Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (3) : 541-556    https://doi.org/10.1007/s11707-021-0912-y
RESEARCH ARTICLE
Determination of gas adsorption capacity in organic-rich marine shale: a case study of Wufeng-Lower Longmaxi Shale in the southeast Sichuan Basin
Yingchun GUO1,2(), Pengwei WANG3, Xiao CHEN4, Xinxin FANG1
1. Key Laboratory of Paleomagnetism and Tectonic Reconstruction, Ministry of Natural Resources, Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
2. Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
3. Research Institute of Petroleum Exploration & Production, SINOPEC, Beijing 100083, China
4. CNOOC Research Institute, Beijing 100028, China
 Download: PDF(3293 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Determination of gas adsorption capacity under geological conditions is essential in evaluating shale gas resource potential. A quantitative determination of gas adsorption capacity was proposed through 1) investigating controlling geological factors (including both internal ones and external ones) of gas adsorption capacity in organic-rich marine shale with geochemical analysis, XRD diffraction, field-emission scanning electron microscopy, and methane sorption isotherms; 2) defining the relationship between gas adsorption capacity and single controlling factor; 3) establishing a comprehensive determination model with the consideration of all these controlling factors. The primary controlling factors of the sorption capacity for the studied O3w-Lower S1l shale are TOC, illite and quartz, temperature, pressure, Ro, and moisture (water saturation). Specifically, TOC, thermal maturity, illite, and pressure are positively correlated with sorption capacity, whereas, quartz and temperature contribute negatively to the sorption capacity. We present the quantitative model along with application examples from the Wufeng-Lower Longmaxi Shale in the southeast Sichuan Basin, west China, to demonstrate the approach in shale gas evaluation. The result shows that the comprehensive determination model provides a good and unbiased estimate of gas adsorption capacities with a high correlation coefficient (0.96) and bell-shaped residues centered at zero.

Keywords gas adsorption capacity      quantitative determination      marine shale      Wufeng-Longmaxi Shale      southeast Sichuan Basin     
Corresponding Author(s): Yingchun GUO   
Online First Date: 11 August 2021    Issue Date: 29 December 2022
 Cite this article:   
Yingchun GUO,Pengwei WANG,Xiao CHEN, et al. Determination of gas adsorption capacity in organic-rich marine shale: a case study of Wufeng-Lower Longmaxi Shale in the southeast Sichuan Basin[J]. Front. Earth Sci., 2022, 16(3): 541-556.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0912-y
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I3/541
Fig.1  Structure units of the Sichuan Basin and location of the study area.
Fig.2  Generalized Paleozoic stratigraphic column showing related information, e.g., lithology, strata classification, and thickness (Modified from Yang et al., 2016b).
Fig.3  Diagrams showing Present-day TOC of the O3w–Lower S1l shales.
Fig.4  General trends of conversed vitrinite reflectance (Ro, %) in the O3w–Lower S1l shales with increasing depth.
Fig.5  Plots of methane sorption capacities vs. TOC (a) /Ro (b) for the studied samples. Vl is the Langmuir volume.
Fig.6  Ternary diagram showing the variation in quartz and feldspar, clay mineral and carbonate contents (a) and the distribution of illite, illite/smectite mixed-layer, and chlorite (b).
Fig.7  Plots of methane sorption capacities vs. quartz (a), illite/smectite mixed-layer (b), and illite (c) for the studied samples. Vl is the Langmuir volume.
Fig.8  SEM images showing the variation of organic pores in the Wufeng-Longmaxi shales from the JY A well with thermal maturity and TOC. (a) Gray-black S1l shale, 2339.33 m, TOC= 1.59%, Ro = 2.8%, organic pores are randomly distributed and vary significantly in size; (b) gray-black S1l silty mudstone, 2376.1 m, TOC= 1.59%, Ro = 2.2%, pores are ellipse-like or subrounded and well-connected locally; (c) gray-black S1l silty mudstone, 2385.4 m, TOC= 3.59%, Ro = 2.54%; (d) gray-black S1l mudstone, 2397.1 m, TOC= 3.46%, Ro = 3.06%, ellipse-like pores with homogenous pore size; (e) gray-black S1l mudstone, 2406.2 m, TOC= 4.77%, Ro = 3.13%, rounded and subrounded organic pores; (f) gray-black O3w mudstone, TOC= 4.45%, Ro = 2.42%, subrounded or subangular organic pores with small pore size in the twisted kerogen.
Fig.9  Plots of Pp for organic pores vs. TOC (a) and Ro (b) for the studied samples. Pp represents the measured plane porosity.
Fig.10  SEM images showing matrix-hosted pores in the Lower S1l shale. (a) Intragranular dissolved pores in the calcite grains from gray-black S1l shale, bubble-like with various sizes, JY B well, 2593.7 m. (b) Illite-dominated clay mineral, abundant slit- or plate-like pores with maximum diameter up to hundreds of nanometer, JY B well, 2584.49 m.
Fig.11  Methane sorption isotherms at 30°C measured on JY A (a) and JY B (b) samples.
Fig.12  Methane sorption isotherms at different temperatures (30°C, 60°C, 90°C) measured on JY A sample.
Fig.13  Plots of methane sorption capacities vs. temperature for the studied samples. Vl is the Langmuir volume.
Member Depth/m TOC/% Ro/% Quartz content Illite content T/°C P/MPa Estimated Cg/(m3·t–1) Field-tested Cg/(m3·t–1)
S1l 2330.46 1.11 2.2 25.2 32.6 76.92 31.97 1.48 0.63
S1l 2332.63 1 2.21 30.5 36.8 76.98 32.00 1.48
S1l 2333.98 0.75 2.22 29.8 34.2 77.02 32.02 1.47
S1l 2335.08 0.6 2.23 29.7 26.8 77.05 32.27 1.46
S1l 2335.3 0.78 2.24 28.2 29.5 77.05 32.27 1.48
S1l 2337.27 1.21 2.25 29.9 25.2 77.11 32.30 1.50
S1l 2338.2 1.41 2.26 18.8 21.0 77.13 32.31 1.52
S1l 2339.33 1.47 2.27 30.7 29.4 77.16 32.55 1.53
S1l 2340.82 1.59 2.28 34.2 20.0 77.20 32.57 1.52 0.84
S1l 2341.45 2.19 2.29 36.8 9.9 77.22 32.58 1.53
S1l 2342.59 1.99 2.3 26 30.7 77.25 32.60 1.57 0.88
S1l 2343.56 1.54 2.31 27.4 24.2 77.28 32.61 1.54
S1l 2344.58 1.87 2.32 26.3 23.4 77.30 32.86 1.56
S1l 2345.49 2.45 2.33 29.8 21.8 77.33 32.87 1.59
S1l 2346.5 2.68 2.34 32.3 13.8 77.36 32.88 1.59 1.08
S1l 2347.46 2.27 2.35 31.4 29.5 77.38 32.90 1.60
S1l 2348.69 2.19 2.36 26.6 23.8 77.41 32.91 1.60 0.81
S1l 2349.62 2.32 2.37 26.1 29.5 77.44 33.16 1.62
S1l 2351 1.85 2.38 18.4 23.2 77.48 33.18 1.60
S1l 2352.9 2.53 2.39 27.3 25.6 77.53 33.20 1.63
S1l 2354.2 1.29 2.4 23.5 15.3 77.56 33.22 1.57
S1l 2355.1 1.62 2.41 33.9 22.0 77.59 33.47 1.59 0.76
S1l 2356.1 1.46 2.42 34.7 17.9 77.61 33.48 1.58
S1l 2357.1 1.7 2.43 33.4 19.4 77.64 33.49 1.60 0.86
S1l 2358.1 1.55 2.44 33 22.1 77.67 33.51 1.60 0.8
S1l 2359 1.56 2.45 34.2 11.2 77.69 33.52 1.59
S1l 2360 1.52 2.46 34.5 16.1 77.72 33.77 1.60 0.74
S1l 2361 1.69 2.47 34 20.0 77.75 33.78 1.62
S1l 2362 1.51 2.48 35 17.2 77.77 33.80 1.61
S1l 2363.4 1.47 2.49 30.9 19.3 77.81 33.82 1.62
S1l 2364.5 2.12 2.5 34.4 20.5 77.84 33.83 1.65 0.92
S1l 2365.5 1.57 2.51 36.3 21.2 77.87 34.08 1.63
S1l 2366.7 2.12 2.52 36.9 16.5 77.90 34.09 1.65 1.14
S1l 2367.88 1.72 2.53 37.7 9.5 77.93 34.11 1.62
S1l 2368.94 1.8 2.54 34 23.4 77.96 34.13 1.66
S1l 2369.63 1.61 2.55 32.4 19.7 77.98 34.14 1.65 2.38
S1l 2370.58 1.85 2.56 28.9 22.7 78.01 34.38 1.67
S1l 2371.62 1.44 2.57 27.7 30.6 78.03 34.40 1.67
S1l 2372.2 1.71 2.58 32.7 28.9 78.05 34.41 1.68
S1l 2372.58 1.61 2.59 31.7 19.5 78.06 34.64 1.67 2.69
S1l 2373.52 1.32 2.6 31.1 17.8 78.09 34.66 1.66 2.83
S1l 2374.28 1.5 2.61 32.6 18.4 78.11 34.90 1.67
S1l 2375.28 1.52 2.62 33.9 20.2 78.13 34.92 1.67
S1l 2376.05 1.83 2.63 31.1 19.7 78.15 34.93 1.69
S1l 2376.89 1.37 2.64 25.7 15.0 78.18 35.17 1.68
S1l 2377.69 2.01 2.65 34.4 23.5 78.20 35.65 1.71
S1l 2378.41 2.46 2.66 32.3 18.8 78.22 35.66 1.73 0.94
S1l 2379.19 2.67 2.67 35.2 15.1 78.24 35.67 1.74
S1l 2380.13 3.22 2.68 38.2 17.1 78.26 35.92 1.76
S1l 2380.97 2.99 2.69 35 22.1 78.29 35.93 1.77
S1l 2381.91 3.01 2.7 36.8 12.6 78.31 35.95 1.76 2
S1l 2382.67 3.22 2.71 40.4 26.3 78.33 36.19 1.79
S1l 2383.62 3.35 2.72 37.9 15.0 78.36 36.21 1.78 2.5
S1l 2384.41 3.54 2.73 43.2 6.0 78.38 36.22 1.77
S1l 2385.42 3.59 2.74 42.2 16.6 78.41 36.23 1.80
S1l 2386.36 3.62 2.75 41.3 18.6 78.43 36.25 1.81
S1l 2387.65 3.99 2.76 47.6 12.7 78.47 36.27 1.81 4.04
S1l 2388.52 3.45 2.77 46.7 17.2 78.49 36.28 1.80
S1l 2389.31 3.3 2.78 51.4 11.3 78.51 36.29 1.78
S1l 2390.02 3.42 2.79 44.3 19.4 78.53 36.30 1.81
S1l 2390.87 3.77 2.8 31.9 21.2 78.55 36.32 1.85
S1l 2391.95 3.09 2.81 36 9.8 78.58 36.33 1.80 2.57
S1l 2392.74 2.24 2.82 31 14.3 78.60 36.35 1.78 0.89
S1l 2393.6 2.54 2.83 38 15.1 78.63 36.36 1.79
S1l 2394.3 2.56 2.84 40.3 6.1 78.65 36.37 1.77
S1l 2395.3 2.76 2.85 41.4 10.6 78.67 36.38 1.79
S1l 2396 2.3 2.86 37.5 19.4 78.69 36.40 1.79
S1l 2397.1 3.46 2.87 42.7 6.3 78.72 36.41 1.82 1.08
S1l 2398 3.95 2.88 43.6 8.6 78.75 36.43 1.85
S1l 2399 4.16 2.89 49.6 5.3 78.77 36.44 1.85
S1l 2400.1 4.12 2.9 47.1 5.9 78.80 36.46 1.85 1.47
S1l 2400.9 4.11 2.91 48.9 7.0 78.82 36.47 1.86
S1l 2401.4 4.43 2.92 53 4.0 78.84 36.48 1.87
S1l 2402.6 2.94 2.93 42.3 4.5 78.87 36.50 1.82 4.14
S1l 2403.6 2.99 2.94 34.6 5.5 78.90 36.51 1.83
S1l 2404.5 4.56 2.95 48.9 6.4 78.92 36.52 1.89
S1l 2405.3 4.48 2.96 49.6 7.9 78.94 36.54 1.89 4.15
S1l 2406.2 4.77 2.97 51.5 4.2 78.97 36.55 1.90 4.96
S1l 2407.4 3.64 2.98 44.7 4.9 79.00 36.57 1.86
S1l 2408 4.23 2.99 57.2 3.6 79.02 36.58 1.87
O3w 2411.1 4.01 3 65.8 2.0 79.10 36.62 1.86
O3w 2411.9 4.97 3.01 69.1 2.7 79.12 36.64 1.90
O3w 2412.3 4.77 3.02 56.5 6.6 79.13 36.64 1.91 4.31
O3w 2413.1 4.03 3.03 70.6 4.2 79.15 36.65 1.86
O3w 2414.2 4.46 3.04 55.7 8.3 79.18 36.67 1.91
O3w 2414.9 4.45 3.05 32.8 24.6 79.20 36.68 1.96 3.55
Tab.1  The controlling factors and estimated Cg with the quantitative expression (Eq. (9))
Fig.14  Comparison of (a) estimated gas adsorption capacity (Cg) and (b) measurementsand the residual distribution.
Fig.15  Determined methane sorption capacity of the O3w–Lower S1l shale in the JY A well. Formation temperature and pressure are from drilling data. Cg is the gas adsorption capacity.
Fig.16  The negative correlation between water saturation and TOC (a), and positive correlation between water saturation and clay minerals (b) of the Wufeng-Longmaxi shale.
1 R J Ambrose, R C Hartman, M Diaz-Campos, I Y Akkutlu, C H Sondergeld (2012). Shale gas-in-place calculations, part I: new pore-scale considerations. SPE J, 17(01): 219–229
https://doi.org/10.2118/131772-PA
2 G R L Chalmers, R M Bustin (2007). The organic matter distribution and methane capacity of the lower cretaceous strata of northeastern British Columbia, Canada. Int J Coal Geol, 70(1–3): 223–239
https://doi.org/10.1016/j.coal.2006.05.001
3 G R L Chalmers, R M Bustin (2008). Lower cretaceous gas shales in northeastern British Columbia, part I: geological controls on methane sorption capacity. Bull Can Pet Geol, 56(1): 1–21
https://doi.org/10.2113/gscpgbull.56.1.1
4 G R L Chalmers, R M Bustin (2010). The effects and distribution of moisture in gas shale reservoir systems. In: AAPG 2010 Annual Convention and Exhibition, April 11–14
5 L Chen, Y Lu, S Jiang, J Li, T Guo, C Luo (2015). Heterogeneity of the lower Silurian Longmaxi marine shale in the southeast Sichuan Basin of China. Mar Pet Geol, 65: 232–246
https://doi.org/10.1016/j.marpetgeo.2015.04.003
6 M Gasparik, P Bertier, Y Gensterblum, A Ghanizadeh, B M Krooss, R Littke (2014). Geological controls on the methane storage capacity in organic-rich shales. Int J Coal Geol, 123: 34–51
https://doi.org/10.1016/j.coal.2013.06.010
7 M Gasparik, A Ghanizadeh, P Bertier, Y Gensterblum, S Bouw, B M Krooss (2012). High-pressure methane sorption isotherms of black shales from the Netherlands. Energy Fuels, 26(8): 4995–5004
https://doi.org/10.1021/ef300405g
8 X Guo, Y Li, R Liu, Q Wang (2014). Characteristics and controlling factors of micropore structures of the Longmaxi shale in the Jiaoshiba area, Sichuan Basin. Natural Gas Industry B, 1(2): 165–171
https://doi.org/10.1016/j.ngib.2014.11.007
9 P C Hackley, C V Araujo, A G Borrego, A Bouzinos, B J Cardott, A C Cook, C Eble, D Flores, T Gentzis, P A Gonçalves, J G Mendonça Filho, M Hámor-Vidó, I Jelonek, K Kommeren, W Knowles, J Kus, M Mastalerz, T R Menezes, J Newman, I K Oikonomopoulos, M Pawlewicz, W Pickel, J Potter, P Ranasinghe, H Read, J Reyes, G D L Rosa Rodriguez, I V Alves Fernandes de Souza, I Suárez-Ruiz, I Sýkorová, B J Valentine (2015). Standardization of reflectance measurements in dispersed organic matter: results of an exercise to improve interlaboratory agreement. Mar Pet Geol, 59: 22–34
https://doi.org/10.1016/j.marpetgeo.2014.07.015
10 A, Hartwig H M Schulz (2010). Applying classical shale gas evaluation concepts to Germany—part I: the basin and slope deposits of the Stassfurt Carbonate (Ca2, Zechstein, Upper Permian) in Brandenburg. Geochem, 70(1): 77–91
11 A Hartwig, S Könitzer, B Boucsein, B Horsfield, H M Schulz (2010). Applying classical shale gas evaluation concepts to Germany—part II: carboniferous in northeast Germany. Geochem, 70(1): 93–106
12 C C He, S He, X S Guo, J Z Yi, Z H Wei, Z G Shu, N J Peng (2018). Structural differences in organic pores between shales of the Wufeng Formation and of the Longmaxi Formation’s first Member, Jiaoshiba Block, Sichuan Basin. Oil & Gas Geol, 39(3): 472–484
13 J J Hickey, B Henk (2007). Lithofacies summary of the Mississippian Barnett Shale, Mitchell 2 TP Sims well, Wise County, Texas. AAPG Bull, 91(4): 437–443
https://doi.org/10.1306/12040606053
14 H Hu, T Zhang, J D Wiggins-Camacho, G S Ellis, M D Lewan, X Zhang (2015). Experimental investigation of changes in methane adsorption of bitumen-free woodford shale with thermal maturation induced by hydrous pyrolysis. Mar Pet Geol, 59: 114–128
https://doi.org/10.1016/j.marpetgeo.2014.07.029
15 D M Jarvie, R J Hill, T E Ruble, R M Pollastro (2007). Unconventional shale-gas systems: the Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bull, 91(4): 475–499
https://doi.org/10.1306/12190606068
16 L Ji, T Zhang, K L Milliken, J Qu, X Zhang (2012). Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl Geochem, 27(12): 2533–2545
https://doi.org/10.1016/j.apgeochem.2012.08.027
17 W M Ji, F Hao, H Schulz, Y Song, J Tian (2019). The architecture of organic matter and its pores in highly mature gas shales of the Lower Silurian Longmaxi Formation in the Upper Yangtze Platform, south China. AAPG Bull, 103(12): 2909–2942
https://doi.org/10.1306/04101917386
18 J Li, X F Li, X Z Wang, Y N Xin, J F Han, J T Shi, Z Sun, R Wang (2016). Effect of water distribution on methane adsorption capacity in shale clay. Chinese J Theoretic App Mechan, 48(5): 1217–1228 (in Chinese)
https://doi.org/10.1016/j.coal.2016.03.012
19 P Li, F Hao, X Guo, H Zou, X Yu, G Wang (2015). Processes involved in the origin and accumulation of hydrocarbon gases in the Yuanba gas field, Sichuan Basin, Southwest China. Mar Pet Geol, 59: 150–165
https://doi.org/10.1016/j.marpetgeo.2014.08.003
20 X C Lu, F C Li, A T Watson (1995). Adsorption measurements in Devonian shales. Fuel, 74(4): 599–603
https://doi.org/10.1016/0016-2361(95)98364-K
21 K L Milliken, D Rudnicki, D N Awwiller (2013). Organic matter–hosted pore system, Marcellus formation (Devonian), Pennsylvania. AAPG Bull, 97(2): 177–200
https://doi.org/10.1306/07231212048
22 C J Modica, S G Lapierre (2012). Estimation of kerogen porosity in source rocks as a function of thermal transformation: example from the Mowry Shale in the Powder River Basin of Wyoming. AAPG Bull, 96(1): 87–108
https://doi.org/10.1306/04111110201
23 M Pommer, K Milliken (2015). Pore types and pore-size distributions across thermal maturity, Eagle Ford Formation, Southern Texas. AAPG Bull, 99(09): 1713–1744
https://doi.org/10.1306/03051514151
24 U Raut, M Famá, B D Teolis, R A Baragiola (2007). Characterization of porosity in vapor-deposited amorphous solid water from methane adsorption. J Chem Phys, 127(20): 204713
https://doi.org/10.1063/1.2796166 pmid: 18052452
25 D J K Ross, R M Bustin (2007). Shale gas potential of the lower Jurassic Gordondale member, northeastern British Columbia, Canada. Bull Can Pet Geol, 55(1): 51–75
https://doi.org/10.2113/gscpgbull.55.1.51
26 D J K Ross, R M Bustin (2008). Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation. AAPG Bull, 92(1): 87–125
https://doi.org/10.1306/09040707048
27 D J K Ross, R Marc Bustin (2009). The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar Pet Geol, 26(6): 916–927
https://doi.org/10.1016/j.marpetgeo.2008.06.004
28 J Schoenherr, R Littke, J L Urai, P A Kukla, Z Rawahi (2007). Polyphase thermal evolution in the Infra-Cambrian Ara Group (South Oman Salt Basin) as deduced by maturity of solid reservoir bitumen. Org Geochem, 38(8): 1293–1318
https://doi.org/10.1016/j.orggeochem.2007.03.010
29 J Tan, B Horsfield, R Fink, B Krooss, H M Schulz, E Rybacki, J Zhang, C J Boreham, G van Graas, B A Tocher (2014). Shale gas potential of the major marine shale formations in the upper Yangtze platform, South China, part III: mineralogical, lithofacial, petrophysical, and rock mechanical properties. Energy Fuels, 28(4): 2322–2342
https://doi.org/10.1021/ef4022703
30 H Tian, T Li, T Zhang, X Xiao (2016). Characterization of methane adsorption on overmature lower Silurian–upper Ordovician shales in Sichuan Basin, southwest China: experimental results and geological implications. Int J Coal Geol, 156: 36–49
https://doi.org/10.1016/j.coal.2016.01.013
31 K Ufer, H Stanjek, G Roth, R Dohrmann, R Kleeberg, S Kaufhold (2008). Quantitative phase analysis of bentonites by the Rietveld method. Clays Clay Miner, 56(2): 272–282
https://doi.org/10.1346/CCMN.2008.0560210
32 P Wang, Z Chen, Z Jin, C Jiang, M Sun, Y Guo, X Chen, Z Jia (2018). Shale oil and gas resources in organic pores of the Devonian Duvernay shale, western Canada sedimentary basin based on petroleum system modeling. J Nat Gas Sci Eng, 50: 33–42
https://doi.org/10.1016/j.jngse.2017.10.027
33 P Wang, Z Chen, X Pang, K Hu, M Sun, X Chen (2016). Revised models for determining toc in shale play: example from Devonian Duvernay shale, Western Canada Sedimentary Basin. Mar Pet Geol, 70: 304–319
https://doi.org/10.1016/j.marpetgeo.2015.11.023
34 S Wang, Z Song, T Cao, X Song (2013). The methane sorption capacity of Paleozoic shales from the Sichuan Basin, China. Mar Pet Geol, 44: 112–119
https://doi.org/10.1016/j.marpetgeo.2013.03.007
35 R Yang, S He, Q Hu, D Hu, S Zhang, J Yi (2016b). Pore characterization and methane sorption capacity of over-mature organic-rich Wufeng and Longmaxi shales in the Southeast Sichuan Basin, China. Mar Pet Geol, 77: 247–261
https://doi.org/10.1016/j.marpetgeo.2016.06.001
36 R Yang, S He, J Z Yi, Q H Hu (2016a). Nano-scale pore structure and fractal dimension of organic-rich Wufeng-Longmaxi shale from Jiaoshiba area, Sichuan Basin: investigations using FE-SEM, gas adsorption and helium pycnometry. Mar Pet Geol, 70: 27–45
https://doi.org/10.1016/j.marpetgeo.2015.11.019
37 T Zhang, G S Ellis, S C Ruppel, K Milliken, R Yang (2012). Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems. Org Geochem, 47(6): 120–131
https://doi.org/10.1016/j.orggeochem.2012.03.012
38 C N Zou, G M Zhai, G Y Zhang, H J Wang, G S Zhang, J Z Li, Z M Wang, Z X Wen, F Ma, Y B Liang, Z Yang, X Li, K Liang (2015). Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources. Pet Explor Dev, 42(1): 14–28
https://doi.org/10.1016/S1876-3804(15)60002-7
[1] Xin CHEN, Lei CHEN, Xiucheng TAN, Shu JIANG, Chao WANG. Impact of pyrite on shale gas enrichment—a case study of the Lower Silurian Longmaxi Formation in southeast Sichuan Basin[J]. Front. Earth Sci., 2021, 15(2): 332-342.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed