|
|
|
Comparison and correction of IDW based wind speed interpolation methods in urbanized Shenzhen |
Wei ZHAO1, Yuping ZHONG1, Qinglan LI1( ), Minghua LI2, Jia LIU2, Li TANG2 |
1. Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China 2. Shenzhen Meteorological Bureau, Shenzhen 518040, China |
|
|
|
|
Abstract Based on the 2-min average wind speed observations at 100 automatic weather stations in Shenzhen from January 2008 to December 2018, this study tries to explore the ways to improve wind interpolation quality over the Shenzhen region. Three IDW based methods, i.e., traditional inverse distance weight (IDW), modified inverse distance weight (MIDW), and gradient inverse distance weight (GIDW) are used to interpolate the near surface wind field in Shenzhen. In addition, the gradient boosted regression trees (GBRT) model is used to correct the wind interpolation results based on the three IDW based methods. The results show that among the three methods, GIDW has better interpolation effects than the other two in the case of stratified sampling. The MSE and R2 for the GIDW’s in different months are in the range of 1.096–1.605 m/s and 0.340–0.419, respectively. However, in the case of leave-one-group-out cross-validation, GIDW has no advantage over the other two methods. For the stratified sampling, GBRT effectively corrects the interpolated results by the three IDW based methods. MSE decreases to the range of 0.778–0.923 m/s, and R2 increases to the range of 0.530–0.671. In the non-station area, the correction effect of GBRT is still robust, even though the elevation frequency distribution of the non-station area is different from that of the stations’ area. The correction performance of GBRT mainly comes from its consideration of the nonlinear relationship between wind speed and the elevation, and the combination of historical and current observation data.
|
| Keywords
wind interpolation
Shenzhen
inverse distance weight
gradient boosted regression trees
|
|
Corresponding Author(s):
Qinglan LI
|
|
Online First Date: 30 June 2022
Issue Date: 29 December 2022
|
|
| 1 |
F J Aguilar, F Agüera, M A Aguilar, F Carvajal. ( 2005). Effects of terrain morphology, sampling density, and interpolation methods on grid DEM accuracy. Photogramm Eng Remote Sensing, 71( 7): 805– 816
https://doi.org/10.14358/PERS.71.7.805
|
| 2 |
A Altmann, L Toloşi, O Sander, T Lengauer. ( 2010). Permutation importance: a corrected feature importance measure. Bioinformatics, 26( 10): 1340– 1347
https://doi.org/10.1093/bioinformatics/btq134
|
| 3 |
M A Arain, R Blair, N Finkelstein, J R Brook, T Sahsuvaroglu, B Beckerman, L Zhang, M Jerrett. ( 2007). The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies. Atmos Environ, 41( 16): 3453– 3464
https://doi.org/10.1016/j.atmosenv.2006.11.063
|
| 4 |
F Bañuelos-Ruedas, C Angeles-Camacho, S Rios-Marcuello. ( 2010). Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights. Renew Sustain Energy Rev, 14( 8): 2383– 2391
https://doi.org/10.1016/j.rser.2010.05.001
|
| 5 |
G Casalicchio C Molnar B Bischl ( 2018). Visualizing the feature importance for black box models. In: Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer
|
| 6 |
Q Chang, S Li, Y Wang, J Wu, M Xie. ( 2013). Spatial process of green infrastructure changes associated with rapid urbanization in Shenzhen, China. Chin Geogr Sci, 23( 1): 113– 128
https://doi.org/10.1007/s11769-012-0568-3
|
| 7 |
S Coccolo, D Mauree, E Naboni, J Kaempf, J L Scartezzini. ( 2017). On the impact of the wind speed on the outdoor human comfort: a sensitivity analysis. Energy Procedia, 122: 481– 486
https://doi.org/10.1016/j.egypro.2017.07.297
|
| 8 |
C L Curry, D van der Kamp, A H Monahan. ( 2012). Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. I. Predicting wind speed. Clim Dyn, 38( 7−8): 1281– 1299
https://doi.org/10.1007/s00382-011-1173-3
|
| 9 |
C Daly, M Halbleib, J I Smith, W P Gibson, M K Doggett, G H Taylor, J Curtis, P P Pasteris. ( 2008). Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Intern J Climat, 28( 15): 2031– 2064
https://doi.org/10.1002/joc.1688
|
| 10 |
J Elith, J R Leathwick, T Hastie. ( 2008). A working guide to boosted regression trees. J Anim Ecol, 77( 4): 802– 813
https://doi.org/10.1111/j.1365-2656.2008.01390.x
|
| 11 |
J H Friedman. ( 2001). Greedy function approximation: a gradient boosting machine. Ann Stat, 29( 5): 1189– 1232
https://doi.org/10.1214/aos/1013203451
|
| 12 |
J H Friedman. ( 2002). Stochastic gradient boosting. Comput Stat Data Anal, 38( 4): 367– 378
https://doi.org/10.1016/S0167-9473(01)00065-2
|
| 13 |
S P Ghosh. ( 1958). A note on stratified random sampling with multiple characters. Calcutta Statistical Association Bulletin, 8( 2−3): 81– 90
https://doi.org/10.1177/0008068319580204
|
| 14 |
A Jarvis H I Reuter A Nelson E Guevara ( 2008). SRTM 90m Digital Elevation Database v4. 1
|
| 15 |
H K Johnson. ( 1999). Simple expressions for correcting wind speed data for elevation. Coast Eng, 36( 3): 263– 269
https://doi.org/10.1016/S0378-3839(99)00016-2
|
| 16 |
H Kikumoto, R Ooka, H Sugawara, J Lim. ( 2017). Observational study of power-law approximation of wind profiles within an urban boundary layer for various wind conditions. J Wind Eng Ind Aerodyn, 164: 13– 21
https://doi.org/10.1016/j.jweia.2017.02.003
|
| 17 |
L Kleerekoper, M Van Esch, T B Salcedo. ( 2012). How to make a city climate-proof, addressing the urban heat island effect. Resour Conserv Recycling, 64: 30– 38
https://doi.org/10.1016/j.resconrec.2011.06.004
|
| 18 |
J Li, Y Tian, Y Zhu, T Zhou, J Li, K Ding, J Li. ( 2020). A multicenter random forest model for effective prognosis prediction in collaborative clinical research network. Artif Intell Med, 103: 101814
https://doi.org/10.1016/j.artmed.2020.101814
|
| 19 |
L Li. ( 2019). Geographically weighted machine learning and downscaling for high-resolution spatiotemporal estimations of wind speed. Remote Sens, 11( 11): 1378
https://doi.org/10.3390/rs11111378
|
| 20 |
L Li, J Qian, C Q Ou, Y X Zhou, C Guo, Y Guo. ( 2014). Spatial and temporal analysis of air pollution index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011. Environ Pollut, 190: 75– 81
https://doi.org/10.1016/j.envpol.2014.03.020
|
| 21 |
C Liu, Q Li, W Zhao, Y Wang, R Ali, D Huang, X Lu, H Zheng, X Wei. ( 2020). Spatiotemporal characteristics of near-surface wind in Shenzhen. Sustainability, 12( 2): 739
https://doi.org/10.3390/su12020739
|
| 22 |
G Louppe, L Wehenkel, A Sutera, P Geurts. ( 2013). Understanding variable importances in forests of randomized trees. In: Proceedings of the 26th International Conference on Neural Information Processing Systems, 431– 439
|
| 23 |
N Masseran, A M Razali, K Ibrahim. ( 2012). An analysis of wind power density derived from several wind speed density functions: the regional assessment on wind power in Malaysia. Renew Sustain Energy Rev, 16( 8): 6476– 6487
https://doi.org/10.1016/j.rser.2012.03.073
|
| 24 |
M H McCutchan, D G Fox. ( 1986). Effect of elevation and aspect on wind, temperature and humidity. J Clim Appl Meteorol, 25( 12): 1996– 2013
https://doi.org/10.1175/1520-0450(1986)025<1996:EOEAAO>2.0.CO;2
|
| 25 |
L Mitas H Mitasova ( 1999). Spatial interpolation. In: Longley P A, Goodchild M F, Maguire D J, Rhind D W, eds. Geographical Information Systems: Principles, Techniques, Management and Applications. New York: Wiley
|
| 26 |
H Morris M Wardle M Mainelli ( 2020). The global financial centres index 28. Long Finan Financ Centr Future. 1− 69
|
| 27 |
I A Nalder, R W Wein. ( 1998). Spatial interpolation of climatic normals: test of a new method in the Canadian boreal forest. Agric Meteorol, 92( 4): 211– 225
https://doi.org/10.1016/S0168-1923(98)00102-6
|
| 28 |
E Ozelkan, G Chen, B B Ustundag. ( 2016). Spatial estimation of wind speed: a new integrative model using inverse distance weighting and power law. Int J Digit Earth, 9( 8): 733– 747
https://doi.org/10.1080/17538947.2015.1127437
|
| 29 |
J P Palutikof, P M Kelly, T D Davies, J A Halliday. ( 1987). Impacts of spatial and temporal windspeed variability on wind energy output. J Clim Appl Meteorol, 26( 9): 1124– 1133
https://doi.org/10.1175/1520-0450(1987)026<1124:IOSATW>2.0.CO;2
|
| 30 |
S Peng ( 2017). Optimized study on spatial interpolation methods for meteorological element. Geospat Inform, 15( 7): 86− 89 (in Chinese)
|
| 31 |
W R Tobler. ( 1970). A computer movie simulating urban growth in the Detroit region. Econom Geogra, 46( sup1): 234– 240
|
| 32 |
J Wang, J Hu, K Ma. ( 2016a). Wind speed probability distribution estimation and wind energy assessment. Renew Sustain Energy Rev, 60: 881– 899
https://doi.org/10.1016/j.rser.2016.01.057
|
| 33 |
P Wang, Y Dou, Y Xin. ( 2016b). The analysis and design of the job recommendation model based on GBRT and time factors. In: 2016 IEEE International Conference on Knowledge Engineering and Applications (ICKEA). IEEE, 29– 35
|
| 34 |
Y Wang Y (2019) Tang. A recommendation algorithm based on item genres preference and GBRT. In: Journal of Physics Conference Series. IOP Publishing, 2019, 1229( 1): 012053
|
| 35 |
R Wanninkhof. ( 2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr Methods, 12( 6): 351– 362
https://doi.org/10.4319/lom.2014.12.351
|
| 36 |
A Winstral, T Jonas, N Helbig. ( 2017). Statistical downscaling of gridded wind speed data using local topography. J Hydrometeorol, 18( 2): 335– 348
https://doi.org/10.1175/JHM-D-16-0054.1
|
| 37 |
Y Xu X Wan C Fu C Liu ( 2012). Wind speed interpolation under complex terrain conditions: a case study of Jilin Province. Yunnan Geogr Environ Res, 24 ( 4), 78− 81 (in Chinese)
|
| 38 |
J Yang, B Shi, Y Shi, S Marvin, Y Zheng, G Xia. ( 2020). Air pollution dispersal in high density urban areas: research on the triadic relation of wind, air pollution, and urban form. Sustain Cities Soc, 54: 101941
https://doi.org/10.1016/j.scs.2019.101941
|
| 39 |
W Yuan, B Xu, Z Chen, J Xia, W Xu, Y Chen, X Wu, Y Fu. ( 2015). Validation of China-wide interpolated daily climate variables from 1960 to 2011. Theor Appl Climatol, 119( 3−4): 689– 700
https://doi.org/10.1007/s00704-014-1140-0
|
| 40 |
Z Zhang, W Yang, S Wushour. ( 2020). Traffic accident prediction based on LSTM-GBRT model. J Contr Sci Eng, 2020: 4206919
https://doi.org/10.1155/2020/4206919
|
| 41 |
S Zhi, G Qian, J Luo. ( 2001). The variation of coastal wind with height in Guangdong Province. Trop Geogr, 21( 2): 131– 134
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|