Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (3) : 744-756    https://doi.org/10.1007/s11707-021-0928-3
RESEARCH ARTICLE
Identifying the spatio-temporal variability of human activity intensity and associated drivers: a case study on the Tibetan Plateau
Cai LIU1,2,3, Haiyan ZHANG4, Fuping GAN2,3(), Yunge LU3, Hao WANG3, Jiahong ZHANG3, Xing JU3
1. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China
2. Key Laboratory of Airborne Geophysics and Remote Sensing Geology (Ministry of Nature Resources), Beijing 100083, China
3. China Aero Geophysical Survey and Remote Sensing Center for Natural Resources, Beijing 100083, China
4. Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(2063 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Human activities have significantly degraded ecosystems and their associated services. By understanding the spatio-temporal variability and drivers of human activity intensity (HAI), we can better evaluate the interactions between human and terrestrial ecosystems, which is essential for land-use related decision making and eco-environmental construction. As the “third pole,” the Tibetan Plateau (TP) plays a strong role in shaping the global environment, and acts as an important ecological security barrier for China. Based on land-use/cover change data, environmental geographic data, and socioeconomic data, we adopted a method for converting different land use/cover types into construction land equivalent to calculate the HAI value and applied the Getis–Ord Gi* statistic to analyze the spatio-temporal dynamics associated with HAI since 1980 on the TP. Thereafter, we explored the forces driving the HAI changes using GeoDetector software and a correlation analysis. The main conclusions are as follows: It was observed that HAI increased slowly from 3.52% to 3.65% during the 1980–2020 period, with notable increases in the western part of the Qaidam Basin and Hehuang Valley. Spatially, HAI was associated with a significant agglomeration effect, which was mainly concentrated in the regions of the Yarlung Zangbo and Yellow–Huangshui rivers. Both natural and anthropogenic factors were identified as important driving forces behind the spatial changes in HAI, of which soil type, gross domestic product, and population density had the greatest influence. Meanwhile, the temporal changes in HAI were largely driven by economic development. This information provides crucial guidance for territory development planning and ecological-protection policy decisions.

Keywords Tibetan Plateau      human activity intensity      GeoDetector      spatio-temporal variability      driving factors     
Corresponding Author(s): Fuping GAN   
Online First Date: 23 December 2021    Issue Date: 29 December 2022
 Cite this article:   
Cai LIU,Haiyan ZHANG,Fuping GAN, et al. Identifying the spatio-temporal variability of human activity intensity and associated drivers: a case study on the Tibetan Plateau[J]. Front. Earth Sci., 2022, 16(3): 744-756.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0928-3
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I3/744
Fig.1  Location of study area.
Data set Data declaration Time Data sources
Land-use/cover Raster; 100 m 1980, 1990, 2000, 2010, 2015, 2018, 2020 Resource and Environment Data Cloud Platform
(available at Resource and Environment Science and Data Center website)
DEMa) Raster; 90 m 2000 Geospatial Data Cloud site, Computer Network Information Centre, Chinese Academy of Sciences (available at Geospatial Data Cloud website)
Slope Raster; 90 m 2000 National Tibetan Plateau Data Centre
(available at TPDC website)
Precipitation and Temperature Raster; 1 km 2000, 2015 National Tibetan Plateau Data Centre (Ding, 2019) (available at TPDC website)
GDPb) and Population density Raster; 1 km 2000, 2015 Resource and Environment Data Cloud Platform (available at Resource and Environment Science and Data Center website)
Soil type Vector; 1:1,000,000 1995 Institute of soil science, Chinese Academy of Sciences
Transportation Vector; 1:1,000,000 1995, 2018 Resource and Environment Data Cloud Platform (available at Resource and Environment Science and Data Center website)
Nature reserves Vector; 1:1,000,000 2018 Resource and Environment Data Cloud Platform (available at Resource and Environment Science and Data Center website)
Tab.1  Data sets used in the present study
Fig.2  Changes in the CLE area and HAI on the land surface on the TP between 1980 and 2020.
Fig.3  Spatial distribution of HAI on the land surface on the TP in (a) 1980 and (b) 2020.
Fig.4  Hotspot mapping of HAI on the land surface on the TP for (a) 1980, (b) 2020, and (c) 1980–2020.
Year Slope Altitude Precipitation Temperature Soil type GDP Population density Transportation
Tibetan Plateau 2000 0.017** 0.015** 0.035** 0.011** 0.065** 0.046** 0.054** 0.022**
2015 0.014** 0.014** 0.035** 0.007** 0.057** 0.082** 0.043** 0.023**
Qinghai 2000 0.013** 0.045** 0.060** 0.047** 0.114** 0.105** 0.108** 0.045**
2015 0.012** 0.040** 0.068** 0.031** 0.112** 0.130** 0.081** 0.036**
Tibet 2000 0.034** 0.035** 0.056** 0.018** 0.052** 0.038** 0.030** 0.010**
2015 0.029** 0.031** 0.064** 0.016** 0.047** 0.082** 0.059 0.013**
Tab.2  q value of single factors for the spatial variability in human activity intensity on the land surface
Fig.5  Relationships on the TP in 2000 and 2015 between HAI on the land surface and (a) slope, (b) altitude, (c) precipitation, (d) temperature, (e) GDP, (f) population density, (g) distance to roads, (h) nature reserves, and (i) soil type. Notes: ‘**’: p<0.01; ‘*’: p<0.05.
Year Slope Altitude Precipitation Temperature Soil type GDP Population
density
Transportation
Slope 2000 0.017**
2015 0.014**
Altitude 2000 0.166** 0.015**
2015 0.163** 0.014**
Precipitation 2000 0.118** 0.176** 0.035**
2015 0.120** 0.147** 0.035**
Temperature 2000 0.107** 0.094** 0.125** 0.011**
2015 0.085** 0.077** 0.120** 0.007**
Soil type 2000 0.105** 0.112** 0.137** 0.105** 0.065**
2015 0.102** 0.108** 0.129** 0.102** 0.057**
GDP 2000 0.135** 0.081** 0.106** 0.085** 0.105* 0.046**
2015 0.211** 0.168** 0.217** 0.169** 0.203** 0.082**
Population
density
2000 0.180** 0.096** 0.171** 0.112** 0.123** 0.087* 0.054**
2015 0.073** 0.061** 0.082** 0.058** 0.093* 0.094* 0.043**
Transportation 2000 0.128** 0.086** 0.124** 0.098** 0.116** 0.101** 0.128** 0.022**
2015 0.120** 0.097** 0.137** 0.078** 0.117** 0.174** 0.071** 0.023**
Tab.3  q value for the interactions between factors for the spatial variability in human activity intensity on the land surface, Tibetan Plateau
1 A Bosch, K Schmidt, J S He, C Doerfer, T Scholten (2017). Potential CO2 emissions from defrosting permafrost soils of the Qinghai-Tibet Plateau under different scenarios of climate change in 2050 and 2070. Catena, 149: 221–231
https://doi.org/10.1016/j.catena.2016.08.035
2 D L Chen, B Q Xu, T D Yao, Z T Guo, P Cui, F H Chen, R H Zhang, X Z Zhang, Y L Zhang, J Fan, Z Q Hou, T H Zhang (2015). Assessment of past, present and future environmental changes on the Tibetan Plateau. Chin Sci Bull, 60(32): 3025–3035
3 Z L Chen, J K Li, J Li (2017). The influencing factors and spatial spillover effect of urban land use efficiency in China. Economic Survey, 34(4): 25–30 (in Chinese)
4 H Y Cai, X H Yang, X L Xu (2015). Human-induced grassland degradation/restoration in the central Tibetan Plateau: the effects of ecological protection and restoration projects. Ecol Eng, 83: 112–119
https://doi.org/10.1016/j.ecoleng.2015.06.031
5 X F Cui, H F Graf (2009). Recent land cover changes on the Tibetan Plateau: a review. Clim Change, 94(1-2): 47–61
https://doi.org/10.1007/s10584-009-9556-8
6 R Costanza, R de Groot, P Sutton, S van der Ploeg, S J Anderson, I Kubiszewski, S Farber, R K Turner (2014). Changes in the global value of ecosystem services. Glob Environ Change, 26: 152–158
https://doi.org/10.1016/j.gloenvcha.2014.04.002
7 X H Ding, G X Yu, X C Gao (2014). On the spatial pattern and coupling between the population and economy of Qinghai-Tibetan Plateau from 2000 to 2010. J Tibet U, 29(2): 34–42 (in Chinese)
8 M J Ding (2019). Temperature and precipitation grid data of the Qinghai- Tibet Plateau and its surrounding areas in 1998–2017 Grid data of annual temperature and annual precipitation on the Tibetan Plateau and its surrounding areas during 1998–2017. Beijing: National Tibetan Plateau Data Center
9 M Dong, P Yan, B L Liu, W Wu, X N Meng, X R Ji, Y Wang, Y J Wang (2018). Distribution patterns and morphological classification of climbing dunes in the Qinghai-Tibet Plateau. Aeolian Res, 35: 58–68
https://doi.org/10.1016/j.aeolia.2018.09.002
10 E C Ellis, N Ramankutty (2008). Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ, 6(8): 439–447
https://doi.org/10.1890/070062
11 E C Ellis, K Klein Goldewijk, S Siebert, D Lightman, N Ramankutty (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Glob Ecol Biogeogr, 19(5): 589–606
https://doi.org/10.1111/j.1466-8238.2010.00540.x
12 J Fan, Y Xu, C S Wang, Y F Niu, D Chen, W Sun (2015). The effects of human activities on the ecological environment of Tibet over the past half century. Chin Sci Bull, 60(32): 3057–3066
https://doi.org/10.1360/N972014-01311
13 B J Fu, Q J Zhang, L D Chen, W W Zhao, H Gulinck, G B Liu, Q K Yang, Y G Zhu (2006). Temporal change in land use and its relationship to slope degree and soil type in a small catchment on the Loess Plateau of China. Catena, 65(1): 41–48
https://doi.org/10.1016/j.catena.2005.07.005
14 C X Hai, J F Chen (2017). Soil Geography. Beijing: Science Press
15 Z Han, B S Cui (2016). Development of an integrated stress index to determine multiple anthropogenic stresses on macrophyte biomass and richness in ponds. Ecol Eng, 90: 151–162
https://doi.org/10.1016/j.ecoleng.2016.01.051
16 M M Hu, Z T Li, Y F Wang, M Y Jiao, M Li, B C Xia (2019). Spatio-temporal changes in ecosystem service value in response to land-use/cover changes in the Pearl River Delta. Resour Conserv Recycling, 149: 106–114
https://doi.org/10.1016/j.resconrec.2019.05.032
17 W W Immerzeel, R Quiroz, de S Jong (2005). Understanding precipitation patterns and land use interaction in Tibet using harmonic analysis of SPOT VGT-S10 NDVI time series. Int J Remote Sens, 26(11): 2281–2296
https://doi.org/10.1080/01431160512331326611
18 W W Immerzeel, L P H van Beek, M F P Bierkens (2010). Climate change will affect the Asian water towers. Science, 328(5984): 1382–1385
https://doi.org/10.1126/science.1183188 pmid: 20538947
19 W W Immerzeel, A F Lutz, M Andrade, A Bahl, H Biemans, T Bolch, S Hyde, S Brumby, B J Davies, A C Elmore, A Emmer, M Feng, A Fernández, U Haritashya, J S Kargel, M Koppes, P D A Kraaijenbrink, A V Kulkarni, P A Mayewski, S Nepal, P Pacheco, T H Painter, F Pellicciotti, H Rajaram, S Rupper, A Sinisalo, A B Shrestha, D Viviroli, Y Wada, C Xiao, T Yao, J E M Baillie (2020). Importance and vulnerability of the world’s water towers. Nature, 577(7790): 364–369
https://doi.org/10.1038/s41586-019-1822-y pmid: 31816624
20 C Jiang, D Q Li, D W Wang, L B Zhang (2016). Quantification and assessment of changes in ecosystem service in the Three-River Headwaters Region, China as a result of climate variability and land cover. Ecol Indic, 66: 199–211
https://doi.org/10.1016/j.ecolind.2016.01.051
21 C M Kennedy, J R Oakleaf, D M Theobald, S Baruch-Mordo, J Kiesecker (2019). Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob Change Biol, 25(3): 811–826
https://doi.org/10.1111/gcb.14549 pmid: 30629311
22 P Krajewski, I Solecka, K Mrozik (2018). Forest landscape change and preliminary study on its driving forces in Ślęża Landscape Park (Southwestern Poland) in 1883–2013. Sustainability, 10(12): 4526
https://doi.org/10.3390/su10124526
23 Q Li, C L Zhang, Y P Shen, W R Jia, J Li (2016a). Quantitative assessment of the relative roles of climate change and human activities in desertification processes on the Qinghai-Tibet Plateau based on net primary productivity. Catena, 147: 789–796
https://doi.org/10.1016/j.catena.2016.09.005
24 S C Li, Z F Wang, Y L Zhang, Y K Wang, F G Liu (2016b). Comparison of socioeconomic factors between surrounding and non-surrounding areas of the Qinghai-Tibet railway before and after its construction. Sustainability, 8(8): 776
https://doi.org/10.3390/su8080776
25 S C Li, Y L Zhang, Z F Wang, L H Li (2018). Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosyst Serv, 30: 276–286
https://doi.org/10.1016/j.ecoser.2017.10.003
26 Y Li, J J Li, K S Are, Z G Huang, H Q Yu, Q W Zhang (2019). Livestock grazing significantly accelerates soil erosion more than climate change in Qinghai-Tibet Plateau: evidenced from 137Cs and 210Pbex measurements. Agric Ecosyst Environ, 285: 106643
https://doi.org/10.1016/j.agee.2019.106643
27 S B Liao, J L Sun (2003). Quantitative analysis of relationship between population distribution and environmental factors in Qinghai-Tibet Plateau. China Population, Resources and Environment., 13(3): 62–67(In Chinese)
28 J Y Liu (1992). Land Use in the Xizang (Tibet) Autonomous Region. Beijing: Science Press
29 J Y Liu, W H Kuang, Z X Zhang, X L Xu, Y W Qin, J Ning, W C Zhou, S W Zhang, R D Li, C Z Yan, S Wu, X Shi, N Jiang, D Yu, X Pan, W Chi (2014). Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J Geogr Sci, 24(2): 195–210
https://doi.org/10.1007/s11442-014-1082-6
30 H M Liu, J X Gao, H Y Zhang, X L Ma, X L Xu (2017). Human disturbance monitoring and assessment in the biodiversity conservation priority area China. J Geo-inform Sci, 19(11): 1456–1465 (in Chinese)
31 S L Liu, L M Liu, X Wu, X Y Hou, S Zhao, G H Liu (2018). Quantitative evaluation of human activity intensity on the regional ecological impact studies. Acta Ecol Sin, 38(19): 6797–6809
32 T Liu, Y M Zheng (2020). Analysis of ecological compensation for returning farmland to forests in China. Issues Forest Economics, 40(1): 21–28 (in Chinese)
33 Z H Ma, C Q Xia, S X Cao (2020). Cost-benefit analysis of China’s Natural Forest Conservation Program. J Nat Conserv, 55: 125818
https://doi.org/10.1016/j.jnc.2020.125818
34 J L L Magalhães, M A Lopes, H L de Queiroz (2015). Development of a Flooded Forest Anthropization Index (FFAI) applied to Amazonian areas under pressure from different human activities. Ecol Indic, 48: 440–447
https://doi.org/10.1016/j.ecolind.2014.09.002
35 N Myers, R A Mittermeier, C G Mittermeier, G A B da Fonseca, J Kent (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772): 853–858
https://doi.org/10.1038/35002501 pmid: 10706275
36 J K Ord, A Getis (1995). Local spatial autocorrelation statistics: distribution issues and an application. Geogr Anal, 27(4): 286–306
https://doi.org/10.1111/j.1538-4632.1995.tb00912.x
37 Z Y Pei, H Ouyang, C P Zhou, X L Xu (2009). Carbon balance in an alpine steppe in the Qinghai-Tibet Plateau. J Integr Plant Biol, 51(5): 521–526
https://doi.org/10.1111/j.1744-7909.2009.00813.x pmid: 19508362
38 S Qian, L X Mao, Y Y Hou, Y Fu, H Z Zhang, J Du (2007). Livestock carrying capacity and balance between carrying capacity of grassland with added forage and actual livestock in the Qinghai-Tibet Plateau. Journal of Natural Resource,22: 389–397 (in Chinese)
39 J Rockström, W Steffen, K Noone, A Persson, F S Chapin 3rd, E F Lambin, T M Lenton, M Scheffer, C Folke, H J Schellnhuber, B Nykvist, C A de Wit, T Hughes, S van der Leeuw, H Rodhe, S Sörlin, P K Snyder, R Costanza, U Svedin, M Falkenmark, L Karlberg, R W Corell, V J Fabry, J Hansen, B Walker, D Liverman, K Richardson, P Crutzen, J A Foley (2009). A safe operating space for humanity. Nature, 461(7263): 472–475
https://doi.org/10.1038/461472a pmid: 19779433
40 E W Sanderson, M Jaiteh, M A Levy, K H Redford, A V Wannebo, G Woolmer (2002). The human footprint and the last of the wild. Bioscience, 52(10): 891–904
https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2
41 X P Song, M C Hansen, S V Stehman, P V Potapov, A Tyukavina, E F Vermote, J R Townshend (2018). Global land change from 1982 to 2016. Nature, 560(7720): 639–643
https://doi.org/10.1038/s41586-018-0411-9 pmid: 30089903
42 H L Sun, D Zheng, T D Yao, Y L Zhang (2012). Protection and construction of the national ecological security shelter zone on Tibetan Plateau. Acta Geogr Sin, 67(1): 3–12
43 Y X Sun, S L, Liu, F N Shi, Y An, M Q Li, Y X Liu (2020). Spatio-temporal variations and coupling of human activity intensity and ecosystem services based on the four-quadrant model on the Qinghai-Tibet Plateau. Sci Total Environ, 743: 140721
https://doi.org/10.1016/j.scitotenv.2020.140721 pmid: 32679497
44 M F Tapia-Armijos, J Homeier, D Draper Munt (2017). Spatio-temporal analysis of the human footprint in South Ecuador: influence of human pressure on ecosystems and effectiveness of protected areas. Appl Geogr, 78: 22–32
https://doi.org/10.1016/j.apgeog.2016.10.007
45 D M Theobald (2013). A general model to quantify ecological integrity for landscape assessments and US application. Landsc Ecol, 28(10): 1859–1874
https://doi.org/10.1007/s10980-013-9941-6
46 K E Trenberth, P D Jones, P Ambenje, R Bojariu, D Easterling, A Klein Tank, D Parker, F Rahimzadeh, J A Renwick, M Rusticucci, B Soden, P Zhai (2007). Observations: surface and atmospheric climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt K B, Tignor M, Miller H L, eds. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press
47 B L Turner, W B Meyer, D L Skole (1994). Global land-use/land-cover change: towards an integrated study. Ambio, 23: 91–95
48 O Venter, E W Sanderson, A Magrach, J R Allan, J Beher, K R Jones, H P Possingham, W F Laurance, P Wood, B M Fekete, M A Levy, J E Watson (2016). Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat Commun, 7(1): 12558
https://doi.org/10.1038/ncomms12558 pmid: 27552116
49 P M Vitousek, H A Mooney, J Lubchenco, J M Melillo (1997). Human domination of Earth’s ecosystems. Science, 277(5325): 494–499
https://doi.org/10.1126/science.277.5325.494
50 C S Wang, J G Dai, X X Zhao, Y L Li, S A Graham, D F He, B Ran, J Meng (2014). Outward-growth of the Tibetan Plateau during the Cenozoic: a review. Tectonophysics, 621: 1–43
https://doi.org/10.1016/j.tecto.2014.01.036
51 J F Wang, X H Li, G Christakos, Y L Liao, T Zhang, X Gu, X Y Zheng (2010). Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int J Geogr Inf Sci, 24(1): 107–127
https://doi.org/10.1080/13658810802443457
52 J F Wang, T L Zhang, B J Fu (2016). A measure of spatial stratified heterogeneity. Ecol Indic, 67: 250–256
https://doi.org/10.1016/j.ecolind.2016.02.052
53 C N Waters, J Zalasiewicz, C Summerhayes, A D Barnosky, C Poirier, A Gałuszka, A Cearreta, M Edgeworth, E C Ellis, M Ellis, C Jeandel, R Leinfelder, J R McNeill, D Richter, W Steffen, J Syvitski, D Vidas, M Wagreich, M Williams, A Zhisheng, J Grinevald, E Odada, N Oreskes, A P Wolfe (2016). The Anthropocene is functionally and stratigraphically distinct from the Holocene. Science, 351(6269): aad2622
https://doi.org/10.1126/science.aad2622 pmid: 26744408
54 X D Xu, C G Lu, X H Shi, S T Gao (2008). World water tower: an atmospheric perspective. Geophys Res Lett, 35(20): L20815
https://doi.org/10.1029/2008GL035867
55 Y Xu, X R Xu, Q Tang (2016a). Human activity intensity of land surface: concept, method and application in China. J Geogr Sci, 26(9): 1349–1361
https://doi.org/10.1007/s11442-016-1331-y
56 H J Xu, X P Wang, X X Zhang (2016b). Alpine grasslands response to climatic factors and anthropogenic activities on the Tibetan Plateau from 2000 to 2012. Ecol Eng, 92: 251–259
https://doi.org/10.1016/j.ecoleng.2016.04.005
57 X R Xu, Y Xu (2017). Analysis of spatial-temporal variation of human activity intensity in Loess Plateau region. Geogr Res, 36(4): 661–672
58 S G Yalew, M L Mul, A van Griensven, E Teferi, J Priess, C Schweitzer, P van Der Zaag (2016). Land-use change modelling in the upper Blue Nile basin. Environments, 3(4): 21
https://doi.org/10.3390/environments3030021
59 W F Yang, L Du, G L Zhu (2015). Analysis of Tibetan industry development path based on the industrial evolution theory. Res Agri Modern, 36(5): 741–747 (in Chinese)
60 T D Yao, L G Thompson, V Mosbrugger, F Zhang, Y M Ma, T X Luo, B Q Xu, X X Yang, D R Joswiak, W C Wang, M E Joswiak, L P Devkota, S Tayal, R Jilani, R Fayziev (2012). Third pole environment (TPE). Environ Dev, 3: 52–64
https://doi.org/10.1016/j.envdev.2012.04.002
61 J Yi, Y Du, F Liang, W Tu, W Qi, Y Ge (2020). Mapping human’s digital footprints on the Tibetan Plateau from multi-source geospatial big data. Sci Total Environ, 711: 134540
https://doi.org/10.1016/j.scitotenv.2019.134540 pmid: 32000308
62 F Yin, X Z Deng, Q Jin, Y W Yuan, C H Zhao (2014). The impacts of climate change and human activities on grassland productivity in Qinghai Province, China. Front Earth Sci, 8(1): 93–103
https://doi.org/10.1007/s11707-013-0390-y
63 C Yu, Y Zhang, H Claus, R Zeng, X Zhang, J Wang (2012). Ecological and environmental issues faced by a developing Tibet. Environ Sci Technol, 46(4): 1979–1980
https://doi.org/10.1021/es2047188 pmid: 22304386
64 Z X Zhang, X L Zhao, X Wang, et al., eds. (2012). Land Use Remote Sensing Monitoring in China. Beijing: Star Map Press
65 L X Zhang, J W Fan, Q Q Shao, P Tang, H Y Zhang, Y Z Li (2014). Changes in grassland yield and grazing pressure in the Three River Headwater Region before and after the implementation of the eco-restoration project. Caoye Xuebao, 23: 116–123
66 Y L Zhang, X Wu, W Qi, S C Li, W Q Bai (2015). Characteristics and protection effectiveness of nature reserves on the Tibetan Plateau, China. Resource Sci, 37(7): 1455–1464 (in Chinese)
67 H Y Zhang, J W Fan, J B Wang, W Cao, W Harris (2018). Spatial and temporal variability of grassland yield and its response to climate change and anthropogenic activities on the Tibetan Plateau from 1988 to 2013. Ecol Indic, 95: 141–151
https://doi.org/10.1016/j.ecolind.2018.05.088
68 Y L Zhang, L S Liu, Z F Wang, W Q Bai, M J Ding, X H Wang, J Z Yan, E Q Xu, X Wu, B H Zhang, et al. (2019). Spatial and temporal characteristics of land use and cover changes in the Tibetan Plateau. Chin Sci Bull, 64(27): 2865–2875(in Chinese)
https://doi.org/10.1360/TB-2019-0046
69 X Zhang, Y Yue, X Tong, K Wang, X Qi, C Deng, M Brandt (2021). Eco-engineering controls vegetation trends in southwest China karst. Sci Total Environ, 770: 145160
https://doi.org/10.1016/j.scitotenv.2021.145160 pmid: 33736419
70 G S Zhao, J Y Liu, W H Kuang, Z Y Ouyang, Z L Xie (2015a). Disturbance impacts of land use change on biodiversity conservation priority areas across China:1990–2010. J Geogr Sci, 25(5): 515–529
https://doi.org/10.1007/s11442-015-1184-9
71 H D Zhao, S L Liu, S K Dong, X K Su, X X Wang, X Y Wu, L Wu, X Zhang (2015b). Analysis of vegetation change associated with human disturbance using MODIS data on the rangelands of the Qinghai-Tibet Plateau. Rangeland J, 37(1): 77–87
https://doi.org/10.1071/RJ14061
72 P Zhu, W Cao, L Huang, T Xiao, J Zhai (2019). The Impacts of Human Activities on Ecosystems within China’s Nature Reserves. Sustainability, 11(23): 6629
https://doi.org/10.3390/su11236629
[1] Xiaoqing LUO, Jianjun XU, Yu ZHANG, Kai LI. Relationship between the Tibetan Plateau–tropical Indian Ocean thermal contrast and the South Asian summer monsoon[J]. Front. Earth Sci., 2021, 15(1): 151-166.
[2] Xuezhu CUI, Shaoying LI, Xuetong WANG, Xiaolong XUE. Driving factors of urban land growth in Guangzhou and its implications for sustainable development[J]. Front. Earth Sci., 2019, 13(3): 464-477.
[3] Yaowen XIE, Guisheng WANG, Xueqiang WANG, Peilei FAN. Assessing the evolution of oases in arid regions by reconstructing their historic spatio-temporal distribution: a case study of the Heihe River Basin, China[J]. Front. Earth Sci., 2017, 11(4): 629-642.
[4] Zhengjia LIU,Mei HUANG. Assessing spatio-temporal variations of precipitation-use efficiency over Tibetan grasslands using MODIS and in-situ observations[J]. Front. Earth Sci., 2016, 10(4): 784-793.
[5] Tongtiegang ZHAO, Jianshi ZHAO, Hongchang Hll, Guangheng NI. Source of atmospheric moisture and precipitation over China’s major river basins[J]. Front. Earth Sci., 2016, 10(1): 159-170.
[6] Hongxia LIU, Ying HU, Shihua QI, Xinli XING, Yuan ZHANG, Dan YANG, Chengkai QU. Organochlorine pesticide residues in surface water from Sichuan Basin to Aba Prefecture profile, east of the Tibetan Plateau[J]. Front. Earth Sci., 2015, 9(2): 248-258.
[7] Fang HAN, Kexin ZHANG, Junliang JI, Yadong XU, Fenning CHEN, Xiaohu KOU. Late Pleistocene sedimentary sequences and paleoclimate changes in Xunhua basin in the upper reach of Yellow River in China[J]. Front Earth Sci, 2012, 6(3): 297-305.
[8] Furong LI, Yan ZHAO, Jinghui SUN, Wenwei ZHAO, Xiaoli GUO, Ke ZHANG. Surface pollen and its relationship to vegetation in the Zoige Basin, eastern Tibetan Plateau[J]. Front Earth Sci, 2011, 5(3): 252-261.
[9] GUO Zhengfu, CHEN Xiaoyu, LIU Jiaqi. Effect of volatiles erupted from Mesozoic and Cenozoic volcanic activities on paleo-environmental changes in China[J]. Front. Earth Sci., 2008, 2(4): 393-396.
[10] WEI Hualing, FANG Nianqiao, DING Xuan, LIU Xiuming, NIE Lanshi. Pelagic records from the Equatorial Ninetyeast Ridge and significant environmental events during the past 3.5 Ma[J]. Front. Earth Sci., 2008, 2(2): 162-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed