fully distributed hydrologic model. Water Resour Res, 47(6): 1–11
https://doi.org/10.1029/2010WR009917
4 H Chapuis, R B Jordan, J Jolivet, F Paran, D Graillot (2020). Karst–river interaction, elaboration of an indicator of the karst hydrological conditions applied to the Cèze River (Gard, France). In: Bertrand C, Denimal S, Steinmann M, Renard P, eds. Eurokarst 2018, Besançon, Advances in the Hydrogeology of Karst and Carbonate Resevoirs. Cham: Springer: 77–81
5 Y B Chen (2009). Liuxihe Model. Beijing: China Science and Technology Press
6 Y Chen, H Zhou, H Zhang, G Du, J Zhou (2015). Urban flood risk warning under rapid urbanization. Environ Res, 139(5): 3–10
https://doi.org/10.1016/j.envres.2015.02.028 pmid: 25769509
7 Y Chen, J Li, H Xu (2016). Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization. Hydrol Earth Syst Sci, 20(1): 375–392
https://doi.org/10.5194/hess-20-375-2016
8 Y Chen, J Li, H Wang, J Qin, L Dong (2017). Large watershed flood forecasting with high-resolution distributed hydrological model. Hydrol Earth Syst Sci, 21(2): 735–749
https://doi.org/10.5194/hess-21-735-2017
9 Y Chen (2018). Distributed Hydrological Models. Berlin: Springer
https://doi.org/10.1007/978-3-642-40457-3_23-1
10 J Choi, J W Harvey, M H Conklin (1999). Use of multi-parameter sensitivity analysis to determine relative importance of factors influencing natural attenuation of mining contaminants. In: The Toxic Substances Hydrology Program Meeting, Charleston, South Carolina,USA
11 M D Chou, M J Suarez (1994). An efficient thermal infrared radiation parameterization for use in general circulation models, NASA Tech. Memo 104606, NASA: 1–92
12 G Delrieu, L Bonnifait, P E Kirstetter, B Boudevillain (2014). Dependence of radar quantitative precipitation estimation error on the rain intensity in the Cévennes region, France. Hydrol Sci J, 59(7): 1308–1319
https://doi.org/10.1080/02626667.2013.827337
13 M B Ek, K E Mitchell, Y Lin, E Rogers, P Grunmann, V Koren, G Gayno, J D Tarpley (2003). Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res Atmos, 108(D22): 8851
https://doi.org/10.1029/2002JD003296
14 K Fan, L Duan, Q Zhang, P Shi, J Liu, X Gu, D Kong (2017). Downscaling analysis of TRMM precipitation based on multiple high-resolution satellite data in the Inner Mongolia, China. Sci Geograph Sin, 37(9): 1411–1421
15 Z Fan, Z Hao, Y Chen, J H Wang, F H Huang (2012). The application and research of income flood simulation of the Baipenzhu Reservoir with the Liuxihe Model. Acta Sci Natur Univ Sunyatseni, 51(2): 113–118
16 D Faure, N Gaussiat, P Tabary, B Urban (2015). Real time integration of foreign radar quantitative precipitation estimations (QPEs) in the French national QPE mosaic. In: 37th Conference on Radar Meteorology, AMS, Norman, OK, USA
17 D Ford, P W Williams (1989). Karst Geomorphology and Hydrology. Netherlands: Springer
18 A S Gebregiorgis, F Hossain (2013). Understanding the dependence of satellite rainfall uncertainty on topography and climate for hydrologic model simulation. IEEE Trans Geosci Remote Sens, 51(1): 704–718
https://doi.org/10.1109/TGRS.2012.2196282
19 E Goudenhoofdt, L Delobbe (2009). Evaluation of radar-gauge merging methods for quantitative precipitation estimates. Hydrol Earth Syst Sci, 13(2): 195–203
https://doi.org/10.5194/hess-13-195-2009
20 R W Higgins, V B S Silva, W Shi, J Larson (2007). Relationships between climate variability and fluctuations in daily precipitation over the United States. J Clim, 20(14): 3561
https://doi.org/10.1175/JCLI4196.1
21 S Hong, J Lim (2006). The WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Asia-Pacific J Atmos Sci, 42: 129–151
22 Y Hong, D Gochis, J Cheng, K Hsu, S Sorooshian (2007). Evaluation of PERSIANN-CCS rainfall measurement using the NAME event rain gauge network. J Hydrometeorol, 8(3): 469–482
https://doi.org/10.1175/JHM574.1
23 Y Hong, K L Hsu, S Sorooshian, X Gao (2004). Precipitation estimation from remotely sensed imagery using an artificial neural network cloud classification system. J App Meteor, 43(12): 1834–1853
https://doi.org/10.1175/jam2173.1
24 K L Hsu, H V Gupta,, X G Gao, S Sorooshian (1999). Estimation of physical variables from multichannel remotely sensed imagery using a neural network: application to rainfall estimation. Water Resourc Res, 35(5): 1605–1618
https://doi.org/10.1029/1999wr900032
25 K Hsu, D Braithwaite, B Imam, X Gao, S Sorooshian (2008). Bias adjustment of PERSIANN rainfall for hydrologic applications. In: American Geophysical Union, Spring Meeting Abstracts, San Francisco, CA, USA
26 Q F Hu, D W Yang, Y T Wang, H B Yang, Y Liu (2013). Characteristics and sources of errors in daily TRMM precipitation product over Ganjiang River Basin in China. Adv Water Sci, 24(6): 794–800
27 Z Hui, Y Chen, J H Zhou (2015). Assessing the long-term impact of urbanization on run-off using a remote-sensing-supported hydrological model. Int J Remote Sens, 36(21): 1–17
28 C M Johnson (2014). Influence of karst landscape on weather systems: a WRF model study on responses for different land and soil types. In: 28th Conference on Hydrology, Land-Atmosphere Interactions Part III, Atlanta, GA, USA
29 C M Johnson, X Fan, R Mahmood, C Groves, J S Polk, J Yan (2018). Evaluating weather research and forecasting model sensitivity to land and soil conditions representative of karst landscapes. Boundary-Layer Meteor, 166: 1–28
30 J S Kain (2004). The Kain–Fritsch convective parameterization: an update. J Appl Meteorol Climatol, 43(1): 170–181
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
31 A Kovacs, P Perrochet (2011). Hydrograph analysis for parameter estimation of connected and karst systems. In: Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Engineers Australia, Neuchatel, Switzerland
32 T M Lahmers (2017). Enhancements to the WRF-Hydro hydrologic model structure for semi-arid environments. In: American Geophysical Union, Fall Meeting Abstracts, New Orleans, USA
33 R Leeper, R Mahmood, A I Quintanar (2011). Influence of karst landscape on planetary boundary layer atmosphere: a weather research and forecasting (WRF) model-based investigation. J Hydrometeorol, 12(6): 1512–1529
https://doi.org/10.1175/2011JHM1260.1
34 J Li, Y Chen, H Wang, J Qin, J Li, S Chiao (2017). Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model. Hydrol Earth Syst Sci, 21(2): 1279–1294
https://doi.org/10.5194/hess-21-1279-2017
35 J Li, D Yuan, J Liu, Y Jiang, Y Chen, K L Hsu, S Sorooshian (2019). Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model. Hydrol Earth Syst Sci, 23(3): 1505–1532
https://doi.org/10.5194/hess-23-1505-2019
36 J Li, A Hong, D Yuan, Y Jiang, S Deng, C Cao, J Liu (2020). A new distributed karst-tunnel hydrological model and tunnel hydrological effect simulations. J Hydrol (Amst), 593: 125639
https://doi.org/10.1016/j.jhydrol.2020.125639
37 J Li, A Hong, D Yuan, Y Jiang, Y Zhang, S Deng, C Cao, J Liu, Y Chen (2021). Elaborate simulations and forecasting of the effects of urbanization on karst flood events using the improved Karst-Liuxihe Model. Catena, 197: 104990
https://doi.org/10.1016/j.catena.2020.104990
38 Y Li, G H Lu, Z Y Wu, J Shi (2015). Study of a dynamic downscaling scheme for quantitative precipitation forecasting, In: Remote Sensing and GIS for Hydrology and Water Resources. Proc. IAHS, 368: 108–113
https://doi.org/10.5194/piahs-368-108-2015
39 G Mekonnen, F Hossain (2010). Satellite Rainfall Applications for Surface Hydrology. Netherlands: Springer
40 E J Mlawer, S J Taubman, P D Brown, M J Iacono, S A Clough (1997). Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-K model for the longwave. J Geophys Res Atmos, 102(D14): 16663–16682
https://doi.org/10.1029/97JD00237
41 F Molteni, R Buizza, T N Palmer, T Petroliagis (1996). The ECMWF ensemble prediction system: methodology and validation. Q J R Meteorol Soc, 122(529): 73–119
https://doi.org/10.1002/qj.49712252905
42 H Moradkhani, K Hsu, Y Hong, S Sorooshian (2006). Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting. Geophys Res Lett, 33(12): L12401
https://doi.org/10.1029/2006GL026855
43 P Nguyen , A Thorstensen , S Sorooshian , Q Zhu , H. Tran H Ashouri (2017). Evaluation of CMIP5 model precipitation using PERSIANN-CDR. J Hydrometeor, 18: JHM-D-16–0201.1
44 N A Rafieei, A Norouzi, B Kim, D Seo (2014). Fusion of multiple radar-based quantitative precipitation estimates (QPE) for high-resolution flash flood prediction in large urban areas. In: AGU Fall Meeting Abstracts, AGU Fall Meeting, San Francisco, CA, USA
45 B R Scanlon, R E Mace, M E Barrett, B Smith (2003). Can we simulate regional groundwater flow in a karst system using equivalent porous media models? Case study, Barton Springs Edwards aquifer, USA. J Hydrol (Amst), 276(1–4): 137–158
https://doi.org/10.1016/S0022-1694(03)00064-7
46 E T Shuster, W B White (1971). Seasonal fluctuations in the chemistry of lime-stone springs: a possible means for characterizing carbonate aquifers. J Hydrol (Amst), 14(2): 93–128
https://doi.org/10.1016/0022-1694(71)90001-1
47 W C Skamarock, J B Klemp, J Dudhia, D O Gill, D M Barker, G Duda, X Huang, W Wang, J G Powers (2008). A Description of the Advanced Research WRF Version 3. NCAR Technical Note, NCAR/TN-468, STR. National Center for Atmospheric Research, Boulder, CO, Mesoscale and Microscale Meteorology Div, Denver, Colorado, USA
48 S Sorooshian, K L Hsu, X Gao, H V Gupta, B Imam, D Braithwaite (2000). Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull Am Meteorol Soc, 81(9): 2035–2046
https://doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
49 R D Stenz (2014). Improving Satellite quantitative precipitation estimates by incorporating deep convective cloud optical depth. Dissertations for Master’s Degree. Grand Forks: University of North Dakota
50 H Takenaka, T Y Nakajima, A Higurashi, A Higuchi, T Takamura, R T Pinker, T Nakajima (2011). Estimation of solar radiation using a neural network based on radiative transfer. J Geophys Res, 116(D8): D08215
https://doi.org/10.1029/2009JD013337
51 T Tingsanchali (2012). Urban flood disaster management. Procedia Eng, 32: 25–37
https://doi.org/10.1016/j.proeng.2012.01.1233
52 K Tong, F Su, D Yang, Z Hao, (2014). Evaluation of satellite precipitation retrievals and their potential utilities in hydrologic modelling over the Tibetan Plateau. J Hydrol, 519: 423–437
https://doi.org/10.1016/j.jhydrol.2014.07.044
53 A Wardhana, H Pawitan, B D Dasanto (2017). Application of hourly radar-gauge merging method for quantitative precipitation estimates. In: IOP Conference Series: Earth Environ Sci, 58(1): 012033, IOP Publishing
https://doi.org/10.1088/1755-1315/58/1/012033
54 W B White (2002). Karst hydrology: recent developments and open questions. Eng Geo, 65(2–3): 85–105
55 W B White, E L White (2005). Ground water flux distribution between matrix, fractures, and conduits: constraints on modelling. Speleogen Evol Karst Aquifers, 3(2): 1–6
56 W B White (2007). A brief history of karst hydrogeology: contributions of the NSS. J Caves Karst Stud, 69(1): 13–26
57 P W Williams (1978). Karst research in China. Beijing: Science Press
58 P H Yang, J Y Luo, W Peng, K S Xia, Y S Lin (2008). Application of online technique in tracer test-a case in Qingmuguan subterranean river system, Chongqing, China. Carsologica Sinica, 27(3): 215–220 (in Chinese)
59 G Yáñez-Morroni, J Gironás, M Caneo, R Delgado, R Garreaud (2018). Using the weather research and forecasting (WRF) model for precipitation forecasting in an andean region with complex topography. Atmosphere, 9(8): 304–327
https://doi.org/10.3390/atmos9080304
60 M Zappa, K J Beven, M Bruen, A S Cofiño, K Kok, E Martin, P Nurmi, B Orfila, E Roulin, K Schröter, A Seed, J Szturc, B Vehviläinen, U Germann, A Rossa (2010). Propagation of Uncertainty from observing systems and NWP into hydrological models: COST-731 Working Group 2. Atmos Sci Lett, 11(2): 83–91
https://doi.org/10.1002/asl.248
61 R B Zaripov, Y V Martynova, V N Krupchatnikov, A P Petrov (2016). Atmosphere data assimilation system for the siberian region with the wrf-arw model and three-dimensional variational analysis WRF 3D-VAR. Russ Meteorol Hydrol, 41(11–12): 808–815
https://doi.org/10.3103/S1068373916110091
62 B R Zheng, Z Y Lan (2019). How beautiful is the karst in Southern China? The article was drawn in wechat official account: Institute for Planets
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed