Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2021, Vol. 15 Issue (4) : 909-921    https://doi.org/10.1007/s11707-021-0932-7
RESEARCH?ARTICLE
Quantitative reconstruction of the palaeoclimate of the Shahejie Formation in the Chezhen Depression, Bohai Bay Basin, eastern China
Tao CHEN1, Jinliang ZHANG1(), Yang LI2, Yongfu ZHAO3
1. Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
2. Hubei Key Laboratory of Petroleum Geochemistry and Environment, Yangtze University, Wuhan 430100, China
3. Oil and Gas Exploration Management Center, Shengli Oilfield, Sinopec, Dongying 257000, China
 Download: PDF(2026 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This paper uses pollen climate analysis and coexistence analysis to systematically analyze the climatic evolution of the Shahejie Formation in the Chezhen Depression, Bohai Bay Basin, eastern China and discusses the relationship between palaeoclimatic evolution and lake level rise. The results show that the sedimentary period of the Shahejie Formation in the Chezhen Depression had an overall temperature change trend from hot to cold and simultaneously experienced a dry and wet balance–wet–dry and wet balance–wet transition process. The climatic parameters of the Shahejie Formation in the Chezhen Depression include a mean annual temperature of 8.1°C−15.1°C, a mean coldest monthly temperature of −0.1°C−2°C, a mean warmest monthly temperature of 18.6°C−28°C, a mean annual precipitation of 389−1164 mm, a wettest monthly precipitation amount of 215−262 mm, and a driest monthly precipitation amount of 8−48 mm. Climate change is believed to affect the rise and fall of lake levels to some extent. The quantitative reconstruction of these climatic parameters allows researchers to more intuitively understand the geological background of the Chezhen Depression and guide the exploration and development of oil and gas resources.

Keywords Shahejie Formation      Chezhen Depression      pollen      coexistence analysis      palaeoclimate reconstruction     
Corresponding Author(s): Jinliang ZHANG   
Online First Date: 06 December 2021    Issue Date: 20 January 2022
 Cite this article:   
Tao CHEN,Jinliang ZHANG,Yang LI, et al. Quantitative reconstruction of the palaeoclimate of the Shahejie Formation in the Chezhen Depression, Bohai Bay Basin, eastern China[J]. Front. Earth Sci., 2021, 15(4): 909-921.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0932-7
https://academic.hep.com.cn/fesci/EN/Y2021/V15/I4/909
Fig.1  (a) Location of the Chezhen Depression; (b) structure of the Chezhen Depression.
Fig.2  Stratigraphy and lithological development of the Paleogene in the Chezhen Depression.
Fig.3  Pollen panel of the Shahejie Formation in the Chezhen Depression. Ang. = Angiospermae, Gym. = Gymnospermae, Lil. = Liliacidites, Che. = Chenopodiaceae, Tro. = Trochodendraceae, Rut. = Rutaceae, Nys. = Nyssapollenites, Pel. = Peltandripites, Lam. = Lamiaceae, Sap. = Sapindaceaepiles, Fag. = Faguspollenites, Rho. = Rhoipites, Mel. = Meliaceae, Mag. = Magnolipollis, Hyd. = Hydrocharitaceae, Liq. = Liquidambarpollenites, Ulm. = Ulmipollenites, Que. = Quercoidites, Cor. = Corylus, Bet. = Betulaceae, Aln. = Alnipollenites, Bets. = Betulaepollenites, Jug. = Juglanspollenites, Sal. = Salixipollenites, Car. = Caryapollenites, Pla. = Platycaryapollenites, Tax. = Taxodiaceae, Eph. = Ephedripites, Tsu. = Tsugaepollenites, Abi. = Abies, A.P. = Abietineaepollenites and Pinuspollenites, Ced. = Cedripites, Pic. = Picea, Pin. = Pinaceae, Pod. = Podocarpidites, Pol. = Polypodiaceae.
Fossil Spore-pollen nearest living relative MAT/℃ CMT/℃ WMT/℃ MAP/
mm
WMP/
mm
DMP/
mm
Liquidambarpollenites Liquidambar 11.5?24.6 -1?23.8 23?29.3 619?1823 109?340 2?72
Lamiaceae Elsholtzia 2.2?15.1 -16.1?2.0 18.6?28.0 332?1164 215?488 8?53
Meliaceae Melia 2.9?24.8 -8.6?20.1 10.6?30.1 465?2993 251?1428 10?547
Ulmipollenites Ulmus -5.8?21.6 -29.8?13.2 8.3?29.4 21?1770 15?959 0?228
Quercoidites Quercus 0?27 -22.7?25.9 13.7?28.3 201?3905 33?610 5?180
Corylus Corylus -4.9?24 -32.4?16.7 12.9?29.4 389?1682 45?343 3?73
Juglanspollenites Juglandaceae 0?27.5 -22.7?25 13.7?31.2 210?2617 44?582 1?114
Rhoipites Anacardiaceae 3.4?27.7 -12.9?27 18.7?28.1 130?3151 17?389 0?165
Alnipollenites Alnus -13.3?27.4 -40.9?25.6 12?38.6 41?2559 8?353 0?135
Taxodiaceae Cunninghamia 2.0?24.7 -7.2?19.8 9.9?30.1 626?2435 299?1428 15?259
Ephedripites Ephedraceae 8.1?27.6 -0.1?25 12.5?33.7 30?1741 5?262 1?48
Abietineaepollenites Pinus -9.2?25.5 -36.8?21.4 7.1?32.9 180?1741 28?293 0?94
Pinuspollenites Pinus -9.2?25.5 -36.8?21.4 7.1?32.9 180?1741 28?293 0?94
Piceapollis Picea -8.9?21.7 -28.6?15.6 13.8?31.6 235?1958 36?323 8?83
Podocarpidites Podocarpus 11?27.7 1.7?27 15.1?28.8 652?3151 68?448 16?165
Betulaceoipollenites Betula -12.4?25.8 -26.8?21.1 3.9?28.7 110?2559 23?353 3?135
Tab.1  Climatic parameters of the nearest living relatives of the studied pollen
Climate Indicator Type Division Basis Description Fossil Pollen
Hot Climate Group MATmed>15℃,
CMTmed>5℃
Pollen parent plants are mainly distributed in tropical and subtropical regions, and a few can reach warm temperate zones. Liquidambarpollenites, Ephedripites, Podocarpidites, Rhoipites
Warm Climate Group 10℃<MATmed<15℃,
0℃<CMTmed<5℃
Pollen parent plants are mainly distributed in warm temperatures, and a few can reach cold temperate or subtropical zones. Quercoidites, Ulmipollenites, Juglanspollenites
Cold Climate Group MATmed<10℃,
CMTmed<0℃
Pollen parent plants are widely distributed in the cold temperate zone, warm temperate zone, subtropical and even tropical zone. Compared with the heat-loving group and the temperature-loving group, its cold tolerance is generally stronger and can be adapted to harsh environments. Corylus, Alnipollenites, Piceapollis, Pinuspollenites, Abietineaepollenites, Betulaceoipollenites
Xerophytic Group MAPmed<1200 mm,
DMPmed<100 mm
Pollen parent plants are adapted to arid and water-deficient terrestrial environments, such as deserts or dry grasslands with sparse rainfall, with strong drought tolerance, well-developed root systems, and small and thick leaves. Piceapollis, Alnipollenites, Pinuspollenites, Abietineaepollenites, Ephedripites
Wet Group MAPmed>1200 mm,
WMPmed>200 mm
Pollen parent plants are wet, marsh, or aquatic plants. Liquidambarpollenites, Quercoidites, Juglanspollenites, Rhoipites, Podocarpidites
Tab.2  Quantitative classification of the climate indicator significance of pollen. The subscript med represents the median of the interval
Fig.4  (a) Percentage of each group of temperature indicators; (b) percentage of each group of humidity indicators; T: evolution of the temperature of the Shahejie Formation in the Chezhen Depression; H: evolution of the humidity of the Shahejie Formation in the Chezhen Depression.
Fig.5  Ten zones based on 12 pollen taxa in the Shahejie Formation in the Chezhen Depression. Ang. = Angiospermae, Gym. = Gymnospermae, Liq. = Liquidambarpollenites, Lam. = Lamiaceae, Mel. = Meliaceae, Ulm. = Ulmipollenites, Que. = Quercoidites, Cor. = Corylus, Jug. = Juglanspollenites, Aln. = Alnipollenites, Tax. = Taxodiaceae, Eph. = Ephedripites, A.P. = Abietineaepollenites and Pinuspollenites.
Fig.6  The principle of climatic parameter restoration in the R1 zone. The orange area is the coexistence interval of the reference pollen climate parameters. (a) Coexistence interval determination of the MAT; (b) coexistence interval determination of the CMT; (c) coexistence interval determination of the WMT; (d) coexistence interval determination of the MAP; (e) coexistence interval determination of the WMP; (f) coexistence interval determination of the DMP. Li. = Liquidambarpollenites, La. = Lamiaceae, Ul. = Ulmipollenites, Qu. = Quercoidites, Co. = Corylus, Ju. = Juglanspollenites, A.P. = Abietineaepollenites and Pinuspollenites.
Zone MAT/℃ CMT/℃ WMT/℃ MAP/mm WMP/mm LMP/mm
R1 11.5?15.1 -1?2 23?28 619?1164 215?293 8?53
R2 2.2?15.1 -16.1?2 18.6?28 389?1164 215?293 8?53
R3 2.9?15.1 -7.2?2 18.6?28 626?1164 251?343 10?53
R4 2.9?21.6 -8.6?13.2 13.7?28.3 465?1682 251?343 10?73
R5 8.1?21.6 -0.1?13.2 13.7?28.3 465?1682 251?262 10?48
R6 11.5?15.1 -1?2 23?28 619?1164 251?293 10?53
R7 2?21.6 -7.2?13.2 13.7?28.3 626?1770 299?353 15?135
R8 2?21.6 -7.2?13.2 13.7?28.3 626?1682 299?343 15?73
R9 2.9?15.1 -0.1?2 18.6?28 465?1164 251?262 10?48
R10 0?21.6 -22.7?13.2 13.7?28.3 389?1682 45?293 5?73
Entirety 8.1?15.1 -0.1?2 18.6?28 389?1164 215?262 8?48
Tab.3  Climatic parameters for each pollen zone and the entire Shahejie Formation
1 M B Abbott, B P Finney, M E Edwards, K R Kelts (2000). Lake-level reconstruction and paleohydrology of Birch lake, central Alaska, based on seismic reflection profiles and core transects. Quat Res, 53(2): 154–166
https://doi.org/10.1006/qres.1999.2112
2 N Alexandrine, N Simon III, N Gabriel (2019). The late Pleistocene – Holocene paleoclimate reconstruction in the Adamawa plateau (Central Cameroon) inferred from the geochemistry and mineralogy of the Lake Fonjak sediments. J Afr Earth Sci, 150: 23–36
https://doi.org/10.1016/j.jafrearsci.2018.09.024
3 J H Chen, F Y Lv, X Z Huang, H J Birks, R Telford, S R Zhang, Q H Xu, Y Zhao, H P Wang, A F Zhou, W Huang, J B Liu, G Y Wei (2017). A novel procedure for pollen-based quantitative paleoclimate reconstructions and its application in China. Sci China Earth Sci, 60(11): 2059–2066
https://doi.org/10.1007/s11430-017-9095-1
4 J Y Fang, Z H Wang, Z Y Tang (2011). Atlas of Woody Plants in China: Distribution and Climate. Berlin Heidelberg: Springer
5 G W Grimm, J M Bouchal, T Denk, A Potts (2016). Fables and foibles: a critical analysis of the Palaeoflora database and the Coexistence Approach for palaeoclimate reconstruction. Rev Palaeobot Palynol, 233: 216–235
https://doi.org/10.1016/j.revpalbo.2016.07.001
6 G W Grimm, T Denk (2012). Reliability and resolution of the coexistence approach—a revalidation using modern-day data. Rev Palaeobot Palynol, 172: 33–47
https://doi.org/10.1016/j.revpalbo.2012.01.006
7 G W Grimm, A J Potts (2016). Fallacies and fantasies: the theoretical underpinnings of the Coexistence Approach for palaeoclimate reconstruction. Clim Past, 12(3): 611–622
https://doi.org/10.5194/cp-12-611-2016
8 M Han, Y C Cao, Y Z Wang, H Liu, Y X Li (2009). Sedimentary facies of Sha4 to lower Sha3 member in Paleogene in Chezhen Depression. Petrol Geo Recov Efficien, 16(5): 16–18 (in Chinese)
9 D Han, C Gao, Y Li, H Liu, J Cong, X Yu, G Wang (2020). Potential in paleoclimate reconstruction of modern pollen assemblages from natural and human-induced vegetation along the Heilongjiang River basin, NE China. Sci Total Environ, 745: 141121
https://doi.org/10.1016/j.scitotenv.2020.141121 pmid: 32738695
10 T E Huth, T E Cerling, D W Marchetti, D R Bowling, A L Ellwein, B H Passey, D P Fernandez, J W Valley, I J Orland (2020). Laminated soil carbonate rinds as a paleoclimate archive of the Colorado Plateau. Geochim Cosmochim Acta, 282: 227–244
https://doi.org/10.1016/j.gca.2020.05.022
11 H G Lao, Y S Wang, Y X Shan, X F Hao, Q Li (2019). Hydrocarbon downward accumulation from an upper oil source to the oil reservoir below in an extensional basin: a case study of Chezhen Depression in the Bohai Bay Basin. Mar Pet Geol, 103: 516–525
https://doi.org/10.1016/j.marpetgeo.2019.03.009
12 H R Lei, Z X Jiang, H K Zhou (2018). Analysis of paleoclimate evolution of the hyperthermal period in the early Paleogene: taking the Dongying depression as an example. Earth Sci Front, 25(4): 176–184
13 Z H Liu, S T Li (2007). Paleoclimatic cycles of depositional record and their control over the formation of high-frequency sequences. Geol Sci Techn Inform, 26(2): 30–34 (in Chinese)
14 B B Ma, Y C Cao, Y Z Wang, X Cheng, Y C Jia (2014). Formation mechanism of high-quality reservoir in the middle-deep strata in Palaeogene in the north zone of Chezhen Depression. J China U Min Techn, 43(3): 448–45 (in Chinese)
15 V Mosbrugger, T Utescher (1997). The coexistence approach: a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeogr Palaeoclimatol Palaeoecol, 134(1–4): 61–86
https://doi.org/10.1016/S0031-0182(96)00154-X
16 V Mosbrugger (1999). The nearest living relative method. In: Jones T P, Rowe N P, eds. Fossil Plants and Spores: Modern Techniques. London: Geological Society: 261–265
17 F Qin, Y Zhao (2013). Methods of quantitative climate reconstruction based on palynological data and their applications in China. Quat Sci, 33: 1054–1068 (in Chinese)
18 F Qin, Y Zhao, Q Li, M T Cai (2015). Modern pollen assemblages from surface lake sediments in northwestern China and their importance as indicators of vegetation and climate. Sci China Earth Sci, 58(9): 1643–1655
https://doi.org/10.1007/s11430-015-5111-9
19 J B Su, W B Zhu, J Wei, L M Xu, Y F Yang, Z Q Wang, Z Y Zhang (2011). Fault growth and linkage: Implications for tectonosedimentary evolution in the Chezhen Basin of Bohai Bay, eastern China. AAPG Bull, 95(1): 1–26
https://doi.org/10.1306/06301009207
20 Y Sun, B Z Xian, H X Lin (2007). Classification of sedimentary stages of gravel bodies in the steep slope zone of the faulted lake basin. Oil Geophys Prospect, 42(4): 468–473 (in Chinese)
21 M Q Tan, W L Zhang, X M Fang, M D Yan, J B Zan, T Zhang (2020). Rock magnetic record of core SG-3 since 1 Ma in the western Qaidam Basin and its paleoclimate implications for the NE Tibetan Plateau. Palaeogeogr Palaeoclimatol Palaeoecol, 560: 109949
https://doi.org/10.1016/j.palaeo.2020.109949
22 T Utescher, A A Bruch, B Erdei, L François, D Ivanov, F M B Jacques, A K Kern, Y S Liu, V Mosbrugger, R A Spicer (2014). The Coexistence Approach theoretical background and practical considerations of using plant fossils for climate quantification. Palaeogeogr Palaeoclimatol Palaeoecol, 410: 58–73
https://doi.org/10.1016/j.palaeo.2014.05.031
23 T Utescher, V Mosbrugger (2014). The Palaeoflora database.
24 J A van Dam, T Utescher (2016). Plant- and micromammal-based paleoprecipitation proxies: comparing results of the coexistence and climate-diversity approach. Palaeogeogr Palaeoclimatol Palaeoecol, 443: 18–33
https://doi.org/10.1016/j.palaeo.2015.11.010
25 J Wang, S Y Chen, Z X Jiang, B Y Jiang, L X Du (2005). Sedimentary facies in the second and third members of the Shahejie Formation in the Chezhen Depression, Shengli Oilfield. Sediment Geo Tethyan Geo, 25(3): 80–86 (in Chinese)
26 J Wang (2007). The research on sequence stratigraphy and deposition remodel of Shahejie Formation in Chezhen Sag. Xinjiang Oil & Gas, 3(1): 1–4 (in Chinese)
27 H C Wei, Y Zhao (2016). Surface pollen and its relationships with modern vegetation and climate in the Tianshan Mountains, northwestern China. Veg Hist Archaeobot, 25(1): 19–27
https://doi.org/10.1007/s00334-015-0530-2
28 W Wu, C S Liu, X H Zhou, Q Li, Z C Xing, Y Yan (2012). Paleoclimate evolution and its influence on lake level changes of Paleogene Dongying epoch in Liaodong Bay, East China. J China U Petro (Natural Sci), 36(1): 33–39 (in Chinese)
29 J H Yan, S Y Chen, L H Cheng, Z B Wu (2009). Simulation experiment for effects of lake level change on fan delta development. J China U Petrol (Natural Sci), 33(6): 1–5 (in Chinese)
30 J L Zhang, S He, Y Q Wang, Y S Wang, X F Hao, S Y Luo, P Li, X W Dang, R Z Yang (2019a). Main mechanism for generating overpressure in the Paleogene source rock series of the Chezhen Depression, Bohai Bay Basin, China. J Earth Sci, 30(4): 775–787
https://doi.org/10.1007/s12583-017-0959-6
31 J Z Zhang, C Q Bi, X F Wang, J Q Gong, S M Cao (2005a). Petroleum and oil geology and exploratory prospect of Chezhen Sag. Offshore Oil, 25(4): 6–10 (in Chinese)
32 S Q Zhang, Y T Sun, J H Liu, C G Wei, J Sun (2005b). The Influence of climate change on accommodation space changes and evolution of sequences. Marine Geo Lett, 21(2): 12–15 (in Chinese)
33 Z Zheng, X Zhang, M Man, J Wei, K Huang (2016). Review and data integration of pollen-based quantitative paleoclimate reconstruction studies in China and adjacent areas. Quatern Sci, 36: 503–519 (in Chinese)
34 Z Y Zhang, D M Cheng, C S Li, W Hu, X H Zhan, H L Ji (2019b). The complexity of climate reconstructions using the coexistence approach on Qinghai–Tibetan Plateau. J Palaeogeogr, 8(1): 1–10
35 Z Y Zhang, S P Harrison, V Mosbrugger, D K Ferguson, K N Paudayal, A Trivedi, C S Li (2015). Evaluation of the realism of climate reconstruction using the Coexistence Approach with modern pollen samples from the Qinghai-Tibetan Plateau. Rev Palaeobot Palynol, 219: 172–182
https://doi.org/10.1016/j.revpalbo.2015.03.011
[1] Kaixiu ZHANG, Wen QIN, Fang TIAN, Xianyong CAO, Yuecong LI, Jule XIAO, Wei DING, Ulrike HERZSCHUH, Qinghai XU. Influence of plant coverage and environmental variables on pollen productivities: evidence from northern China[J]. Front. Earth Sci., 2020, 14(4): 789-802.
[2] Weihe REN, Yan ZHAO, Quan LI, Jianhui CHEN. Changes in vegetation and moisture in the northern Tianshan of China over the past 450 years[J]. Front. Earth Sci., 2020, 14(2): 479-491.
[3] Furong LI, Yan ZHAO, Jinghui SUN, Wenwei ZHAO, Xiaoli GUO, Ke ZHANG. Surface pollen and its relationship to vegetation in the Zoige Basin, eastern Tibetan Plateau[J]. Front Earth Sci, 2011, 5(3): 252-261.
[4] Furong LI, Jinghui SUN, Yan ZHAO, Xiaoli GUO, Wenwei ZHAO, Ke ZHANG, . Ecological significance of common pollen ratios: A review[J]. Front. Earth Sci., 2010, 4(3): 253-258.
[5] Xiaozhong HUANG, Gang ZHOU, Yanlin MA, Fahu CHEN, Qinghai XU, . Pollen distribution in large freshwater lake of arid region: a case study on the surface sediments from Bosten Lake, Xinjiang, China[J]. Front. Earth Sci., 2010, 4(2): 174-180.
[6] Rongke XU, Xiongfei CAI, Yulian ZHANG, Liang SHAN, Yaoyu CHEN, Jianhong QI, Gang WANG, . Impact of phased uplift of Tibetan Plateau on environmental changes since late Middle Pleistocene: Palynological records in the three terraces of Middle Shiquan River[J]. Front. Earth Sci., 2009, 3(4): 402-410.
[7] Fang TIAN, Xianyong CAO, Qinghai XU, Yuecong LI. A laboratorial study on the influence of alkaline and oxidative environment on the preservation of Pinus tabulaeformis pollen[J]. Front Earth Sci Chin, 2009, 3(2): 226-230.
[8] ZHANG Yulan, LONG Jiangping. Sporopollen and algae research of core B106 in the northern South China Sea and its paleoenvironmental evolution[J]. Front. Earth Sci., 2008, 2(2): 157-161.
[9] LIU Zhanhong, LI Sitian, XIN Renchen, XU Changgui, CHENG Jianchun. The paleoclimatic records and the relevance with the formation of hydrocarbon source rocks: A case study of Huanghekou depression, Bohaiwan basin[J]. Front. Earth Sci., 2008, 2(1): 73-82.
[10] MENG Peng, LIU Li, GAO Yuqiao, QU Xiyu, SUN Xiaoming. An application of micropaleontology-sequence stratigraphy method in stratigraphic division —An example for the study of the Paleogene in the Guangjiapu area, Chengbei fault-step zone, Dagang[J]. Front. Earth Sci., 2007, 1(2): 157-164.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed