Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (4) : 835-845    https://doi.org/10.1007/s11707-021-0940-7
RESEARCH ARTICLE
The response of soil organic carbon to climate and soil texture in China
Yi ZHANG1,2, Peng LI1,2(), Xiaojun LIU3, Lie XIAO1,2, Tanbao LI4, Dejun WANG4
1. State Key Laboratory Base of Eco-hydraulic Engineering in Arid Area, Xi’an University of Technology, Xi’an 710048, China
2. State Key Laboratory of National Forestry and Grassland Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi’an 710048, China
3. Forestry College, Jiangxi Agricultural University, Nanchang 330045, China
4. Northwest Surveying, Planning and Designing Institute of National Forestry and Grassland Administration, Xi’an 710048, China
 Download: PDF(864 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Soil organic carbon (SOC) plays an essential role in the carbon cycle and global warming mitigation, and it varies spatially in relation to other soil and environmental properties. But the national distributions and the impact mechanisms of SOC remain debated in China. Therefore, how soil texture and climate factors affect the SOC content and the regional differences in SOC content were explored by analyzing 7857 surface soil samples with different land-use. The results showed that the SOC content in China, with a mean value of 11.20 g·kg−1, increased gradually from north to south. The SOC content of arable land in each geographical area was lower than in grassland and forest-land. Although temperature also played a specific role in the SOC content, precipitation was the most critical climate factor. The SOC content was positively correlated with the silt and clay content. The lower the temperature, the greater the effect of environmental factors on SOC. In contrast, the higher the temperature, the more significant impact of soil texture on SOC. The regional difference in SOC highlights the importance of soil responses to climate change. Temperature and soil texture should be explicitly considered when predicting potential future carbon cycle and sequestration.

Keywords soil organic carbon      climate      soil texture      land use     
Corresponding Author(s): Peng LI   
Online First Date: 26 January 2022    Issue Date: 11 January 2023
 Cite this article:   
Yi ZHANG,Peng LI,Xiaojun LIU, et al. The response of soil organic carbon to climate and soil texture in China[J]. Front. Earth Sci., 2022, 16(4): 835-845.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0940-7
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I4/835
Fig.1  Overview of the research area.
Type Northwest Northern Southern Qinghai-Tibet
Arable land 314 2210 2547 328
Grassland 248 333 118 175
Forest land 129 387 884 184
Tab.1  The number of arable land, forest land and grassland sample points in each region
Fig.2  Semivariogram function theory model. C0: nugget variance; C1: structural variance; GD: degree of spatial dependence; RSS: residual sum of squares.
Theoretical Model Nugget (C0) Sill Value (C0 + C1) C0/(C0 + C1) RSS Range R2
Spherical Model 0.150 0.031 0.476 2.718 × 10−3 269000 0.501
Gaussian Model 0.020 0.040 0.498 9.076 × 10−3 197000 0.654
Exponential Model 0.006 0.014 0.405 1.496 × 10−3 160000 0.822
Tab.2  Semivariogram theoretical models of SOC content and the parameters
Fig.3  Soil organic carbon (SOC) content and geographical divisions.
Fig.4  Soil organic carbon (SOC) content in each geographical zone. Note: uppercase letters represent the differences among the different land use types in the same area, and the lowercase letters indicate the differences in different areas of the same land use type.
Area Climate Correlation coefficient Efficacy analysis
Arable land Grass land Forest land Arable land Grass land Forest land Ensemble
Northwest MAT −0.295** −0.471** −0.694** 0.779 0.966 0.999 0.999
MAP 0.197* 0.351** 0.469** 0.113 0.254 0.946 0.885
MAT × MAP - - - 0.059 0.131 0.954 0.088
Northern MAT −0.381** −0.263* −0.153* 0.999 0.846 0.727 0.104
MAP 0.230 −0.030 0.220* 0.916 0.063 0.938 0.897
MAT × MAP - - - 0.823 0.050 0.076 0.784
Southern MAT −0.070 −0.363* −0.058 0.539 0.881 0.420 0.05
MAP 0.107** 0.142 0.088 0.995 0.467 0.590 0.997
MAT × MAP - - - 0.944 0.116 0.055 0.602
Qinghai-Tibet MAT −0.193* −0.163 −0.093 0.934 0.385 0.058 0.545
MAP 0.107** 0.200 0.154 0.923 0.490 0.177 0.879
MAT × MAP - - - 0.470 0.114 0.053 0.379
Tab.3  Partial correlation and interpretation between soil organic carbon (SOC), mean annual temperature (MAT), and mean annual precipitation (MAP)
Area Soil texture Correlation coefficient
Arable land Grass land Forest land
Northwest Sand −0.248** −0.184** −0.510**
Silt 0.140** 0.103** 0.613**
Clay 0.317** 0.254** 0.089**
Northern Sand −0.273** −0.500** −0.344**
Silt 0.186** 0.394** 0.309**
Clay 0.266** 0.423** 0.304**
Southern Sand −0.271** −0.103** −0.190**
Silt 0.243** 0.229** 0.152**
Clay 0.184** −0.209** 0.144**
Qinghai-Tibet Sand −0.148** −0.325** −0.371**
Silt −0.135** 0.331** 0.354**
Clay −0.109** 0.208** 0.306**
Tab.4  Correlation analysis between soil organic carbon (SOC) content and soil texture factors in China
Area Land use Regression analysis a)
R2 b)adj Equation
Northwest Arable land 0.317** SOC= 6.567+ 0.201 × Clay
Grass land 0.254** SOC= 6.113+ 0176 × Clay
Forest land 0.614** SOC= 3.927+ 0.266 × Silt
Northern Arable land 0.289** SOC= 9.006+ 0.750 × Clay–0.470 × Sand c
Grass land 0.500** SOC= 19.854–0.171 × Sand
Forest land 0.344** SOC= 19.609–0.137 × Sand
Southern Arable land 0.271** SOC= 16.335–0.075 × Sand
Grass land 0.120** SOC= 3.719–0.910 × Clay
Forest land 0.190** SOC= 16.367–0.057 × Sand
Qinghai-Tibet Arable land 0.313** SOC= 6.567+ 0.810 × Clay
Grass land 0.331** SOC= 5.886+ 0.131 × Silt
Forest land 0.371** SOC= 3.307+ 0.108 × Sand
Tab.5  Stepwise regression analysis of soil organic carbon (SOC) and soil texture factors in different land use patterns in different geographical areas
Area Land use Stepwise regression model a R2 c)adj ΔR2 d)1 ΔR2 e)2 ΔR2 f)3 ΔR2 g)4
Predictors b
North-west Arable land Constant, Clay, MAT, Silt 0.491 0.094 0.187 0.21
Grass land Constant, MAT, Clay 0.486 0.215 0.271
Forest land Constant, MAT, Silt 0.992 0.471 0.521
Ensemble Constant, MAT, Sand, MAP 0.719 0.171 0.264 0.284
Northern Arable land Constant, MAT, Sand, Clay, MAP 0.886 0.145 0.242 0.248 0.251
Grass land Constant, Sand, MAT 0.519 0.244 0.275
Forest land Constant, Sand, MAP 0.266 0.118 0.148
Ensemble Constant, Sand, MAT 0.497 0.238 0.259
Southern Arable land Constant, Sand, MAP 0.171 0.073 0.098
Grass land Constant, MAT, Silt, MAP 0.505 0.117 0.164 0.224
Forest land Constant, Sand, MAP 0.077 0.034 0.043
Ensemble Constant, Sand, MAP, Silt 0.798 0.235 0.279 0.284
Qinghai-Tibet Arable land Constant, MAP, MAT, Clay 0.419 0.076 0.156 0.187
Grass land Constant, Silt 0.099 0.099
Forest land Constant, Sand 0.126 0.126
Ensemble Constant, MAP, Sand, MAT 0.494 0.195 0.232 0.262
Tab.6  Results of a stepwise regression analysis of soil organic carbon (SOC) and climatic texture in different geographical regions of China
1 J Balesdent, E Besnard, D Arrouays, C Chenu (1998). The dynamics of carbon in particle-size fractions of soil in a forest-cultivation sequence. Plant Soil, 201(1): 49–57
https://doi.org/10.1023/A:1004337314970
2 P Casals, L Lopez-Sangil, A Carrara, C Gimeno, S Nogués (2011). Autotrophic and heterotrophic contributions to short-term soil CO2 efflux following simulated summer precipitation pulses in a Mediterranean dehesa. Global Biogeochem Cycles, 25(3): GB3012
https://doi.org/10.1029/2010GB003973
3 E Chang, P Li, Z Li, L Xiao, B Zhao, Y Su, Z Feng (2019). Using water isotopes to analyze water uptake during vegetation succession on abandoned cropland on the Loess Plateau, China. Catena, 181: 104095
https://doi.org/10.1016/j.catena.2019.104095
4 H Chen, H Q Tian (2005). Does a general temperature-dependent q10 model of soil respiration exist at biome and global scale? J Integr Plant Biol, 47(11): 1288–1302
https://doi.org/10.1111/j.1744-7909.2005.00211.x
5 S Chen, Y Huang, J Zou, Y Shi (2013). Mean residence time of global topsoil organic carbon depends on temperature, precipitation and soil nitrogen. Global Planet Change, 100: 99–108
https://doi.org/10.1016/j.gloplacha.2012.10.006
6 X W Duan, Z Zhao, G Liu (2012). The variations of voil physico-chemical properties since the Second National Soil Survey in the northeast typical black soil regions. J Soil Sci, 43: 529–534
7 H J Fang, S L Cheng, Y S Wang, G R Yu, M J Xu, X S Dang, L S Li, L Wang (2014). Changes in soil heterotrophic respiration, carbon availability, and microbial function in seven forests along a climate gradient. Ecol Res, 29(6): 1077–1086
https://doi.org/10.1007/s11284-014-1194-6
8 R F Follett, C E Stewart, E G Pruessner, J M Kimble (Retired) (2015). Great plains climate and land use effects on soil organic carbon. Soil Sci Soc Am J, 79(1): 261–271
https://doi.org/10.2136/sssaj2014.07.0282
9 Y Jia, Y Kuzyakov, G Wang, W Tan, B Zhu, X Feng (2020). Temperature sensitivity of decomposition of soil organic matter fractions increases with their turnover time. Land Degrad Dev, 31(5): 632–645
https://doi.org/10.1002/ldr.3477
10 X Gao, T Meng, X Zhao (2017). Variations of soil organic carbon following land use change on deep-loess hillsopes in China. Land Degrad Dev, 28(7): 1902–1912
https://doi.org/10.1002/ldr.2693
11 Y He, M Wang (2013). China’s geographical regionalization in Chinese secondary school curriculum (1902–2012). J Geogr Sci, 23(2): 370–383
https://doi.org/10.1007/s11442-013-1016-8
12 X Kang, Y Li, J Wang, L Yan, X Zhang, H Wu, Z Yan, K Zhang, Y Hao (2020). Precipitation and temperature regulate the carbon allocation process in alpine wetlands: quantitative simulation. J Soils Sediments, 20(9): 3300–3315
https://doi.org/10.1007/s11368-020-02643-x
13 J Q Li, Z L Li, G F Jiang, H Chen, C M Fang (2016). A study on soil organic carbon in plough layer of China’s Arable Land. J Fudan U (Natural Sciences), 55: 247–256+266 https://doi.org/CNKI:SUN:FDXB.0.2016-02-016 (in Chinese)
14 Q Li, P Yu, G Li, D Zhou, X Chen (2014). Overlooking soil erosion induces underestimation of the soil C loss in degraded land. Quat Int, 349: 287–290
https://doi.org/10.1016/j.quaint.2014.05.034
15 S Liao, S Tan, Y Peng, D Wang, X Ni, K Yue, F Wu, Y Yang (2020). Increased microbial sequestration of soil organic carbon under nitrogen deposition over China’s terrestrial ecosystems. Ecol Process, 9(1): 52
https://doi.org/10.1186/s13717-020-00260-7
16 X Liu, Y Zhang, P Li (2020). Spatial variation characteristics of soil erodibility in the Yingwugou Watershed of the Middle Dan River, China. Int J Environ Res Public Health, 17(10): 3568
https://doi.org/10.3390/ijerph17103568 pmid: 32443657
17 N Mehta, N R Pandya, V O Thomas, N S R Krishnayya (2014). Impact of rainfall gradient on aboveground biomass and soil organic carbon dynamics of forest covers in Gujarat, India. Ecol Res, 29(6): 1053–1063
https://doi.org/10.1007/s11284-014-1192-8
18 H V Miegroet, M Olsson (2011). Ecosystem disturbance and soil organic carbon: a review. In: Jandl R, Rodeghiero M, Olsson M, eds. Soil Carbon in Sensitive European Ecosystems: from Science to Land Management. New York: John Wiley & Sons
19 X Nie, D Wang, L Yang, G Zhou (2021). Controls on variation of soil organic carbon concentration in the shrublands of the north-eastern Tibetan Plateau. Eur J Soil Sci, 72(4): 1817–1830
https://doi.org/10.1111/ejss.13084
20 P Pathak, A S Reddy (2021). Vertical distribution analysis of soil organic carbon and total nitrogen in different land use patterns of an agro-organic farm. Trop Ecol, 62(3): 386–397
https://doi.org/10.1007/s42965-021-00164-3
21 B S Razavi, S B Liu, Y Kuzyakov (2017). Hot experience for cold-adapted microorganisms: temperature sensitivity of soil enzymes. Soil Biol Biochem, 105: 236–243
https://doi.org/10.1016/j.soilbio.2016.11.026
22 C Riggers, C Poeplau, A Don, C Frühauf, R Dechow (2021). How much carbon input is required to preserve or increase projected soil organic carbon stocks in German croplands under climate change? Plant Soil, 460(1-2): 417–433
https://doi.org/10.1007/s11104-020-04806-8
23 J M Robinson, S L L Barker, V L Arcus, S R McNally, L A Schipper (2020). Contrasting temperature responses of soil respiration derived from soil organic matter and added plant litter. Biogeochemistry, 150(1): 45–59
https://doi.org/10.1007/s10533-020-00686-3
24 S D Sasmito, Y Kuzyakov, A A Lubis, D Murdiyarso, L B Hutley, S Bachri, D A Friess, C Martius, N Borchard (2020). Organic carbon burial and sources in soils of coastal mudflat and mangrove ecosystems. Catena, 187: 104414
https://doi.org/10.1016/j.catena.2019.104414
25 D S Schimel, B H Braswell, E A Holland, R Mckeown, D S Ojima, T H Painter, W J Parton, A R Townsend (1994). Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global Biogeochem Cycles, 8(3): 279–293
https://doi.org/10.1029/94GB00993
26 Z Shah, Y Noor, T Shah, A Latif, M Amin, A Shah (2014). Changes in soil microbial attributes with soil characteristics and parent materials. Sarhad J Agric, 30(1): 15–25
27 Z Shi, X Li, L Zhang, Y Wang (2015). Impacts of farmland conversion to apple (Malus domestica) orchard on soil organic carbon stocks and enzyme activities in a semiarid loess region. J Plant Nutr Soil Sci, 178(3): 440–451
https://doi.org/10.1002/jpln.201400211
28 J Six, R T Conant, E A Paul, K Paustian (2002). Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil, 241(2): 155–176
https://doi.org/10.1023/A:1016125726789
29 K R Smith, B G Waring (2019). Broad-scale patterns of soil carbon (C) pools and fluxes across semiarid ecosystems are linked to climate and soil texture. Ecosystems (NY), 22(4): 742–753
https://doi.org/10.1007/s10021-018-0299-0
30 L Wang, D M He, H Liu, H Jiang, H Wang (2017). Distribution of soil organic carbon under different vegetation successions in the coastal wetland of Jiangsu. J Anhui Agr U, 44(06):1064–1069 doi: 10.13610/j.cnki.1672-352x.20171214.020 (in Chinese)
31 R Wang, J A J Dungait, C A Creamer, J Cai, B Li, Z Xu, Y Zhang, Y Ma, Y Jiang (2015). Carbon and nitrogen dynamics in soil aggregates under long-term nitrogen and water addition in a temperate steppe. Soil Sci Soc Am J, 79(2): 527–535
https://doi.org/10.2136/sssaj2014.09.0351
32 L Xiao, G B Liu, P Li, Q Li, S Xue (2020). Ecoenzymatic stoichiometry and microbial nutrient limitation during secondary succession of natural grassland on the Loess Plateau, China. Soil Tillage Res, 200: 104605
https://doi.org/10.1016/j.still.2020.104605
33 H Xu, Q Qu, M Wang, P Li, Y Li, S Xue, G Liu (2020). Soil organic carbon sequestration and its stability after vegetation restoration in the Loess Hilly Region, China. Land Degrad Dev, 31(5): 568–580
https://doi.org/10.1002/ldr.3472
34 L Xu, G Yu, N He (2019). Increased soil organic carbon storage in Chinese terrestrial ecosystems from the 1980s to the 2010s. J Geogr Sci, 29(1): 49–66
https://doi.org/10.1007/s11442-019-1583-4
35 Z Xu, G Yu, X Zhang, N He, Q Wang, S Wang, X Xu, R Wang, N Zhao (2018). Biogeographical patterns of soil microbial community as influenced by soil characteristics and climate across Chinese forest biomes. Applied Soil Ecology, 124: 298–305
36 Y Yan (2019). Unintended land use effects of afforestation in China’s Grain for Green Program. Am J Agric Econ, 101(4): 1047–1067
https://doi.org/10.1093/ajae/aay107
37 J Zhou, B Fu, G Gao, Y Lü, Y Liu, N Lü, S Wang (2016). Effects of precipitation and restoration vegetation on soil erosion in a semi-arid environment in the Loess Plateau, China. Catena, 137: 1–11
https://doi.org/10.1016/j.catena.2015.08.015
38 Q C Zeng, X Li, H Y Dong, Y Y Li, M Chen, S S An (2015). Ecological stoichiometry characteristics and physical-chemical properties of soils at different latitudes on the Loess Plateau. J Nat Res, 30: 870–879 (in Chinese) doi: 10.11849/zrzyxb.2015.05.014
39 L Zhang, Q Zheng, Y Liu, S Liu, D Yu, X Shi, S Xing, H Chen, X Fan (2019). Combined effects of temperature and precipitation on soil organic carbon changes in the uplands of eastern china. Geoderma, 337: 1105–1115
https://doi.org/10.1016/j.geoderma.2018.11.026
40 X Zhang, F Zhang, D Wang, J Fan, Y Hu, H Kang, M Chang, Y Pang, Y Yang, Y Feng (2018). Effects of vegetation, terrain and soil layer depth on eight soil chemical properties and soil fertility based on hybrid methods at urban forest scale in a typical loess hilly region of China. PLoS One, 13(10): e0205661
https://doi.org/10.1371/journal.pone.0205661 pmid: 30335794
41 Y Zhang, P Li, X Liu, L Xiao, P Shi, B Zhao (2019). Effects of farmland conversion on the stoichiometry of carbon, nitrogen, and phosphorus in soil aggregates on the Loess Plateau of China. Geoderma, 351: 188–196
https://doi.org/10.1016/j.geoderma.2019.05.037
42 Y Zhang, P Li, X Liu, L Xiao, E Chang, Y Su, J Zhang, Z Liu (2020). Study on sediment and soil organic carbon loss during continuous extreme scouring events on the Loess Plateau. Soil Sci Soc Am J, 84(6): 1957–1970
https://doi.org/10.1002/saj2.20169
43 B Zhao, Z Li, P Li, G Xu, H Gao, Y Cheng, E Chang, S Yuan, Y Zhang, Z Feng (2017). Spatial distribution of soil organic carbon and its influencing factors under the condition of ecological construction in a hilly-gully watershed of the Loess Plateau, China. Geoderma, 296: 10–17
https://doi.org/10.1016/j.geoderma.2017.02.010
44 N Zhao, X G Li (2017). Effects of aspect–vegetation complex on soil nitrogen mineralization and microbial activity on the Tibetan Plateau. Catena, 155: 1–9
https://doi.org/10.1016/j.catena.2017.02.025
[1] Xiaolu TANG, Li SHENG, Yinkang ZHOU. Exploring complex urban growth and land use efficiency in China’s developed regions: implications for territorial spatial planning[J]. Front. Earth Sci., 2022, 16(4): 1040-1051.
[2] Long SUN, Jinliang ZHANG, Yang LI, Xue YAN, Xuecai ZHANG. Paleosalinity and lake level fluctuations of the 3rd Member of Paleogene Shahejie Formation, Chezhen Sag, Bohai Bay Basin[J]. Front. Earth Sci., 2022, 16(4): 949-962.
[3] Guihua LIU, Britta SCHMALZ, Qi ZHANG, Shuhua QI, Lichao ZHANG, Shiyu LIU. Assessing effects of land use and land cover changes on hydrological processes and sediment yield in the Xunwu River watershed, Jiangxi Province, China[J]. Front. Earth Sci., 2022, 16(3): 819-833.
[4] Jing TIAN, Shenglian GUO, Jiabo YIN, Zhengke PAN, Feng XIONG, Shaokun HE. Quantifying both climate and land use/cover changes on runoff variation in Han River basin, China[J]. Front. Earth Sci., 2022, 16(3): 711-733.
[5] Tao CHEN, Jinliang ZHANG, Yang LI, Yongfu ZHAO. Quantitative reconstruction of the palaeoclimate of the Shahejie Formation in the Chezhen Depression, Bohai Bay Basin, eastern China[J]. Front. Earth Sci., 2021, 15(4): 909-921.
[6] Jing YE, Zhijie HOU, Haiyan MING, Yehuai CHENG. Ecological security pattern-based simulation for land use structure change: a case study in Ezhou City, China[J]. Front. Earth Sci., 2021, 15(3): 526-542.
[7] Herrieth MACHIWA, Bo TIAN, Dhritiraj SENGUPTA, Qian CHEN, Michael MEADOWS, Yunxuan ZHOU. Vegetation dynamics in response to human and climatic factors in the Tanzanian Coast[J]. Front. Earth Sci., 2021, 15(3): 595-605.
[8] Xiaocha WEI, Qiuwen ZHOU, Ya LUO, Mingyong CAI, Xu ZHOU, Weihong YAN, Dawei PENG, Ji ZHANG. Vegetation dynamics and its response to driving factors in typical karst regions, Guizhou Province, China[J]. Front. Earth Sci., 2021, 15(1): 167-183.
[9] Fangyan ZHU, Heng WANG, Mingshi LI, Jiaojiao DIAO, Wenjuan SHEN, Yali ZHANG, Hongji WU. Characterizing the effects of climate change on short-term post-disturbance forest recovery in southern China from Landsat time-series observations (1988–2016)[J]. Front. Earth Sci., 2020, 14(4): 816-827.
[10] Marwa Gamal Mohamed ALI, Mahmoud Mohamed IBRAHIM, Ahmed El BAROUDY, Michael FULLEN, El-Said Hamad OMAR, Zheli DING, Ahmed Mohammed Saad KHEIR. Climate change impact and adaptation on wheat yield, water use and water use efficiency at North Nile Delta[J]. Front. Earth Sci., 2020, 14(3): 522-536.
[11] Sukh TUMENJARGAL, Steven R. FASSNACHT, Niah B.H. VENABLE, Alison P. KINGSTON, Maria E. FERNÁNDEZ-GIMÉNEZ, Batjav BATBUYAN, Melinda J. LAITURI, Martin KAPPAS, G. ADYABADAM. Variability and change of climate extremes from indigenous herder knowledge and at meteorological stations across central Mongolia[J]. Front. Earth Sci., 2020, 14(2): 286-297.
[12] Bing YANG, Xionghua ZHANG, Wenkun QIE, Yi WEI, Xing HUANG, Haodong XIA. Variabilities of carbonate δ13C signal in response to the late Paleozoic glaciations, Long’an, South China[J]. Front. Earth Sci., 2020, 14(2): 344-359.
[13] Yuanfang CHAI, Yitian LI, Yunping YANG, Sixuan LI, Wei ZHANG, Jinqiu REN, Haibin XIONG. Water level variation characteristics under the impacts of extreme drought and the operation of the Three Gorges Dam[J]. Front. Earth Sci., 2019, 13(3): 510-522.
[14] Zhuokun PAN, Yueming HU, Guangxing WANG. Detection of short-term urban land use changes by combining SAR time series images and spectral angle mapping[J]. Front. Earth Sci., 2019, 13(3): 495-509.
[15] Ying XIONG, Fen PENG, Bin ZOU. Spatiotemporal influences of land use/cover changes on the heat island effect in rapid urbanization area[J]. Front. Earth Sci., 2019, 13(3): 614-627.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed