Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (3) : 587-600    https://doi.org/10.1007/s11707-021-0945-2
RESEARCH ARTICLE
Role of bedding planes played in enhancing dissolution in sandstones
Jin LAI1,2(), Xiaojiao PANG2, Meng BAO2, Bing WANG2, Jianan YIN2, Guiwen WANG1,2(), Xuechun FAN2
1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum (Beijing), Beijing 102249, China
2. College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China
 Download: PDF(33694 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Diagenesis exerts an important control on porosity evolution, and research of diagenesis and diagenetic minerals provides insights into reservoir quality evaluation and CO2 storage. Thin section, XRD (X-ray diffraction), CT (Computed Tomography), scanning electron microscopy (SEM), and NMR (Nuclear Magnetic Resonance) tests were used to investigate composition, texture, pore spaces, and diagenesis of sandstones in Paleogene Dongying Formation in Bohai Bay Basin, China, with special aims to unravel diagentic dissolution along bedding planes. The oversized pores, remnants in feldspar-hosted pores, and kaolinite within feldspar grains indicate a high degree of dissolution the framework grains experienced during burial. The CO2-rich or organic acids are responsible for the feldspar dissolution. Grain size plays the primary role in enhancing bedding dissolution process, and bedding planes in fine-medium grained sandstones with high content of feldspars are frequently enlarged by dissolution. The CT scanning image confirms dissolution pores are distributed discontinuously along the bedding planes. The dissolution pores along bedding planes have large pore size, and correspond to the right peak of the bi-modal T2 (transverse relaxation time) spectrum. The laminated sandstones and siltstones, or sandstones with cross beddings help improve framework grain dissolution. These new findings help improve the understanding of diagenetic models, and have implications in reservoir quality prediction and resource assessments in sandstones.

Keywords dissolution      sandstones      diagenesis      bedding plane      Dongying Formation     
Corresponding Author(s): Jin LAI,Guiwen WANG   
Online First Date: 31 December 2021    Issue Date: 29 December 2022
 Cite this article:   
Jin LAI,Xiaojiao PANG,Meng BAO, et al. Role of bedding planes played in enhancing dissolution in sandstones[J]. Front. Earth Sci., 2022, 16(3): 587-600.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0945-2
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I3/587
Fig.1  The structural belts of Nanpu Sag (c) within Bohai Bay Basin (a), East Chin (b) (Guo et al., 2013; Lai et al., 2019).
Sample Well Depth/m Thin section SEM NMR CT
1 NP11-E4-X508 2778.15
2 NP11-E4-X508 2781.58
3 NP13-1274 3219.83
4 NP13-1508 3482.07
5 NP23-2630 3170.58
6 NP23-X2282 3138.2
7 NP208 2394.8
8 NP208 2534.08
Tab.1  The samples used for various measurements
Fig.2  Core photos showing the cross bedding of sandstones in Dongying Formation in Nanpu Sag.(a) Dissolution along the bedding plane, fine-medium grained sandstone, NP 23-2630; (b) Field view A under ultraviolet (UV) light; (c) Dissolution along the tabular cross bedding, fine-medium grained sandstone, X204; (d) Dissolution along the wedge-shape cross bedding, fine grained sandstone, NP 23-2630; (e) Dissolution along the parallel bedding, fine-medium grained sandstone, X204; (f) No evident dissolution occurred along the parallel bedding plane, siltstone, X204; (g) No evident dissolution occurred along the wavy and convolute bedding planes, siltstone, X204.
Fig.3  Pore spaces of the sandstones in Dongying Formation, Nanpu Sag. (a) Intergranular pores and dissolution pores, PPL; (b) Primary pores and abundant dissolution pores, PPL; (c) Primary intergranular pores and abundant dissolution pores, NP208; (d) Abundant intragranular dissolution pores, and minor intergranular pores, NP208; (e) Micro-porous kaolinites, SEM; (f) Micro-porous mixed layer illite/smectite, SEM; (g) Feldspar remnants in the dissolution pores, SEM; (h) Vermicular kaolinites within the feldspar-hosted dissolution pores, SEM.PPL= plane polarized light view; I/S= mixed layer illite/smectite; K= Kaolinite; P= Pores; MP= Moldic pores; Q= quartz; RF= rock fragments; F = Feldspar.
Fig.4  Contrast of laminated sandstones with massive sandstones (no bedding) through core, thin section and XRD analysis. (a) Laminated sandstones; (b) Thin section showing the laminas, NP23-X2284, 3150.6m; (c) XRD data showing the composition of the laminated sandstones; (d) Massive sandstones; (e) Related thin section image showing the pore spaces and composition of massive sandstone; (f) XRD data showing the composition of the massive sandstones.
Fig.5  CT images and thin section showing the traces of dissolution along the bedding planes.(a) 2D slices; (b) Extraction of pores; (c) 3D reconstruction of pore networks, noting bedding plane with traces of dissolution; (d) Aligned dissolution under microscopic observation.
Fig.6  CT images and related thin sections showing the bedding plane traced dissolution. (a) 2D slices; (b) Extraction of pores; (c) 3D reconstruction of pore networks; (d) Aligned dissolution pores.
Fig.7  Dissolution along the bedding planes recognized by CT images and thin sections.(a) 2D slices; (b) Extraction of pores; (c) 3D reconstruction of pore networks; (d) weakly aligned dissolution.
Fig.8  NMR T2 spectrum, SEM and thin section images showing the traces of dissolution along the bedding planes.(a) NMR T2 spectrum; (b) Thin sections showing the weakly aligned pores; (c) SEM image showing the feldspar dissolution pores.
1 J M Ajdukiewicz, R H Lander (2010). Sandstone reservoir quality prediction: the state of the art. AAPG Bull, 94(8): 1083–1091
https://doi.org/10.1306/intro060110
2 K Al-Ramadan, S Morad, J N Proust, I Al-Aasm (2005). Distribution of diagenetic alterations in siliciclastic shoreface deposits within a sequence stratigraphic framework: evidence from the upper Jurassic, Boulonnais, NW France. J Sediment Res, 75(5): 943–959
https://doi.org/10.2110/jsr.2005.072
3 M H Anders, S E Laubach, C H Scholz (2014). Microfractures: a review. J Structural Geo, 69 (Part B): 377–394
4 R G C Bathurst (1987). Diagenetically enhanced bedding in argillaceous platform limestones: stratified cementation and selective compaction. Sedimentology, 34(5): 749–778
https://doi.org/10.1111/j.1365-3091.1987.tb00801.x
5 K Bjørlykke, J Jahren (2012). Open or closed geochemical systems during diagenesis in sedimentary basins: constraints on mass transfer during diagenesis and the prediction of porosity in sandstone and carbonate reservoirs. AAPG Bull, 96(12): 2193–2214
https://doi.org/10.1306/04301211139
6 K Bjørlykke (2014). Relationships between depositional environments, burial history and rock properties. Some principal aspects of diagenetic process in sedimentary basins. Sediment Geo, 301: 1–14
7 S Bloch, R H Lander, L Bonnell (2002). Anomalously high porosity and permeability in deeply buried sandstone reservoirs: origin and predictability. AAPG Bull, 86(2): 301–328
8 B B Bowen, R I Ochoa, N D Wilkens, J Brophy, T R Lovell, N Fischietto, C R Medina, J A Rupp (2011). Depositional and diagenetic variability within the Cambrian Mount Simon Sandstone: implications for carbon dioxide sequestration. Environ Geosci, 18(2): 69–89
https://doi.org/10.1306/eg.07271010012
9 X Chang, Y F Shan, Z H Zhang, C A Tang, Z L Ru (2015). Behavior of propagating fracture at bedding interface in layered rocks. Eng Geol, 197: 33–41
https://doi.org/10.1016/j.enggeo.2015.08.010
10 X F Chen, S M Li, Y X Dong, X Q Pang, Z J Wang, M S Ren, H C Zhang (2016). Characteristics and genetic mechanisms of offshore natural gas in the Nanpu Sag, Bohai Bay Basin, eastern China. Org Geochem, 94: 68–82
https://doi.org/10.1016/j.orggeochem.2016.01.011
11 L Chen, H C Ji, L Zhang, H B Jia, Y Zhu, Z Fang (2017). Effect of burial processes on the evolution of organic acids and implications for acidic dissolution from a case study of the Nanpu Sag, Bohai Bay Basin, China. J Nat Gas Sci Eng, 39: 173–187
https://doi.org/10.1016/j.jngse.2017.01.020
12 V Cnudde, M N Boone (2013). High-resolution X-ray computed tomography in geosciences: a review of the current technology and applications. Earth Sci Rev, 123: 1–17
https://doi.org/10.1016/j.earscirev.2013.04.003
13 G R Coates, R C A Peveraro, A Hardwick, D Roberts (1991). The magnetic resonance imaging log characterized by comparison with petrophysical properties and laboratory core data. In: Proceedings of the 66th Annual Technical Conference and Exhibition. Formation Evaluation and Reservoir Geology, SPE 22723: 627–635
14 H Daigle, B Thomas, H Rowe, M Nieto (2014). Nuclear magnetic resonance characterization of shallow marine sediments from the Nankai Trough, Integrated Ocean Drilling Program Expedition 333. J Geophys Res, 119(4): 2631–2650
https://doi.org/10.1002/2013JB010784
15 H Daigle, N W Hayman, E D Kelly, K L Milliken, H Jiang (2017). Fracture capture of organic pores in shales. Geophys Res Lett, 44(5): 2167–2176
https://doi.org/10.1002/2016GL072165
16 R Dashti, H Rahimpour-Bonab, M Zeinali (2018). Fracture and mechanical stratigraphy in naturally fractured carbonate reservoirs—a case study from Zagros region. Mar Pet Geol, 97: 466–479
https://doi.org/10.1016/j.marpetgeo.2018.06.027
17 G D de Segonzac (1968). The birth and development of the concept of diagenesis (1866–1966). Earth Sci Rev, 4: 153–201
https://doi.org/10.1016/0012-8252(68)90149-9
18 G P D de Silva, P G Ranjith, M S A Perera, B Chen (2016). Effect of bedding planes, their orientation and clay depositions on effective re-injection of produced brine into clay rich deep sandstone formations: implications for deep earth energy extraction. Appl Energy, 161: 24–40
https://doi.org/10.1016/j.apenergy.2015.09.079
19 A Dillinger, L Esteban (2014). Experimental evaluation of reservoir quality in Mesozoic formations of the Perth Basin (Western Australia) by using a laboratory low field Nuclear Magnetic Resonance. Mar Pet Geol, 57: 455–469
https://doi.org/10.1016/j.marpetgeo.2014.06.010
20 Y X Dong, L Xiao, H M Zhou, C Z Wang, J P Zheng, N Zhang, W Xia, Q Ma, J Du, Z Zhao, H Huang (2010). The tertiary evolution of the prolific Nanpu Sag of Bohai Bay Basin, China: constraints from volcanic records and tectono-stratigraphic sequences. Geol Soc Am Bull, 122(3–4): 609–626
https://doi.org/10.1130/B30041.1
21 Y X Dong, Z X Zhao, J W Wang, J X Du, L J Meng, F Diao (2015). Sequence stratigraphic patterns and sand body prediction models of fault-depressed lacustrine basins: a case study from the Dongying Formation in the Nanpu Sag, Bohai Bay Basin. Oil & Gas Geo, 36(1): 96–102 (in Chinese)
22 S P Dutton, R G Loucks (2010). Diagenetic controls on evolution of porosity and permeability in lower Tertiary Wilcox sandstones from shallow to ultradeep (200–6700 m) burial, Gulf of Mexico Basin, USA. Mar Pet Geol, 27(1): 69–81
https://doi.org/10.1016/j.marpetgeo.2009.08.008
23 S A Flewelling, M P Tymchak, N Warpinski (2013). Hydraulic fracture height limits and fault interactions in tight oil and gas formations. Geophys Res Lett, 40(14): 3602–3606
https://doi.org/10.1002/grl.50707
24 J L Feng, J Cao, K Hu, X Q Peng, Y Chen, Y F Wang, M Wang (2013). Dissolution and its impacts on reservoir formation in moderately to deeply buried strata of mixed siliciclastic-carbonate sediments, northwestern Qaidam Basin, northwest China. Mar Pet Geol, 39(1): 124–137
https://doi.org/10.1016/j.marpetgeo.2012.09.002
25 E Garzanti (2019). Petrographic classification of sand and sandstone. Earth Sci Rev, 192: 545–563
https://doi.org/10.1016/j.earscirev.2018.12.014
26 H Guan, X M Zhu (2008). Sequence framework and sedimentary facies of Ed Formation in Paleogene, Nanpu Sag, Bohai Bay Basin. Acta Sediment Sin, 26(5): 730–736
27 Y C Guo, X Q Pang, Y X Dong, Z X Jiang, D X Chen, F J Jiang (2013). Hydrocarbon generation and migration in the Nanpu Sag, Bohai Bay Basin, Eastern China: insight from basin and petroleum system modeling. J Asian Earth Sci, 77(21): 140–150
https://doi.org/10.1016/j.jseaes.2013.08.033
28 J G Guo, J Xu, F T Guo, J H Li, X Q Pang, Y X Dong, T Hu (2016). Functional-element constraint hydrocarbon distribution model and its application in the 3rd member of Dongying Formation, Nanpu Sag, Bohai Bay Basin, Eastern China. J Petrol Sci Eng, 139: 71–84
https://doi.org/10.1016/j.petrol.2015.12.017
29 S Henares, L Caracciolo, C Viseras, J Fernandez, L M Yeste (2016). Diagenetic constraints on heterogeneous reservoir quality assessment: a Triassic outcrop analog of meandering fluvial reservoirs. AAPG Bull, 100(9): 1377–1398
https://doi.org/10.1306/04011615103
30 K E Higgs, H Zwingmann, A G Reyes, R H Funnell (2007). Diagenesis, porosity evolution, and petroleum emplacement in tight gas reservoirs, Taranaki Basin, New Zealand. J Sediment Res, 77(12): 1003–1025
https://doi.org/10.2110/jsr.2007.095
31 H X Huang, W Sun, W M Ji, L Chen, Z X Jiang, Y Y Bai, X L Tang, K Du, Y Q Qu, S Q Ouyang (2018). Impact of laminae on gas storage capacity: a case study in Shanxi Formation, Xiasiwan Area, Ordos Basin, China. J Nat Gas Sci Eng, 60: 92–102
https://doi.org/10.1016/j.jngse.2018.09.001
32 M A Islam (2009). Diagenesis and reservoir quality of Bhuban sandstones (Neogene), Titas Gas Field, Bengal Basin, Bangladesh. J Asian Earth Sci, 35(1): 89–100
https://doi.org/10.1016/j.jseaes.2009.01.006
33 J Jafari, A Mahboubi, R Moussavi-Harami, I S Al-Aasm (2020). The effects of diagenesis on the petrophysical and geochemicalattributes of the Asmari Formation, Marun oil feld, southwest Iran. Petrol Sci, 17(2): 292–316
https://doi.org/10.1007/s12182-019-00421-0
34 F J Jiang, X Q Pang, J Bai, X H Zhou, J P Li, Y H Guo (2016). Comprehensive assessment of source rocks in the Bohai Sea area, Eastern China. AAPG Bull, 100(6): 969–1002
https://doi.org/10.1306/02101613092
35 J Lai, G W Wang, Y Ran, Z L Zhou (2015). Predictive distribution of high quality reservoirs of tight gas sandstones by linking diagenesis to depositional facies: evidences from Xu-2 sandstones in Penglai area of central Sichuan Basin, China. J Nat Gas Sci Eng, 23: 97–111
https://doi.org/10.1016/j.jngse.2015.01.026
36 J Lai, G W Wang, Z Y Fan, J Chen, S C Wang, Z L Zhou, X Q Fan (2016). Insight into the pore structure of tight sandstones using NMR and HPMI measurements. Energy Fuels, 30(12): 10200–10214
https://doi.org/10.1021/acs.energyfuels.6b01982
37 J Lai, G W Wang, Y Chai, Y Xin, Q K Wu, X T Zhang, Y H Sun (2017). Deep burial diagenesis and reservoir quality evolution of high-temperature, high-pressure sandstones: examples from Lower Cretaceous Bashijiqike Formation in Keshen area, Kuqa depression, Tarim basin of China. AAPG Bull, 101(6): 829–862
https://doi.org/10.1306/08231614008
38 J Lai, G W Wang, X J Pang, X C Fan, Z L Zhou, Z W Si, W B Xie, Z Q Qin (2018). Effect of pore structure on reservoir quality and oiliness in Paleogene Dongying Formation sandstones in Nanpu Sag, Bohai Bay Basin, eastern China. Energy Fuels, 32(9): 9220–9232
https://doi.org/10.1021/acs.energyfuels.8b01989
39 J Lai, X J Pang, F Xu, G W Wang, X C Fan, W B Xie, J Y Chen, Z Q Qin, Z L Zhou (2019). Origin and formation mechanisms of low oil saturation reservoirs in Nanpu Sag, Bohai Bay Basin, China. Mar Pet Geol, 110: 317–334
https://doi.org/10.1016/j.marpetgeo.2019.07.021
40 J Lai, X C Fan, B C Liu, X J Pang, S F Zhu, W B Xie, G W Wang (2020). Qualitative and quantitative prediction of diagenetic facies via well logs. Mar Pet Geol, 120: 104486
https://doi.org/10.1016/j.marpetgeo.2020.104486
41 J Lai, S Liu, Y Xin, S Wang, C Xiao, Q Song, X Chen, G Wang, Z Qin, X Ding (2021). Geological-petrophysical insights in the deep Cambrian dolostone reservoirs in Tarim Basin, China. AAPG Bull, 105(11): 2263–2296
https://doi.org/10.1002/2014JB011358
42 H P Lee, J E Olson, J Holder, J F W Gale, R D Myers (2015). The interaction of propagating opening mode fractures with preexisting discontinuities in shale. J Geophys Res Solid Earth, 120(1): 169–181
https://doi.org/10.1002/2014JB011358
43 C Liang, Y C Cao, K Y Liu, Z X Jiang, J Wu, F Hao (2018). Diagenetic variation at the lamina scale in lacustrine organic-rich shales: implications for hydrocarbon migration and accumulation. Geochim Cosmochim Acta, 229: 112–128
https://doi.org/10.1016/j.gca.2018.03.017
44 D D Liu, Z Li, Z X Jiang, C Zhang, Z Y Zhang, J B Wang, D X Yang, Y Song, Q Luo (2019). Impact of laminae on pore structures of lacustrine shales in the southern Songliao Basin, NE China. J Asian Earth Sci, 182: 103935
https://doi.org/10.1016/j.jseaes.2019.103935
45 M J Liu, Z Liu, B Wang, X M Sun, J G Guo (2015). A new method for recovering paleoporosity of sandstone: case study of middle Es3 member of Paleogene formation in Niuzhuang Sag, Dongying Depression, Bohai Bay Basin in China. Front Earth Sci, 9(3): 521–530
https://doi.org/10.1007/s11707-015-0493-8
46 L Liu, H D Chen, Y J Zhong, J Wang, C G Xu, A Q Chen, X F Du (2017). Sedimentological characteristics and depositional processes of sediment gravity flows in rift basins: the Palaeogene Dongying and Shahejie Formations, Bohai Bay Basin, China. J Asian Earth Sci, 147: 60–78
https://doi.org/10.1016/j.jseaes.2017.07.021
47 A Momeni, S Rostami, S Hashemi, H Mosalman-Nejad, A Ahmadi (2019). Fracture and fluid flow paths analysis of an offshore carbonate reservoir using oil-based mud images and petrophysical logs. Mar Pet Geol, 109: 349–360
https://doi.org/10.1016/j.marpetgeo.2019.06.021
48 S Morad, K Al-Ramadan, J M Ketzer, L F DeRos (2010). The impact of diagenesis on the heterogeneity of sandstone reservoirs: a review of the role of depositional facies and sequence stratigraphy. AAPG Bull, 94(8): 1267–1309
https://doi.org/10.1306/04211009178
49 H P Niu, S C Liu, J Lai, G W Wang, B C Liu, Y Q Xie, W B Xie (2020). In situ stress determination and fracture characterization using image logs. Energy Sci Eng, 8(2): 476–489
https://doi.org/10.1002/ese3.529
50 R Rezaee, A Saeedi, B Clennell (2012). Tight gas sands permeability estimation from mercury injection capillary pressure and nuclear magnetic resonance data. J Petrol Sci Eng, 88–89: 92–99
https://doi.org/10.1016/j.petrol.2011.12.014
51 C Rossi, R Marfil, K Ramseyer, A Permanyer (2001). Facies-related diagenesis and multiphase siderite cementation and dissolution in the reservoir sandstones of the Khatatba Formation, Egypt’s Western Desert. J Sediment Res, 71(3): 459–472
https://doi.org/10.1306/2DC40955-0E47-11D7-8643000102C1865D
52 J Saïag, B Brigaud, É Portier, G Desaubliaux, A Bucherie, S Miska, M Pagel (2016). Sedimentological control on the diagenesis and reservoir quality of tidal sandstones of the Upper Cape Hay Formation (Permian, Bonaparte Basin, Australia). Mar Pet Geol, 77: 597–624
https://doi.org/10.1016/j.marpetgeo.2016.07.002
53 S Schmid, R H Worden, Q J Fisher (2004). Diagenesis and reservoir quality of the Sherwood Sandstone (Triassic), Corrib Field, Slyne Basin, west of Ireland. Mar Pet Geol, 21(3): 299–315
https://doi.org/10.1016/j.marpetgeo.2003.11.015
54 S Stonecipher, J R Winn, M Bishop (1984). Diagenesis of the frontier formation, Moxa Arch: a function of sandstone geometry, texture and composition, and fluid flux. AAPG Bull, 68: 289–316
55 S K Swanson (2007). Lithostratigraphic controls on bedding-plane fractures and the potential for discrete groundwater flow through a siliciclastic sandstone aquifer, southern Wisconsin. Sediment Geol, 197(1–2): 65–78
https://doi.org/10.1016/j.sedgeo.2006.09.002
56 J Z Tang, K Wu, B Zeng, H Y Huang, X D Hu, X Y Guo, L H Zuo (2018). Investigate effects of weak bedding interfaces on fracture geometry in unconventional reservoirs. J Petrol Sci Eng, 165: 992–1009
https://doi.org/10.1016/j.petrol.2017.11.037
57 T R Taylor, M R Giles, L A Hathon, T N Diggs, N R Braunsdorf, G V Birbiglia, M G Kittridge, C I Macaulay, I S Espejo (2010). Sandstone diagenesis and reservoir quality prediction: models, myths, and reality. AAPG Bull, 94(8): 1093–1132
https://doi.org/10.1306/04211009123
58 M E Tucker (2003). Sedimentary Rocks in the Field (3rd ed). Chichester: John Wiley & Sons
59 J K Wang, Y X Fu, Z X Yan, J L Fu, J Xie, K K Li, Y F Zhao (2021). Influence of sedimentation and diagenesis on reservoir physical properties: a case study of the Funing Formation, Subei Basin, eastern China. Front Earth Sci, 15(4): 892–908
60 G W Wang, J Lai, B C Liu, Z Y Fan, S C Liu, Y J Shi, H T Zhang, J Chen (2020). Fluid property discrimination in dolostone reservoirs using well logs. Acta Geol Sin, 94(3): 831–846
https://doi.org/10.1111/1755-6724.14526
61 X W Weng, D Chuprakov, O Kresse, R Prioul, H T Wang (2018). Hydraulic fracture-height containment by permeable weak bedding interfaces. Geophysics, 83(3): MR137–152
https://doi.org/10.1190/geo2017-0048.1
62 S R H Worthington, G J Davies, E C Alexander Jr (2016). Enhancement of bedrock permeability by weathering. Earth Sci Rev, 160: 188–202
https://doi.org/10.1016/j.earscirev.2016.07.002
63 A N Xu, H J Zheng, Y X Dong, Z C Wang, J F Yin, W P Yan (2006). Sequence stratigraphic framework and sedimentary facies prediction in Dongying Formation of Nanpu Sag. Pet Explor Dev, 33(4): 437–443
64 C Xu, J M Gehenn, D Zhao, G Xie, M K Teng (2015). The fluvial and lacustrine sedimentary systems and stratigraphic correlation in the Upper Triassic Xujiahe Formation in Sichuan Basin, China. AAPG Bull, 99(11): 2023–2041
https://doi.org/10.1306/07061514236
65 B M S Yandoka, M B Abubakar, W H Abdullah, A S Maigari, M H Hakimi, A K Adegoke, J J Shirputda, A Aliyu (2015). Sedimentology, geochemistry and paleoenvironmental reconstruction of the Cretaceous Yolde formation from Yola Sub-basin, Northern Benue Trough, NE Nigeria. Mar Pet Geol, 67: 663–677
https://doi.org/10.1016/j.marpetgeo.2015.06.009
66 D L Yue, S H Wu, Z Y Xu, L Xiong, D X Chen, Y L Ji, Y Zhou (2018). Reservoir quality, natural fractures, and gas productivity of Upper Triassic Xujiahe tight gas sandstones in western Sichuan Basin, China. Mar Pet Geol, 89: 370–386
https://doi.org/10.1016/j.marpetgeo.2017.10.007
67 R S Zazoun (2013). Fracture density estimation from core and conventional well logs data using artificial neural networks: the Cambro-Ordovician reservoir of Mesdar Oil Field, Algeria. J Afr Earth Sci, 83: 55–73
https://doi.org/10.1016/j.jafrearsci.2013.03.003
68 L B Zeng, X Y Li (2009). Fractures in sandstone reservoirs with ultra-low permeability: a case study of the Upper Triassic Yanchang Formation in the Ordos Basin, China. AAPG Bull, 93(4): 461–477
https://doi.org/10.1306/09240808047
69 J G Zhang, Z X Jiang, E Gierlowski-Kordesch, B Z Xian, Z P Li, S Q Wang, X B Wang (2017). A double-cycle lake basin formed in extensional to transtensional setting: the Paleogene Nanpu sag, Bohai Bay Basin, China. Sediment Geo, 349: 15–32
70 G Y Zhang, Z Z Wang, X G Guo, Y N Sun, L Sun, L Pan (2019). Characteristics of lacustrine dolomitic rock reservoir and accumulation of tight oil in the Permian Fengcheng Formation, the western slope of the Mahu Sag, Junggar Basin, NW China. J Asian Earth Sci, 178: 64–80
https://doi.org/10.1016/j.jseaes.2019.01.002
71 R H Zhang, K Wang, Q L Zeng, C F Yu, J P Wang (2021). Effectiveness and petroleum geological significance of tectonic fractures in the ultra-deep zone of the Kuqa foreland thrust belt: a case study of the Cretaceous Bashijiqike Formation in the Keshen Gasfield. Petrol Sci, 18: 728–741
72 K X Zhang, J Lai, G P Bai, X J Pang, X Q Ma, Z Q Qin, X S Zhang, X C Fan (2020). Comparison of fractal models using NMR and CT analysis in low permeability sandstones. Mar Pet Geol, 112: 104069
https://doi.org/10.1016/j.marpetgeo.2019.104069
73 J Zhou, S M He, M Tang, Z Huang, Y L Chen, J Chi, Y Zhu, P Yuan (2018). Analysis of wellbore stability considering the effects of bedding planes and anisotropic seepage during drilling horizontal wells in the laminated formation. J Petrol Sci Eng, 170: 507–524
https://doi.org/10.1016/j.petrol.2018.06.052
[1] Jinkai WANG, Yuxiang FU, Zhaoxun YAN, Jialin FU, Jun XIE, Kaikai LI, Yongfu ZHAO. Influence of sedimentation and diagenesis on reservoir physical properties: a case study of the Funing Formation, Subei Basin, eastern China[J]. Front. Earth Sci., 2021, 15(4): 892-908.
[2] Weidong XIE, Meng WANG, Hua WANG, Ruying MA, Hongyue DUAN. Diagenesis of shale and its control on pore structure, a case study from typical marine, transitional and continental shales[J]. Front. Earth Sci., 2021, 15(2): 378-394.
[3] Yuefei ZHOU, Rucheng WANG, Xiancai LU, Tianhu CHEN, . Roles of adhered Paenibacillus polymyxa in the dissolution and flotation of bauxite: a dialytic investigation[J]. Front. Earth Sci., 2010, 4(2): 167-173.
[4] ZHENG Junmao, YOU Jun, HE Dongbo. Comparison between control factors of high quality continental reservoirs in Bohai Bay basin and Ordos basin[J]. Front. Earth Sci., 2008, 2(1): 83-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed