Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (3) : 798-808    https://doi.org/10.1007/s11707-021-0948-z
RESEARCH ARTICLE
Comparison and correction of IDW based wind speed interpolation methods in urbanized Shenzhen
Wei ZHAO1, Yuping ZHONG1, Qinglan LI1(), Minghua LI2, Jia LIU2, Li TANG2
1. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
2. Shenzhen Meteorological Bureau, Shenzhen 518040, China
 Download: PDF(3664 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Based on the 2-min average wind speed observations at 100 automatic weather stations in Shenzhen from January 2008 to December 2018, this study tries to explore the ways to improve wind interpolation quality over the Shenzhen region. Three IDW based methods, i.e., traditional inverse distance weight (IDW), modified inverse distance weight (MIDW), and gradient inverse distance weight (GIDW) are used to interpolate the near surface wind field in Shenzhen. In addition, the gradient boosted regression trees (GBRT) model is used to correct the wind interpolation results based on the three IDW based methods. The results show that among the three methods, GIDW has better interpolation effects than the other two in the case of stratified sampling. The MSE and R2 for the GIDW’s in different months are in the range of 1.096–1.605 m/s and 0.340–0.419, respectively. However, in the case of leave-one-group-out cross-validation, GIDW has no advantage over the other two methods. For the stratified sampling, GBRT effectively corrects the interpolated results by the three IDW based methods. MSE decreases to the range of 0.778–0.923 m/s, and R2 increases to the range of 0.530–0.671. In the non-station area, the correction effect of GBRT is still robust, even though the elevation frequency distribution of the non-station area is different from that of the stations’ area. The correction performance of GBRT mainly comes from its consideration of the nonlinear relationship between wind speed and the elevation, and the combination of historical and current observation data.

Keywords wind interpolation      Shenzhen      inverse distance weight      gradient boosted regression trees     
Corresponding Author(s): Qinglan LI   
Online First Date: 30 June 2022    Issue Date: 29 December 2022
 Cite this article:   
Wei ZHAO,Yuping ZHONG,Qinglan LI, et al. Comparison and correction of IDW based wind speed interpolation methods in urbanized Shenzhen[J]. Front. Earth Sci., 2022, 16(3): 798-808.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0948-z
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I3/798
Fig.1  Location of the 100 automatic weather stations (AWSs) and the geographical features of the study area.
Input feature Target
Interpolation result Results of IDW, MIDW, or GIDW Observation value
Terrain-related features DEMSlopeAspect
Time-related features Day of yearHour of day
Tab.1  Input features and regression target of GBRT
Month MSE R2
IDW MIDW GIDW IDW MIDW GIDW
Jan. 1.487 1.514 1.440 0.351 0.339 0.371
Feb. 1.425 1.459 1.393 0.364 0.349 0.379
Mar. 1.364 1.375 1.302 0.364 0.359 0.393
Apr. 1.307 1.332 1.264 0.345 0.332 0.366
May 1.265 1.309 1.240 0.327 0.303 0.340
Jun. 1.271 1.350 1.267 0.358 0.319 0.361
Jul. 1.241 1.310 1.229 0.355 0.319 0.361
Aug. 1.081 1.137 1.096 0.411 0.381 0.404
Sep. 1.278 1.319 1.254 0.408 0.389 0.419
Oct. 1.368 1.410 1.334 0.347 0.327 0.363
Nov. 1.464 1.496 1.406 0.366 0.352 0.391
Dec. 1.664 1.700 1.605 0.389 0.376 0.411
All year 1.350 1.392 1.318 0.368 0.348 0.383
Tab.2  Interpolation evaluation of IDW, MIDW, and GIDW
Month MSE R2
GBRIDW GBRMIDW GBRGIDW GBRIDW GBRMIDW GBRGIDW
Jan. 0.880 0.878 0.878 0.615 0.617 0.617
Feb. 0.885 0.879 0.880 0.606 0.608 0.608
Mar. 0.881 0.874 0.877 0.589 0.592 0.591
Apr. 0.891 0.889 0.890 0.553 0.554 0.553
May 0.883 0.882 0.883 0.530 0.531 0.530
Jun. 0.922 0.920 0.923 0.535 0.536 0.534
Jul. 0.881 0.880 0.882 0.542 0.543 0.541
Aug. 0.779 0.778 0.780 0.576 0.577 0.576
Sep. 0.844 0.841 0.840 0.609 0.610 0.611
Oct. 0.837 0.836 0.835 0.600 0.601 0.601
Nov. 0.835 0.830 0.831 0.638 0.641 0.640
Dec. 0.901 0.897 0.899 0.669 0.671 0.670
All year 0.868 0.865 0.866 0.594 0.596 0.595
Tab.3  Performance evaluation of the GBRT correction
Fig.2  The R2 and MSE of each station’s interpolation result for the testing set by IDW, MIDW, and GIDW methods. (a) (c) (e) for R2, and (b) (d) (f) for MSE.
Fig.3  Interpolation improvement by GBRIDW, GBRMIDW, and GBRGIDW methods in terms of ?R2 and ?MSE, comparing to the interpolations by IDW, MIDW, and GIDW methods.
Fig.4  Comparison of (a) elevation and (b) slope distribution between the 100 stations and the natural terrain in Shenzhen.
Fig.5  The locations of the stations in the three randomly selected groups.
Group MSE R2
IDW MIDW GIDW IDW MIDW GIDW
1 1.223 1.297 1.471 0.321 0.280 0.183
2 1.392 1.598 1.631 0.326 0.227 0.211
3 1.193 1.313 1.497 0.364 0.300 0.202
Tab.4  Interpolation evaluation of IDW, MIDW, and GIDW
Group MSE R2
GBR-IDW GBRM-IDW GBRG-IDW GBR-IDW GBRM-IDW GBRG-IDW
1 1.210 1.181 1.288 0.328 0.344 0.285
2 1.356 1.384 1.453 0.344 0.330 0.297
3 1.190 1.214 1.306 0.366 0.353 0.304
Tab.5  Performance evaluation of the GBRT correction
Fig.6  The importance of each input feature. (a) and (b) are for GBRIDW; (c) and (d) are for GBRMIDW; (e) and (f) are for GBRGIDW.
1 F J Aguilar, F Agüera, M A Aguilar, F Carvajal. ( 2005). Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogramm Eng Remote Sensing, 71( 7): 805– 816
https://doi.org/10.14358/PERS.71.7.805
2 A Altmann, L Toloşi, O Sander, T Lengauer. ( 2010). Permutation importance: a corrected feature importance measure. Bioinformatics, 26( 10): 1340– 1347
https://doi.org/10.1093/bioinformatics/btq134
3 M A Arain, R Blair, N Finkelstein, J R Brook, T Sahsuvaroglu, B Beckerman, L Zhang, M Jerrett. ( 2007). The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies. Atmos Environ, 41( 16): 3453– 3464
https://doi.org/10.1016/j.atmosenv.2006.11.063
4 F Bañuelos-Ruedas, C Angeles-Camacho, S Rios-Marcuello. ( 2010). Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights. Renew Sustain Energy Rev, 14( 8): 2383– 2391
https://doi.org/10.1016/j.rser.2010.05.001
5 G Casalicchio C Molnar B Bischl ( 2018). Visualizing the feature importance for black box models. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer
6 Q Chang, S Li, Y Wang, J Wu, M Xie. ( 2013). Spatial process of green infrastructure changes associated with rapid urbanization in Shenzhen, China. Chin Geogr Sci, 23( 1): 113– 128
https://doi.org/10.1007/s11769-012-0568-3
7 S Coccolo, D Mauree, E Naboni, J Kaempf, J L Scartezzini. ( 2017). On the impact of the wind speed on the outdoor human comfort: a sensitivity analysis. Energy Procedia, 122: 481– 486
https://doi.org/10.1016/j.egypro.2017.07.297
8 C L Curry, D van der Kamp, A H Monahan. ( 2012). Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. I. Predicting wind speed. Clim Dyn, 38( 7−8): 1281– 1299
https://doi.org/10.1007/s00382-011-1173-3
9 C Daly, M Halbleib, J I Smith, W P Gibson, M K Doggett, G H Taylor, J Curtis, P P Pasteris. ( 2008). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Intern J Climat, 28( 15): 2031– 2064
https://doi.org/10.1002/joc.1688
10 J Elith, J R Leathwick, T Hastie. ( 2008). A working guide to boosted regression trees. J Anim Ecol, 77( 4): 802– 813
https://doi.org/10.1111/j.1365-2656.2008.01390.x
11 J H Friedman. ( 2001). Greedy function approximation: a gradient boosting machine. Ann Stat, 29( 5): 1189– 1232
https://doi.org/10.1214/aos/1013203451
12 J H Friedman. ( 2002). Stochastic gradient boosting. Comput Stat Data Anal, 38( 4): 367– 378
https://doi.org/10.1016/S0167-9473(01)00065-2
13 S P Ghosh. ( 1958). A note on stratified random sampling with multiple characters. Calcutta Statistical Association Bulletin, 8( 2−3): 81– 90
https://doi.org/10.1177/0008068319580204
14 A Jarvis H I Reuter A Nelson E Guevara ( 2008). SRTM 90m Digital Elevation Database v4. 1
15 H K Johnson. ( 1999). Simple expressions for correcting wind speed data for elevation. Coast Eng, 36( 3): 263– 269
https://doi.org/10.1016/S0378-3839(99)00016-2
16 H Kikumoto, R Ooka, H Sugawara, J Lim. ( 2017). Observational study of power-law approximation of wind profiles within an urban boundary layer for various wind conditions. J Wind Eng Ind Aerodyn, 164: 13– 21
https://doi.org/10.1016/j.jweia.2017.02.003
17 L Kleerekoper, M Van Esch, T B Salcedo. ( 2012). How to make a city climate-proof, addressing the urban heat island effect. Resour Conserv Recycling, 64: 30– 38
https://doi.org/10.1016/j.resconrec.2011.06.004
18 J Li, Y Tian, Y Zhu, T Zhou, J Li, K Ding, J Li. ( 2020). A multicenter random forest model for effective prognosis prediction in collaborative clinical research network. Artif Intell Med, 103: 101814
https://doi.org/10.1016/j.artmed.2020.101814
19 L Li. ( 2019). Geographically weighted machine learning and downscaling for high-resolution spatiotemporal estimations of wind speed. Remote Sens, 11( 11): 1378
https://doi.org/10.3390/rs11111378
20 L Li, J Qian, C Q Ou, Y X Zhou, C Guo, Y Guo. ( 2014). Spatial and temporal analysis of air pollution index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011. Environ Pollut, 190: 75– 81
https://doi.org/10.1016/j.envpol.2014.03.020
21 C Liu, Q Li, W Zhao, Y Wang, R Ali, D Huang, X Lu, H Zheng, X Wei. ( 2020). Spatiotemporal characteristics of near-surface wind in Shenzhen. Sustainability, 12( 2): 739
https://doi.org/10.3390/su12020739
22 G Louppe, L Wehenkel, A Sutera, P Geurts. ( 2013). Understanding variable importances in forests of randomized trees. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, 431– 439
23 N Masseran, A M Razali, K Ibrahim. ( 2012). An analysis of wind power density derived from several wind speed density functions: the regional assessment on wind power in Malaysia. Renew Sustain Energy Rev, 16( 8): 6476– 6487
https://doi.org/10.1016/j.rser.2012.03.073
24 M H McCutchan, D G Fox. ( 1986). Effect of elevation and aspect on wind, temperature and humidity. J Clim Appl Meteorol, 25( 12): 1996– 2013
https://doi.org/10.1175/1520-0450(1986)025<1996:EOEAAO>2.0.CO;2
25 L Mitas H Mitasova ( 1999). Spatial interpolation. In: Longley P A, Goodchild M F, Maguire D J, Rhind D W, eds. Geographical Information Systems: Principles, Techniques, Management and Applications. New York: Wiley
26 H Morris M Wardle M Mainelli ( 2020). The global financial centres index 28. Long Finan Financ Centr Future. 1− 69
27 I A Nalder, R W Wein. ( 1998). Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agric Meteorol, 92( 4): 211– 225
https://doi.org/10.1016/S0168-1923(98)00102-6
28 E Ozelkan, G Chen, B B Ustundag. ( 2016). Spatial estimation of wind speed: a new integrative model using inverse distance weighting and power law. Int J Digit Earth, 9( 8): 733– 747
https://doi.org/10.1080/17538947.2015.1127437
29 J P Palutikof, P M Kelly, T D Davies, J A Halliday. ( 1987). Impacts of spatial and temporal windspeed variability on wind energy output. J Clim Appl Meteorol, 26( 9): 1124– 1133
https://doi.org/10.1175/1520-0450(1987)026<1124:IOSATW>2.0.CO;2
30 S Peng ( 2017). Optimized study on spatial interpolation methods for meteorological element. Geospat Inform, 15( 7): 86− 89 (in Chinese)
31 W R Tobler. ( 1970). A computer movie simulating urban growth in the Detroit region. Econom Geogra, 46( sup1): 234– 240
32 J Wang, J Hu, K Ma. ( 2016a). Wind speed probability distribution estimation and wind energy assessment. Renew Sustain Energy Rev, 60: 881– 899
https://doi.org/10.1016/j.rser.2016.01.057
33 P Wang, Y Dou, Y Xin. ( 2016b). The analysis and design of the job recommendation model based on GBRT and time factors. In: 2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA). IEEE, 29– 35
34 Y Wang Y (2019) Tang. A recommendation algorithm based on item genres preference and GBRT. In: Journal of Physics Conference Series. IOP Publishing, 2019, 1229( 1): 012053
35 R Wanninkhof. ( 2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr Methods, 12( 6): 351– 362
https://doi.org/10.4319/lom.2014.12.351
36 A Winstral, T Jonas, N Helbig. ( 2017). Statistical downscaling of gridded wind speed data using local topography. J Hydrometeorol, 18( 2): 335– 348
https://doi.org/10.1175/JHM-D-16-0054.1
37 Y Xu X Wan C Fu C Liu ( 2012). Wind speed interpolation under complex terrain conditions: a case study of Jilin Province. Yunnan Geogr Environ Res, 24 ( 4), 78− 81 (in Chinese)
38 J Yang, B Shi, Y Shi, S Marvin, Y Zheng, G Xia. ( 2020). Air pollution dispersal in high density urban areas: research on the triadic relation of wind, air pollution, and urban form. Sustain Cities Soc, 54: 101941
https://doi.org/10.1016/j.scs.2019.101941
39 W Yuan, B Xu, Z Chen, J Xia, W Xu, Y Chen, X Wu, Y Fu. ( 2015). Validation of China-wide interpolated daily climate variables from 1960 to 2011. Theor Appl Climatol, 119( 3−4): 689– 700
https://doi.org/10.1007/s00704-014-1140-0
40 Z Zhang, W Yang, S Wushour. ( 2020). Traffic accident prediction based on LSTM-GBRT model. J Contr Sci Eng, 2020: 4206919
https://doi.org/10.1155/2020/4206919
41 S Zhi, G Qian, J Luo. ( 2001). The variation of coastal wind with height in Guangdong Province. Trop Geogr, 21( 2): 131– 134
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed