Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (3) : 568-586    https://doi.org/10.1007/s11707-021-0943-4
RESEARCH ARTICLE
Geochemical investigation of low latitude black shale intervals of the Lower to Middle Jurassic succession, Indus Basin, Pakistan
Fahad ALI1,2, Shiqi ZHANG1(), Muhammad HANIF3, Mohibullah MOHIBULLAH4, Yaxuan ZHANG5, Muhammad USMAN1, Sheng WANG6, Xueliang LIU6, Pengjie MA1, Dongmou HUANG1
1. School of Geosciences, China University of Petroleum (East China), Qingdao 266580, China
2. Department of Geology, Bacha Khan University, Charsadda 24430, Pakistan
3. National Centre of Excellence in Geology, University of Peshawar, Peshawar 25000, Pakistan
4. Department of Geology, University of Balochistan, Quetta 87300, Pakistan
5. School of geosciences, The University of Edinburgh, Edinburgh, EH8 9JU, UK
6. Lukeqin Oil Production Plant, PetroChina Tuha Oilfield, Turpan City 828202, China
 Download: PDF(3054 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Lower to Middle Jurassic sedimentary succession is dominated by siliciclastics with a significant amount of black shales in the Indus Basin, Pakistan. Several outcrop samples have been studied using an integrated approach to interpret the conceptual depositional setting from carbon and oxygen isotopes (δ13C & δ18O), organic geochemistry, and palynofacies with major and trace element analysis. For interpretation of trace element data, various single and elemental ratios have been used in this research to unlock the geological history of the studied strata. Ti/Al is 1.96 for high-potential source rock and 7.82 for non-potential source rock, and Cr (less than 1) indicates low clastic input with low oxygen for stratified and stagnant water. The ratios of V/(V+ Cr), V/(V+ Ni), V/Mo, V/Ni, (Cu+ Mo)/Zn, Mo/Al, isotopic values of δ13C and δ18O and besides the V/Cr elemental ratio, all proxies indicate that there are oxygen-depleted anoxic conditions at high potentials, while in non-potential source rock, these ratios show oxic to sub-oxic settings. In addition to the trace element correlation with total organic carbon, the influx of organic matter is determined by the palynoafacies analysis, which indicates mixed terrestrial and marine organic influx in high-potential source rock and vice versa. Furthermore, the studies of palynofaceis DFPF A-D and SFPF A-B suggest that the depositional setting of black shale occurred in the anoxic proximal to distal shelf. The results suggest that the regional and local occurrence of black shale during the Lower to Middle Jurassic and its geological condition were addressed, and these play an important role in its depositional and paleooceanographic setting in the Eastern Tethys.

Keywords black shale      Jurassic      trace elements      organic matter      Indus Basin      Pakistan     
Corresponding Author(s): Shiqi ZHANG   
Online First Date: 27 January 2022    Issue Date: 29 December 2022
 Cite this article:   
Fahad ALI,Shiqi ZHANG,Muhammad HANIF, et al. Geochemical investigation of low latitude black shale intervals of the Lower to Middle Jurassic succession, Indus Basin, Pakistan[J]. Front. Earth Sci., 2022, 16(3): 568-586.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0943-4
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I3/568
Fig.1  The location of the Indus Basin (is shown by the red color star). (a) Lower Jurassic paleo-geography and paleo-climatic belts (Rees et al., 2000; Dera et al., 2009); (b) the area of deposition of black shale across the globe (Ikeda et al., 2018).
Fig.2  The location of studied stratigraphic sections, such as ACL-N Khai, Baroch Nala, Gula Khel Nala, Chichali Nala, Nammal gorge, and Mughal Kot sections represented by red star respectively in Indus Basin, Pakistan (Kazmi and Rana, 1982). The boundary between the Upper and Lower Indus Basin is approximately lies at the latitude of 32° 00′ and longitude of 70°00′.
Sample No. the composition of trace elements/(mg·L–1)
Al Cr Cu Mn Mo Ni Ti V Zn
PAAS 84000.0 100.0 75.0 1400.0 1.0 60.0 3000.0 140.0 80.0
NS 10 11261.0 90.17 6.12 7.13 2.1 15.23 3000.35 130.21 8.35
NS 08 11855.2 80.17 8.02 11.13 3.53 21.17 3445.98 130.31 11.94
ND 25 11966.0 80.96 17.72 19.53 2.22 30.66 3499.11 137.17 29.11
ND 20 10967.1 132.1 33.52 15.45 2.56 17.16 3470.45 125.46 25.21
ND 15 10960.3 99.17 23.12 21.88 3.45 13.5 2976.33 155.98 25.54
ND 12 11905.8 82.16 18.22 16.4 3.56 13.65 2999.76 130.1 33.74
ND 06 12965.7 92.16 13.02 18.45 3.5 12.56 3300.23 127.67 30.24
ND 02 12967.7 73.17 12.02 17.03 5.57 44.77 3746.51 254.39 24.64
BS 11 13280.3 53.69 0 109.4 0 15.19 671.81 188.55 0
BS 09 13381.3 54.79 0 139.49 0 10.15 1950.85 145.34 3.65
BD 46 31500.4 71.12 6.9 189.32 3.21 13.53 1190.17 146.26 44.15
BD 36 30530.8 76.32 10.55 190.65 3.53 21.44 1011.99 136.44 51.33
BD 29 31531.5 70.11 7.7 187.41 2.57 13.95 1399.34 137.57 45.15
BD 21 31601.2 70.12 6.7 190.35 2.91 45.32 3500.17 146.23 38.61
BD 19 31501.4 71.32 6.8 188.31 0 13.33 2910.07 147.03 35.01
BD 15 31932.7 81.41 15.22 199.91 10.11 11.76 2980.64 135.55 31.15
BD 12 30112.1 65.44 5.11 185.46 4.3 12.86 2999.61 145.15 32.31
BD 06 31011.7 70.13 9.26 118.21 5.5 13.66 2975.94 139.95 33.55
SS 20 21211.5 77.59 16.52 35.43 0 7.66 4041.66 129.36 33.62
SS 21 73756.2 97.6 24.82 348.25 6.2 38.36 4016.75 132.14 217.95
SS 22 78344.1 142.05 8.21 213.37 44.7 141.93 4117.44 182.54 266.54
SS 23 29455.8 99.88 44.29 190.64 0 35.46 4423.04 187.44 43.82
SS 24 65633.5 86.41 44.2 295.7 3.1 41.45 4133.04 171.9 77.01
SS 25 66541.2 99.13 38.75 275.91 1.05 35.45 4099.04 165.98 99.91
CC 26 66633.5 97.41 33.24 272.96 3.11 38.4 3187.88 173.45 79.01
CC 27 63445.9 106.83 26.77 118.56 0 25.05 2389.78 175.95 44.95
CC 28 42777.7 96.1 24.34 888.13 3.2 43.14 1599.11 125.46 55.56
CC 29 39955.4 96.29 17.69 798.87 1.7 40.28 2767.11 122.57 55.47
CC 30 47177.4 86.26 27.12 265.27 0 30.75 1667.34 120.35 50.47
CC 31 55655.1 114.54 25.07 282.13 2.63 37.24 3746.51 206.3 69.74
GS 20 21211.5 76.59 15.52 34.43 0 7.36 4040.66 128.36 32.62
GS 12 73754.2 94.6 23.82 347.25 3.2 36.36 4006.75 172.14 207.95
GS 10 78334.1 132.05 9.21 203.37 34.7 152.93 4110.44 181.54 261.54
GS 09 29435.8 98.88 41.29 199.64 0 33.46 4403.04 187.44 42.82
GS 06 65623.5 85.41 41.2 285.7 2.1 40.45 4103.04 171.9 76.01
GS 05 66511.2 95.13 39.75 295.91 2.05 36.45 4093.04 165.98 98.91
GS 02 66623.5 90.41 31.24 282.96 2.11 37.4 3186.88 173.45 78.01
GD 20 63440.9 100.83 23.77 108.56 0 24.05 2380.78 175.95 43.95
GD 16 42775.7 99.1 21.34 878.13 2.2 42.14 1598.11 125.46 57.56
GD 12 39925.4 92.29 16.69 788.87 1.69 39.28 2733.11 122.57 53.47
GD 09 47117.4 80.26 26.12 255.27 0 29.75 1637.34 120.35 53.47
GD 01 55650.1 117.54 24.07 272.13 2.23 36.24 3746.51 206.3 69.74
NG 19 42235.6 19.29 19.29 789.3 2.1 40.01 2245.41 119.95 52.74
NG 08 55622.1 23.08 23.08 277.23 2.5 35.42 3165.56 140.99 95.81
NG 04 59008.5 22.87 22.87 254.84 2.99 38.83 3085.71 172.03 98.88
NG 01 52496.0 35.66 35.66 246.91 3.3 42.24 3005.86 190.07 81.95
MS 17 21135.0 28.46 15.64 39.59 0.78 16.41 3212.05 60.93 21.9
MS 22 28557.5 29.22 4.65 87.63 2.67 0.71 2064.84 73.63 8.64
MS 29 45927.3 16.49 8.65 77.15 2.89 0.56 3042.69 48.88 12.03
MS 48 11107.0 89.35 9.75 115.7 0 1.91 2055.56 29.24 12.03
MS 53 9489.37 21.28 7.59 8.82 0 1.89 356.65 99.24 12.0
Tab.1  The composition of trace elements (weight in grams) in the Lower to Middle Jurassic rocks of the Indus Basin
Sample No. EF of trace elements
Al Cr Cu Mn Mo Ni Ti V Zn
NS 10 0.13 0.90 0.08 0.01 2.10 0.25 1.00 0.93 0.10
NS 08 0.14 0.80 0.11 0.01 3.53 0.35 1.15 0.93 0.15
ND 25 0.14 0.81 0.24 0.01 2.22 0.51 1.17 0.98 0.36
ND 20 0.13 1.32 0.45 0.01 2.56 0.29 1.16 0.90 0.32
ND 15 0.13 0.99 0.31 0.02 3.45 0.23 0.99 1.11 0.32
ND 12 0.14 0.82 0.24 0.01 3.56 0.23 1.00 0.93 0.42
ND 06 0.15 0.92 0.17 0.01 3.50 0.21 1.10 0.91 0.38
ND 02 0.15 0.73 0.16 0.01 5.57 0.75 1.25 1.82 0.31
Ave. EF 0.14 0.91 0.22 0.01 3.31 0.35 1.10 1.06 0.29
BS 11 0.16 0.54 0.00 0.08 0.00 0.25 0.22 1.35 0.00
BS 09 0.16 0.55 0.00 0.10 0.00 0.17 0.65 0.38 0.05
BD 46 0.38 0.71 0.09 0.14 3.21 0.23 0.40 0.71 0.55
BD 36 0.36 0.76 0.14 0.14 3.53 0.36 0.34 0.74 0.64
BD 29 0.38 0.70 0.10 0.13 2.57 0.23 0.47 0.98 0.56
BD 21 0.38 0.70 0.09 0.14 2.91 0.76 1.17 1.04 0.48
BD 19 0.38 0.71 0.09 0.13 0.00 0.22 0.97 1.05 0.44
BD 15 0.38 0.81 0.20 0.14 10.11 0.20 0.99 0.97 0.39
BD 12 0.36 0.65 0.07 0.13 4.30 0.21 1.00 1.04 0.40
BD 06 0.37 0.70 0.12 0.08 5.50 0.23 0.99 1.00 0.42
Ave. EF 0.33 0.68 0.09 0.12 3.21 0.29 0.72 1.05 0.39
SS 20 0.25 0.78 0.22 0.03 0.00 0.13 1.35 0.92 0.42
SS 21 0.88 0.98 0.33 0.25 6.20 0.64 1.34 0.94 2.72
SS 22 0.93 1.42 0.11 0.15 44.70 0.37 1.37 0.86 3.33
SS 23 0.35 1.00 0.59 0.14 0.00 0.59 1.47 1.34 0.55
SS 24 0.78 0.86 0.59 0.21 3.10 0.69 1.38 1.23 0.96
SS 25 0.79 0.99 0.52 0.20 1.05 0.59 1.37 1.19 1.25
CC 26 0.79 0.97 0.44 0.19 3.11 0.64 1.06 1.24 0.99
CC 27 0.76 1.07 0.36 0.08 0.00 0.42 0.80 1.26 0.56
CC 28 0.51 0.96 0.32 0.63 3.20 0.72 0.53 0.90 0.69
CC 29 0.48 0.96 0.24 0.57 1.70 0.67 0.92 0.88 0.69
CC 30 0.56 0.86 0.36 0.19 0.00 0.51 0.56 0.86 0.63
CC 31 0.66 1.15 0.33 0.20 2.63 0.62 1.25 1.47 0.87
Ave. EF 0.65 1.00 0.37 0.24 5.47 0.72 1.12 1.13 1.14
GS 20 0.25 0.77 0.21 0.02 0.00 0.12 1.35 0.92 0.41
GS 12 0.88 0.95 0.32 0.25 3.20 0.61 1.34 0.23 2.60
GS 10 0.93 1.32 0.12 0.15 34.70 2.55 1.37 1.30 3.27
GS 09 0.35 0.99 0.55 0.14 0.00 0.56 1.47 0.34 0.54
GS 06 0.78 0.85 0.55 0.20 2.10 0.67 1.37 1.23 0.95
GS 05 0.79 0.95 0.53 0.21 2.05 0.61 1.36 1.19 1.24
GS 02 0.79 0.90 0.42 0.20 2.11 0.62 1.06 0.24 0.98
GD 20 0.76 1.01 0.32 0.08 0.00 0.40 0.79 1.26 0.55
GD 16 0.51 0.99 0.28 0.63 2.20 0.70 0.53 0.90 0.72
GD 12 0.48 0.92 0.22 0.56 1.69 0.65 0.91 0.88 0.67
GD 09 0.56 0.80 0.35 0.18 0.00 0.50 0.55 0.86 0.67
GD 01 0.66 1.18 0.32 0.19 2.23 0.60 1.25 0.86 0.87
Ave. EF 0.65 0.97 0.35 0.24 4.19 0.72 1.11 1.15 1.12
NG 19 0.50 0.99 0.26 0.56 2.10 0.67 0.75 0.86 0.66
NG 08 0.66 0.97 0.31 0.20 2.50 0.59 1.06 1.01 1.20
NG 04 0.70 0.94 0.30 0.18 2.99 0.65 1.03 1.23 1.24
NG 01 0.62 1.06 0.48 0.18 3.30 0.70 1.00 1.36 1.02
Ave. EF 0.62 0.99 0.34 0.28 2.72 0.65 0.96 1.11 1.03
MS 17 0.25 0.28 0.21 0.03 0.78 0.27 1.07 0.44 0.27
MS 22 0.34 0.29 0.06 0.06 2.67 0.01 0.69 0.53 0.11
MS 29 0.55 0.16 0.12 0.06 2.89 0.01 1.01 0.35 0.15
MS 48 0.13 0.89 0.13 0.08 0.00 0.03 0.69 0.21 0.15
MS 53 0.11 0.21 0.10 0.01 0.00 0.03 0.12 0.71 0.15
Ave. EF 0.28 0.37 0.12 0.05 1.27 0.07 0.72 0.45 0.17
Tab.2  The enrichment factor (EF) of trace elements in the Lower to Middle Jurassic rocks of the Indus Basin after normalized with PASS
Sample No. the ratios of various elements TOC/%
V/Cr V/Mo V/Ni V/(V+Ni) V/(V+Cr) Ti/Al Cu/Al Ni/Al Mo/Al Cr/Al (Cu+Mo)/Zn
NS 10 1.03 0.44 3.66 0.79 0.51 7.46 0.61 1.89 15.66 6.73 20.90 0.11
NS 08 1.16 0.26 2.64 0.73 0.54 8.14 0.76 2.50 25.01 5.68 24.37 0.13
ND 25 1.21 0.44 1.92 0.66 0.55 8.19 1.66 3.59 15.58 5.68 6.75 0.15
ND 20 0.68 0.35 3.13 0.76 0.40 8.86 3.42 2.19 19.61 10.12 9.54 1.55
ND 15 1.12 0.32 4.95 0.83 0.53 7.60 2.36 1.72 26.44 7.60 11.77 4.15
ND 12 1.13 0.26 4.08 0.80 0.53 7.05 1.71 1.61 25.12 5.80 9.02 4.09
ND 06 0.99 0.26 4.36 0.81 0.50 7.13 1.12 1.36 22.68 5.97 9.72 4.22
ND 02 2.48 0.33 2.44 0.71 0.71 8.09 1.04 4.83 36.08 4.74 18.60 4.21
BS 11 2.51 0.00 5.32 0.84 0.71 1.42 0.00 1.60 0.00 3.40 0.00 1.37
BS 09 1.89 0.00 2.25 0.69 0.41 4.08 0.00 1.06 0.00 3.44 0.00 0.51
BD 46 1.47 0.22 3.17 0.76 0.50 1.06 0.25 0.60 8.56 1.90 5.98 0.71
BD 36 1.28 0.21 2.08 0.68 0.49 0.93 0.39 0.98 9.71 2.10 5.72 0.41
BD 29 1.40 0.38 4.23 0.81 0.58 1.24 0.27 0.62 6.85 1.87 4.74 1.23
BD 21 1.49 0.36 1.38 0.58 0.60 3.10 0.24 2.01 7.74 1.86 6.21 2.15
BD 19 1.47 0.00 4.73 0.83 0.60 2.59 0.24 0.59 0.00 1.90 0.21 2.4
BD 15 1.19 0.10 4.94 0.83 0.54 2.61 0.53 0.52 26.59 2.14 26.49 0.17
BD 12 1.58 0.24 4.84 0.83 0.61 2.79 0.19 0.60 12.00 1.83 10.82 0.58
BD 06 1.43 0.18 4.39 0.81 0.59 2.69 0.33 0.62 14.90 1.90 13.41 1.62
SS 20 1.19 0.00 7.24 0.88 0.54 5.34 0.87 0.51 0.00 3.07 0.52 0.5
SS 21 0.97 0.15 1.48 0.60 0.49 1.52 0.38 0.73 7.06 1.11 2.40 0.5
SS 22 0.92 0.02 2.35 0.70 0.38 1.47 0.12 2.54 47.93 1.52 13.45 0.5
SS 23 1.34 0.00 2.27 0.69 0.57 4.20 1.68 1.69 0.00 2.85 1.08 0.8
SS 24 1.42 0.40 1.78 0.64 0.59 1.76 0.75 0.88 3.97 1.11 3.83 1.5
SS 25 1.20 1.13 2.01 0.67 0.54 1.72 0.65 0.75 1.33 1.25 1.25 0.5
CC 26 1.27 0.40 1.94 0.66 0.56 1.34 0.56 0.81 3.92 1.23 3.60 1.3
CC 27 1.18 0.00 3.01 0.75 0.54 1.05 0.47 0.55 0.00 1.41 0.64 2.34
CC 28 0.93 0.28 1.25 0.55 0.48 1.05 0.64 1.41 6.28 1.89 5.07 1.86
CC 29 0.91 0.52 1.30 0.57 0.48 1.94 0.50 1.41 3.57 2.02 2.79 2.3
CC 30 1.00 0.00 1.68 0.63 0.50 0.99 0.64 0.91 0.00 1.54 0.57 0.95
CC 31 1.29 0.56 2.37 0.70 0.56 1.88 0.50 0.94 3.97 1.73 3.40 2.4
GS 20 1.20 0.00 7.47 0.88 0.54 5.33 0.82 0.49 0.00 3.03 0.51 0.62
GS 12 1.30 0.07 0.38 0.27 0.20 1.52 0.36 0.69 3.64 1.08 1.35 0.61
GS 10 0.98 0.04 0.51 0.34 0.50 1.47 0.13 2.73 37.21 1.42 10.65 1.06
GS 09 1.35 0.00 0.61 0.38 0.26 4.19 1.57 1.59 0.00 2.82 1.03 0.78
GS 06 1.44 0.58 1.82 0.65 0.59 1.75 0.70 0.86 2.69 1.09 2.79 2.09
GS 05 1.25 0.58 1.95 0.66 0.55 1.72 0.67 0.77 2.59 1.20 2.09 1.07
GS 02 1.37 0.11 0.38 0.28 0.21 1.34 0.53 0.79 2.66 1.14 2.59 0.98
GD 20 1.25 0.00 3.14 0.76 0.55 1.05 0.42 0.53 0.00 1.34 0.58 2.19
GD 16 0.90 0.41 1.28 0.56 0.47 1.05 0.56 1.38 4.32 1.95 3.45 1.73
GD 12 0.95 0.52 1.34 0.57 0.49 1.92 0.47 1.38 3.56 1.94 2.86 1.85
GD 09 1.07 0.00 1.73 0.63 0.52 0.97 0.62 0.88 0.00 1.43 0.52 0.82
GD 01 1.25 0.38 1.42 0.59 0.42 1.89 0.48 0.91 3.37 1.77 2.93 0.89
NG 19 0.86 0.41 1.28 0.56 0.46 1.49 0.51 1.33 4.18 1.98 3.58 0.51
NG 08 1.04 0.40 1.71 0.63 0.51 1.59 0.46 0.89 3.78 1.46 2.34 4.51
NG 04 1.31 0.41 1.90 0.66 0.57 1.46 0.43 0.92 4.26 1.33 2.67 3.76
NG 01 1.29 0.41 1.93 0.66 0.56 1.60 0.76 1.13 5.28 1.69 3.69 0.92
MS 17 1.53 0.56 1.59 0.61 0.60 4.26 0.83 1.09 3.10 1.13 3.61 0.76
MS 22 1.80 0.20 44.44 0.98 0.64 2.02 0.18 0.03 7.85 0.86 25.30 2. 08
MS 29 2.12 0.12 37.41 0.97 0.68 1.86 0.21 0.02 5.29 0.30 19.99 2. 15
MS 48 0.23 0.00 6.56 0.87 0.19 5.18 0.98 0.24 0.00 6.76 0.86 1. 50
MS 53 3.33 0.00 22.50 0.96 0.77 1.05 0.90 0.28 0.00 1.88 0.67 2. 81
Tab.3  The ratios of various elements from normalized data used for depositional environment interpretation?in?the studied?sections
Fig.3  Shale palynofacies of the Indus Basin, Pakistan. (a)–(e) DFPF-A; (f) DFPF-B; (g) DFPF-C; (h) Chiltan Limestone SFPF B.
Fig.4  The vertical distribution of various normalized trace elements concentrations across the Lower to Middle Jurassic strata, i.e., the Datta and Shinawari formations in the Upper Indus Basin, Pakistan.
Fig.5  The vertical distribution of various elemental ratio of Middle Jurassic (Toarcian-Bajocian) developed in the Chiltan Formation, Lower Indus Basin, Pakistan.
GK Al Cr Cu Mn Mo Ni Ti V Zn TOC
Al 1.00 ? ? ? ? ? ? ? ? ?
Cr –0.24 1.00 ? ? ? ? ? ? ? ?
Cu 0.46 –0.34 1.00 ? ? ? ? ? ? ?
Mn 0.48 0.01 0.25 1.00 ? ? ? ? ? ?
Mo 0.77 –0.12 –0.09 –0.10 1.00 ? ? ? ? ?
Ni 0.77 0.79 0.20 0.02 0.98 1.00 ? ? ? ?
Ti 0.77 0.79 0.37 –0.50 0.26 0.20 1.00 ? ? ?
V 0.77 0.79 0.30 –0.47 0.25 0.27 0.61 1.00 ? ?
Zn 0.77 0.79 0.29 –0.08 0.81 0.79 0.37 0.34 1.00 ?
TOC 0.14 0.01 0.06 0.39 –0.09 –0.01 –0.39 –0.12 –0.26 1.00
MK Al Cr Cu Mn Mo Ni Ti V Zn TOC
Al 1.00 ? ? ? ? ? ? ? ? ?
Cr –0.24 1.00 ? ? ? ? ? ? ? ?
Cu 0.46 0.10 1.00 ? ? ? ? ? ? ?
Mn 0.48 0.67 0.25 1.00 ? ? ? ? ? ?
Mo 0.77 –0.12 –0.09 0.30 1.00 ? ? ? ? ?
Ni 0.77 0.79 0.20 –0.37 –0.28 1.00 ? ? ? ?
Ti 0.77 0.79 0.37 0.41 0.50 0.47 1.00 ? ? ?
V 0.77 0.79 0.30 –0.82 –0.07 –0.02 –0.65 1.00 ? ?
Zn 0.77 0.79 0.29 –0.39 –0.33 0.97 0.48 –0.10 1.00 ?
TOC 0.90 –0.49 –0.03 0.08 0.69 –0.21 0.50 –0.23 –0.06 1.00
Tab.4  Spearman rank order correlations of the stratigraphic sections
Fig.6  Ternary AOM-phytoclast-palynomorph kerogen plot shows depositional environments of palynofacies, i.e., DFPF-A, -B, -C and SFPF A, B (based on the relative numeric frequency of organic matter).
Fig.7  The Lower to Middle Jurassic high potential shale depositional model showing the various geochemical and geological conditions for the deposition of high potential source rock in the Indus Basin, Pakistan.
1 I A Abbasi, M Haneef, S Obaid, F Daud, A W Qureshi (2012). Mesozoic deltaic system along the western margin of the Indian plate: lithofacies and depositional setting of Datta Formation, North Pakistan. Arab J Geosci, 5(3): 471–480
https://doi.org/10.1007/s12517-010-0276-1
2 R A Abdula, S M Balaky, M Nurmohamadi, M Piroui (2015). Microfacies analysis and depositional environment of the Sargelu Formation (Middle Jurassic) from Kurdistan Region, northern Iraq. Donnish J Geo Mining Res, 1(1): 001–026
3 S Ahmed, D Mertmann, E Manutsoglu (1997). Jurassic shelf sedimentation and sequence stratigraphy of the Surghar Range, Pakistan. J Nepal Geol Soc, 15(1): 15–22
4 T J Algeo (2004). Can marine anoxic events draw down the trace element inventory of seawater? Geology, 32(12): 1057–1060
https://doi.org/10.1130/G20896.1
5 T J Algeo, J B Maynard (2004). Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol, 206(3–4): 289–318
https://doi.org/10.1016/j.chemgeo.2003.12.009
6 F Ali, S Ahmad, S Khan, M Hanif, J Qiang (2018). Toarcian-Bathonian palynostratigraphy and anoxic event in Pakistan: an organic geochemical study. Stratigraphy, 15(3): 225–243
https://doi.org/10.29041/strat.15.3.225-243
7 F Ali, J Qiang, S Ahmad, S Khan, M Hanif, I U Jan (2019). Sedimentological and geochemical analysis of the Middle Jurassic Shinawari Formation, Upper Indus Basin, Pakistan: implications for Palaeoenvironmental and hydrocarbon assessment. Arab J Sci Eng, 44(7): 6465–6487
https://doi.org/10.1007/s13369-019-03778-x
8 M A Arthur, B B Sageman (2005). Sea-level control on source-rock development: perspectives from the Holocene Black Sea, the mid-Cretaceous Western Interior Basin of North America, and the Late Devonian Appalachian Basin. In: Nicholas B H, eds. The Deposition of Organic-carbon-rich Sediments: Models, Mechanisms, and Consequences. SEPM special publication 82
9 H Baioumy, B Lehmann (2017). Anomalous enrichment of redox-sensitive trace elements in the marine black shales from the Duwi Formation, Egypt: evidence for the late Cretaceous Tethys anoxia. J Afr Earth Sci, 133: 7–14
https://doi.org/10.1016/j.jafrearsci.2017.05.006
10 H M Baioumy, I S Ismael (2010). Factors controlling the compositional variations among the marine and non-marine black shales from Egypt. Int J Coal Geol, 83(1): 35–45
https://doi.org/10.1016/j.coal.2010.04.005
11 F Bender, H A Raza (1995). Geology of Pakistan. Cambridge: Cambridge University Press
12 K M Bohacs, A R Carroll, J E Neal, P J Mankiewicz (2000). Lake-basin type, source potential, and hydrocarbon character: an integrated sequence-stratigraphic-geochemical framework. In: Gierlowski-Kordesch E H, Kelts K R, eds. Lake Basins through Space and Time. AAPG Studies in Geology, 46: 3–34
13 K M Bohacs, G J Grabowski, A R Carroll, P J Mankiewicz, K J Miskell-Gerhardt, J R Schwalbach, M B Wegner, J T Simo (2005). Production, destruction, and dilution—the many paths to source-rock development. SEPM Special Publications, 82: 61–101
14 H J Brumsack (2006). The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeogr Palaeoclimatol Palaeoecol, 232(2–4): 344–361
https://doi.org/10.1016/j.palaeo.2005.05.011
15 H J Brumsack (1986). The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern upwelling sediments from the Gulf of California. Geol Soc Lond Spec Publ, 21(1): 447–462
https://doi.org/10.1144/GSL.SP.1986.021.01.30
16 S Calvert, T Pedersen (1993). Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol, 113(1–2): 67–88
https://doi.org/10.1016/0025-3227(93)90150-T
17 S Calvert, T Pedersen (2007). Elemental proxies for palaeoclimatic and palaeoceanographic variability in marine sediments: interpretation and application. Develop Marin Geo, 1: 567–644
https://doi.org/10.1016/S1572-5480(07)01019-6
18 L Chen, H S Yi, L L Y Tsai, G W Xu, X J Da, A T S Lin (2013). Jurassic black shales facies from Qiangtang Basin (northern Tibet): rare earth and trace elements for paleoceanographic implications. Acta Geol Sin (English Edition), 87(2): 540–554
https://doi.org/10.1111/1755-6724.12067
19 G J Demaison, G T Moore (1980). Anoxic environments and oil source bed genesis. Organic Geochem, 2(1): 9–31
https://doi.org/10.1016/0146-6380(80)90017-0
20 G Dera, P Pellenard, P Neige, J F Deconinck, E Pucéat, J L Dommergues (2009). Distribution of clay minerals in Early Jurassic Peritethyan seas: palaeoclimatic significance inferred from multiproxy comparisons. Palaeogeogr Palaeoclimatol Palaeoecol, 271(1–2): 39–51
https://doi.org/10.1016/j.palaeo.2008.09.010
21 A Fatmi, I Hyderi, M Anwar (1990). Occurrence of the Lower Jurassic ammonoid genus bouleiceras from the Surghar Range with a revised nomenclature of the Mesozoic rocks of the Salt Range and Trans Indus Ranges (Upper Indus Basin). Geol Bull Punjab U, 25: 38–46
22 F Fürsich, W Oschmann, I Singh, A Jaitly (1992). Hardgrounds, reworked concretion levels and condensed horizons in the Jurassic of western India: their significance for basin analysis. J Geol Soc London, 149(3): 313–331
https://doi.org/10.1144/gsjgs.149.3.0313
23 F Galarraga, K Reategui, A Martïnez, M Martïnez, J Llamas, G Márquez (2008). V/Ni ratio as a parameter in palaeoenvironmental characterisation of nonmature medium-crude oils from several Latin American basins. J Petrol Sci Eng, 61(1): 9–14
https://doi.org/10.1016/j.petrol.2007.10.001
24 D Gallego-Torres, F Martinez-Ruiz, G De Lange, F Jimenez-Espejo, M Ortega-Huertas (2010). Trace-elemental derived paleoceanographic and paleoclimatic conditions for Pleistocene Eastern Mediterranean sapropels. Palaeogeogr Palaeoclimatol Palaeoecol, 293(1–2): 76–89
https://doi.org/10.1016/j.palaeo.2010.05.001
25 R Hallberg (1982). Diagenetic and environmental effects on heavy-metal distribution in sediments: a hypothesis with an illustration from the Baltic Sea. In: The Dynamic Environment of the Ocean Floor. Lexington: Lexington Books, 502: 305–316
26 J Hatch, J Leventhal (1992). Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, USA. Chem Geol, 99(1–3): 65–82
https://doi.org/10.1016/0009-2541(92)90031-Y
27 M Ikeda, R S Hori, M Ikehara, R Miyashita, M Chino, K Yamada (2018). Carbon cycle dynamics linked with Karoo-Ferrar volcanism and astronomical cycles during Pliensbachian-Toarcian (Early Jurassic). Global Planet Change, 170: 163–171
https://doi.org/10.1016/j.gloplacha.2018.08.012
28 S Iqbal, M Wagreich, U J Irfan, W M Kuerschner, S Gier, M Bibi (2019). Hot-house climate during the Triassic/Jurassic transition: the evidence of climate change from the southern hemisphere (Salt Range, Pakistan). Global Planet Change, 172: 15–32
https://doi.org/10.1016/j.gloplacha.2018.09.008
29 H C Jenkyns (2010). Geochemistry of oceanic anoxic events. Geochem Geophys Geosyst, 11(3): Q03004
https://doi.org/10.1029/2009GC002788
30 B Jones, D A Manning (1994). Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol, 111(1–4): 111–129
https://doi.org/10.1016/0009-2541(94)90085-X
31 I Kadri (1995). Petroleum Geology of Pakistan. Islamabad: Pakistan Petroleum Limited Karachi
32 A Kazmi, R Rana (1982). Tectonic map of Pakistan. Islamabad: Geol Sum Pakistan
33 A H Kazmi, M Q Jan (1997). Geology and Tectonics of Pakistan. Islamabad: Graphic publishers
34 Y Li, T Fan, J Zhang, X Wei, J Zhang (2015). Impact of paleoenvironment, organic paleoproductivity, and clastic dilution on the formation of organic-rich shales: a case study about the Ordovician-Silurian black shales, southeastern Chongqing, South China. Arab J Geosci, 8(12): 10225–10239
https://doi.org/10.1007/s12517-015-1944-y
35 T M Løseth, A E Ryseth, M Young (2009). Sedimentology and sequence stratigraphy of the middle Jurassic Tarbert Formation, Oseberg South area (northern North Sea). Basin Res, 21(5): 597–619
https://doi.org/10.1111/j.1365-2117.2009.00421.x
36 T W Lyons, J P Werne, D J Hollander, R Murray (2003). Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chem Geol, 195(1–4): 131–157
https://doi.org/10.1016/S0009-2541(02)00392-3
37 S M McLennan (2001). Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst, 2(4): 2000GC000109
https://doi.org/10.1029/2000GC000109
38 J McManus, W M Berelson, S Severmann, R L Poulson, D E Hammond, G P Klinkhammer, C Holm (2006). Molybdenum and uranium geochemistry in continental margin sediments: paleoproxy potential. Geochim Cosmochim Acta, 70(18): 4643–4662
https://doi.org/10.1016/j.gca.2006.06.1564
39 V H Mensink, D Mertman, S Ahmad (1988). Facies development during the Jurassic of the Trans Indus Ranges, Pakistan. In: Neues Jahrb Geological Paleontological memorial Germany 3: 153–166
40 D Mertmann, S Ahmad (1994). Shinawari and Samana Suk Formations of the Surghar and salt ranges, Pakistan: facies and depositional environments. Z Dtsch Geol Ges, 145(2): 305–317 (in German)
https://doi.org/10.1127/zdgg/145/1994/305
41 M A Moshrif (1987). Sedimentary history and paleogeography of Lower and Middle Jurassic rocks, central Saudi Arabia. J Pet Geol, 10(3): 335–349
https://doi.org/10.1111/j.1747-5457.1987.tb00951.x
42 K Naeem, W Yawar, T M Bhatti, B Mohammad (2011). Elemental profile of black shales. Chin J Geochem, 30(2): 217–219
https://doi.org/10.1007/s11631-011-0503-9
43 O B Nielsen, M S Seidenkrantz, N Abrahamsen, B J Schmidt, E B Koppelhus, H Ravn-Sørensen, U Korsbech, K G Nielsen (2003). The Lower–Middle Jurassic of the Anholt borehole: implications for the geological evolution of the eastern margin of the Danish Basin. Geol Surv Denmark Greenl Bull, 1: 585–609
https://doi.org/10.34194/geusb.v1.4685
44 D H Pi, S Y Jiang, L Luo, J H Yang, H F Ling (2014). Depositional environments for stratiform witherite deposits in the Lower Cambrian black shale sequence of the Yangtze Platform, southern Qinling region, SW China: evidence from redox-sensitive trace element geochemistry. Palaeogeogr Palaeoclimatol Palaeoecol, 398: 125–131
https://doi.org/10.1016/j.palaeo.2013.09.029
45 D Piper, S Calvert (2009). A marine biogeochemical perspective on black shale deposition. Earth Sci Rev, 95(1–2): 63–96
https://doi.org/10.1016/j.earscirev.2009.03.001
46 J Qiang, Z Ming, L Zhen, G Xianzhi, P Dehua, L Lamei (2002). Geology and geochemistry of source rocks in the Qaidam Basin, NW China. J Pet Geol, 25(2): 219–238
https://doi.org/10.1111/j.1747-5457.2002.tb00005.x
47 M S Quinby-Hunt, P Wilde (1994). Thermodynamic zonation in the black shale facies based on iron-manganese-vanadium content. Chem Geol, 113(3–4): 297–317
https://doi.org/10.1016/0009-2541(94)90072-8
48 V Rachold, H J Brumsack (2001). Inorganic geochemistry of Albian sediments from the Lower Saxony Basin NW Germany: palaeoenvironmental constraints and orbital cycles. Palaeogeogr Palaeoclimatol Palaeoecol, 174(1–3): 121–143
https://doi.org/10.1016/S0031-0182(01)00290-5
49 P Rees, A M Ziegler, P J Valdes, B Huber, K MacLeod, S Wing (2000). Jurassic phytogeography and climates: new data and model comparisons. Warm Climates in Earth History: 297–318
50 A Riboulleau, F Baudin, J F Deconinck, S Derenne, C Largeau, N Tribovillard (2003). Depositional conditions and organic matter preservation pathways in an epicontinental environment: the Upper Jurassic Kashpir Oil Shales (Volga Basin, Russia). Palaeogeogr Palaeoclimatol Palaeoecol, 197(3–4): 171–197
https://doi.org/10.1016/S0031-0182(03)00460-7
51 S M Rimmer (2004). Geochemical paleoredox indicators in Devonian–Mississippian black shales, central Appalachian Basin (USA). Chem Geol, 206(3–4): 373–391
https://doi.org/10.1016/j.chemgeo.2003.12.029
52 S M Rimmer, J A Thompson, S A Goodnight, T L Robl (2004). Multiple controls on the preservation of organic matter in Devonian–Mississippian marine black shales: geochemical and petrographic evidence. Palaeogeogr Palaeoclimatol Palaeoecol, 215(1–2): 125–154
https://doi.org/10.1016/S0031-0182(04)00466-3
53 M Rousseau, G Dromart, J P Garcia, F Atrops, F Guillocheau (2005). Jurassic evolution of the Arabian carbonate platform edge in the central Oman Mountains. J Geol Soc London, 162(2): 349–362
https://doi.org/10.1144/0016-764903-178
54 B B Sageman, A E Murphy, J P Werne, C A Ver Straeten, D J Hollander, T W Lyons (2003). A tale of shales: the relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle–Upper Devonian, Appalachian basin. Chem Geol, 195(1–4): 229–273
https://doi.org/10.1016/S0009-2541(02)00397-2
55 G Scopelliti, A Bellanca, R Coccioni, V Luciani, R Neri, F Baudin, M Chiari, M Marcucci (2004). High-resolution geochemical and biotic records of the Tethyan ‘Bonarelli Level’ (OAE2, latest Cenomanian) from the Calabianca–Guidaloca composite section, northwestern Sicily, Italy. Palaeogeogr Palaeoclimatol Palaeoecol, 208(3–4): 293–317
https://doi.org/10.1016/j.palaeo.2004.03.012
56 M I Shah (2009). Stratigraphy of Pakistan: Memories of Geological Survey of Pakistan. Islamabad: Ministry of Petroleum and Natural Resources of Geological Survey of Pakistan
57 M Soua (2011). Productivity and bottom water redox conditions at the Cenomanian-Turonian Oceanic Anoxic Event in the southern Tethyan margin, Tunisia. Mediterranean J Environ, 4: 653–664
58 N Srivastave, T S Ranawat (2015). An overview of Yellow Limestone deposits of the Jaisalmer Basin, Rajasthan, India. Vol Jurassica, 13(1): 107–112
59 D Steffen, G Gorin (1993). Palynofacies of the Upper Tithonian-Berriasian deep-sea carbonates in the Vocontian Trough (SE France). Bull Cent Rech Explor Prod Elf-Aquitaine, 17(1): 235–247
60 P Szczepanik, M Witkowska, Z Sawłowicz (2010). Geochemistry of Middle Jurassic mudstones (Kraków-Częstochowa area, southern Poland): interpretation of the depositional redox conditions. Geol Q, 51: 57–66
61 S R Taylor, S M McLennan (1985). The Continental Crust: Its Composition and Evolution. Oxford: Blackwell: 1–312
62 N Tribovillard, A Desprairies, E Lallier-Vergès, P Bertrand, N Moureau, A Ramdani, L Ramanampisoa (1994). Geochemical study of organic-matter rich cycles from the Kimmeridge Clay Formation of Yorkshire (UK): productivity versus anoxia. Palaeogeogr Palaeoclimatol Palaeoecol, 108(1–2): 165–181
https://doi.org/10.1016/0031-0182(94)90028-0
63 N Tribovillard, T J Algeo, T Lyons, A Riboulleau (2006). Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol, 232(1–2): 12–32
https://doi.org/10.1016/j.chemgeo.2006.02.012
64 N Tribovillard, T Lyons, A Riboulleau, V Bout-Roumazeilles (2008). A possible capture of molybdenum during early diagenesis of dysoxic sediments. Bull Soc Geol Fr, 179(1): 3–12
https://doi.org/10.2113/gssgfbull.179.1.3
65 R Tyson (1987). The genesis and palynofacies characteristics of marine petroleum source rocks. Geol Soc Lond Spec Publ, 26(1): 47–67
https://doi.org/10.1144/GSL.SP.1987.026.01.03
66 R Tyson (1995). Abundance of organic matter in sediments: TOC, hydrodynamic equivalence, dilution and flux effects. In: Sedimentary Organic Matter. Berlin: Springer: 81–118
67 M Usman, N A Siddiqui, S Zhang, M Ramkumar, M Mathew, B Sautter, M Beg A (2020a). Ichnofacies and sedimentary structures: a passive relationship with permeability of a sandstone reservoir from NW Borneo. J Asian Earth Sci, 192: 103992
https://doi.org/10.1016/j.jseaes.2019.103992
68 M Usman, S Zhang, N A Siddiqui, J Jamal (2020b). The influential parameters of the reservoir quality of Sandakan sandstone, NW Borneo. In: 2nd SEG Rock Physics Workshop: Challenges in Deep and Unconventional Oil/Gas Exploration, Soc of Exp Geophys, 8–11
69 M Usman, N A Siddiqui, M Mathew, S Zhang, M A El-Ghali, M Ramkumar, M Jamil, Y Zhang (2020c). Linking the influence of diagenetic properties and clay texture on reservoir quality in sandstones from NW Borneo. Mar Pet Geol, 120: 104509
https://doi.org/10.1016/j.marpetgeo.2020.104509
70 J D Vine, E B Tourtelot (1970). Geochemistry of black shale deposits; a summary report. Econ Geol, 65(3): 253–272
https://doi.org/10.2113/gsecongeo.65.3.253
71 G Wang, T R Carr (2013). Organic-rich Marcellus Shale lithofacies modeling and distribution pattern analysis in the Appalachian Basin organic-rich shale lithofacies modeling, Appalachian Basin. Am Assoc Pet Geol Bull, 97(12): 2173–2205
72 D W Waples (1983). Reappraisal of anoxia and organic richness, with emphasis on Cretaceous of North Atlantic. Am Assoc Pet Geol Bull, 67(6): 963–978
73 K Wedepohl (1971). Environmental influences on the chemical composition of shales and clays. Phys Chem Earth, 8(1): 307–333
https://doi.org/10.1016/0079-1946(71)90020-6
74 K Wedepohl (1991). The composition of the upper earth’s crust and the natural cycles of selected metals; metals in natural raw materials. In: Natural Resources. Weinheim: VCH
75 J P Werne, B B Sageman, T W Lyons, D J Hollander (2002). An integrated assessment of a “type euxinic” deposit: evidence for multiple controls on black shale deposition in the Middle Devonian Oatka Creek Formation. Am J Sci, 302(2): 110–143
https://doi.org/10.2475/ajs.302.2.110
76 P B Wignall (1994). Black Shales. Oxford: Oxford University Press
77 G Wood, A Gabriel, J Lawson (1996). Palynological techniques-processing and microscopy. In: Palynology: Principles and Applications, 1: 29–50. American Association of Stratigraphic Palynologist
78 J Yang, S Jiang, H Ling, H Feng, Y Chen, J Chen (2004). Paleoceangraphic significance of redox-sensitive metals of black shales in the basal Lower Cambrian Niutitang Formation in Guizhou Province, south China. Prog Nat Sci, 14(2): 152–157
https://doi.org/10.1080/10020070412331343291
79 Y Yang, B Ritts, C Zou, T Xu, B Zhang, P Xi (2003). Upper Triassic-Middle Jurassic stratigraphy and sedimentology in the NE Qaidam Basin, NW China: petroleum geological significance of new outcrop and subsurface data. J Pet Geol, 26(4): 429–449
https://doi.org/10.1111/j.1747-5457.2011.00513.x
80 D Zheng, S Miska, M Ziaja, J Zhang (2019). Study of anisotropic strength properties of shale. AGH Drilling Oil Gas 36(1): 93–111
https://doi.org/10.7494/drill.2019.36.1.93
81 Y Zheng, R F Anderson, A Van Geen, J Kuwabara (2000). Authigenic molybdenum formation in marine sediments: a link to pore water sulfide in the Santa Barbara Basin. Geochim Cosmochim Acta, 64(24): 4165–4178
https://doi.org/10.1016/S0016-7037(00)00495-6
[1] Yuehua ZHAO, Shouyu CHEN, Jianli CHEN, Shuaiji WU. Trace elements of pyrite and S, H, O isotopes from the Laowan gold deposit in Tongbai, Henan Province, China: implications for ore genesis[J]. Front. Earth Sci., 2020, 14(3): 578-600.
[2] Xia LEI, Jiayi PAN, Adam DEVLIN. An ultraviolet to visible scheme to estimate chromophoric dissolved organic matter absorption in a Case-2 water from remote sensing reflectance[J]. Front. Earth Sci., 2020, 14(2): 384-400.
[3] Guanxu CHEN, Jinhai LUO, Huan XU, Jia YOU, Yifei LI, Zichen CHE. Geological significance of the former Xiong’er Volcanic Belt on the southwestern margin of the North China Craton[J]. Front. Earth Sci., 2019, 13(1): 191-208.
[4] Haihai HOU, Longyi SHAO, Yonghong LI, Zhen LI, Wenlong ZHANG, Huaijun WEN. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China[J]. Front. Earth Sci., 2018, 12(1): 148-159.
[5] Qiang LI,Xujing GUO,Lu CHEN,Yunzhen LI,Donghai YUAN,Benlin DAI,Sisi WANG. Investigating the spectral characteristic and humification degree of dissolved organic matter in saline-alkali soil using spectroscopic techniques[J]. Front. Earth Sci., 2017, 11(1): 76-84.
[6] Zongli WANG,Hui ZHAO,Guanghui DONG,Aifeng ZHOU,Jianbao LIU,Dongju ZHANG. Reliability of radiocarbon dating on various fractions of loess-soil sequence for Dadiwan section in the western Chinese Loess Plateau[J]. Front. Earth Sci., 2014, 8(4): 540-546.
[7] WANG Hongmei, MA Xiangru, LIU Deng, YANG Xiaofen, LI Jihong. Chemical variation from biolipids to sedimentary organic matter in modern oceans and its implication to the geobiological evaluation of ancient hydrocarbon source rocks[J]. Front. Earth Sci., 2007, 1(4): 399-404.
[8] LIU Wenhui, ZHANG Dianwei. Deep-seated gas generation and preservation condition in China[J]. Front. Earth Sci., 2007, 1(3): 351-357.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed