Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (4) : 865-875    https://doi.org/10.1007/s11707-021-0951-4
RESEARCH ARTICLE
Reduction of the wind erosion potential in dried-up lakebeds using artificial biocrusts
Hossein KHEIRFAM1,2(), Maryam ROOHI3
1. Department of Range and Watershed Management, Faculty of Natural Resources, Urmia University, Urmia 5756151818, Iran
2. Department of Environmental Sciences, Urmia Lake Research Institute, Urmia University, Urmia 5756151818, Iran
3. Microbiology Laboratory Expert, Artemia & Aquaculture Research Institute, Urmia University, Urmia 5756151818, Iran
 Download: PDF(17181 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The artificial creation of biocrusts can be a rapid and pervasive solution to reduce wind erosion potential (WEP) in dried-up lakes (e.g., Lake Urmia). So, in this study, we created a biocrust by the inoculation of bacteria and cyanobacteria on trays filled by soils collected from the dried-up bed of Lake Urmia, Iran, to reduce WEP in laboratory conditions. We used the wind erodible fraction of soil (EF) and soil crust factor (SCF) equations to calculate the WEP of the treated soils. EF and SCF were decreased (p < 0.05) through applying the co-inoculation of bacteria and cyanobacteria by 5.6% and 10.57%, respectively, as compared to the control; also, the “cyanobacteria alone” inoculation decreased EF by 3.9%. Our results showed that the artificial biocrusts created by soil inoculation, especially with the co-using of bacteria and cyanobacteria, significantly reduced the WEP of a newly dried-up lakebed. Furthermore, we found that inoculation decreased the WEP of the study soil by increasing the soil organic matter content from 3.7 to 5 fold. According to scanning electron microscopy images, the inoculated microorganisms, especially cyanobacteria, improved soil aggregation by their exopolysaccharides and filaments; thus, they can be used with other factors to estimate the soil erodibility in well-developed biocrusts. The inoculation technique could be considered as a rapid strategy in stabilizing lakebeds against wind force. However, it should be confirmed after additional experiments using wind tunnels under natural conditions.

Keywords biological soil crust      dried-up lakes      dust storms      flowing-sands      soil cyanobacteria     
Corresponding Author(s): Hossein KHEIRFAM   
Online First Date: 30 June 2022    Issue Date: 11 January 2023
 Cite this article:   
Hossein KHEIRFAM,Maryam ROOHI. Reduction of the wind erosion potential in dried-up lakebeds using artificial biocrusts[J]. Front. Earth Sci., 2022, 16(4): 865-875.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0951-4
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I4/865
Fig.1  The location of Lake Urmia, dried-up beds of the lake, and soil collection site for the experiment.
Property Description  Property Description
Sand (%) 85.67  Organic N (g·kg−1) 0.08
Silt (%) 7  Available phosphor (mg·kg−1) 7.47
Clay (%) 7.33  Available potassium (mg·kg−1) 247
Texture Sandy  CO3 (mEq·L−1) 9.87
Bulk density (g cm−3) 1.67  SO4 (mEq·L−1) 9.42
Mean weight diameter (mm) 0.39  Cl (mEq·L−1) 4.30
Geometric mean diameter (mm) 0.067  Ca (mEq·L−1) 2.90
pH 8.47  Mg (mEq·L−1) 1.57
EC (ds·m−1) 1.45  Na (mEq·L−1) 11.38
Organic C (g·kg−1) 0.075  CEC (mEq·100g−1) 4.23
Tab.1  Description of the soil properties of the study region
Treatments Plot No. and statistical criteria Properties
Sandns /% Siltns /% Clayns/% OM**/% CaCO3ns /%
No Inoc. (Control) 1 85 7 8 0.124 8
2 87 6 7 0.138 10
3 85 8 7 0.129 8.5
Average 85.67a 7.00a 7.33a 0.13c 8.83a
SD 1.15 1.00 0.58 0.01 1.04
CV (%) 1.35 14.29 7.87 5.34 11.78
Ba Inoc. 1 87 6 7 0.241 9
2 87 6 7 0.224 9
3 86 6 8 0.272 9
Average 86.67a 6.00a 7.33a 0.25c 9.00a
SD 0.58 0.00 0.58 0.02 0.00
CV (%) 0.67 0.00 7.87 9.89 0.00
Cy Inoc. 1 87 5 8 0.527 10
2 84 7 7 0.696 8.2
3 86 5 7 0.603 10
Average 85.67a 5.67a 7.33a 0.61b 9.40a
SD 1.53 1.15 0.58 0.08 1.04
CV (%) 1.78 20.38 7.87 13.89 11.06
Ba+Cy Inoc. 1 85 6 8 0.827 10
2 85 7 7 0.782 10
3 86 6 8 0.762 9
Average 85.33a 6.33a 7.67a 0.79a 9.67a
SD 0.58 0.58 0.58 0.03 0.58
CV (%) 0.68 9.12 7.53 4.23 5.97
Tab.2  Measured soil properties for use in Eqs. (1) and (2) and statistical tests to evaluate their continuous variation
Variable df Mean square F-value p-value
EF Between Groups 3 5.816 14.839 0.001
Within Groups 8 0.392
Total 11
SCF Between Groups 3 38.454 4.956 0.031
Within Groups 8 7.760
Total 11
Sa Between Groups 3 1.000 0.923 0.472
Within Groups 8 1.083
Total 11
Si Between Groups 3 0.972 1.458 0.297
Within Groups 8 0.367
Total 11
Sc Between Groups 3 0.285 0.362 0.782
Within Groups 8 0.786
Total 11
OM Between Groups 3 0.285 127.773 0.000
Within Groups 8 0.002
Total 11
CaCO3 Between Groups 3 0.430 0.688 0.584
Within Groups 8 0.624
Total 11
Tab.3  Results of the one-way ANOVA comparing the variation of the wind erodible fraction of soil (EF; %) and soil crust factor (SCF; %) as well as sand (Sa; %), silt (Si; %), sand/clay (Sc; %), organic matter (OM; %), and calcium carbonate (CaCO3; %) content that used for calculating the EF and SCF due to the various treatments
Fig.2  Wind erodible fraction of soil (EF) variation in the treatments. No Inoc. (Control; no inoculation); Ba Inoc. (bacteria inoculation); Cy Inoc. (cyanobacteria inoculation); and Ba + Cy Inoc. (combined inoculation of bacteria and cyanobacteria). Bars with the same letter show non-significant differences (Tukey, p > 0.05); otherwise, they show a significant difference (Tukey, p < 0.05).
Fig.3  Soil crust factor (SCF) variation in the treatments. No Inoc. (Control; no inoculation); Ba Inoc. (bacteria inoculation); Cy Inoc. (cyanobacteria inoculation); and Ba + Cy Inoc. (combined inoculation of bacteria and cyanobacteria). Bars with the same letter show non-significant differences (Tukey, p > 0.05); otherwise, they show a significant difference (Tukey, p < 0.05).
Fig.4  Scatter plot graph of the treatments soil properties used for WEP estimation equations and the EF and SCF values. The linear (blue) trendlines (the line of best fit) indicate the general pattern and overall direction of the data set, drawn using Microsoft Excel 2013. The upward and downward direction lines indicate indirectly and reverse the relationship between soil variables andEF and SCF values. The R2 values also show the strength of the relationship between each soil variable andEF and/or SCF in the scatterplots, in which the high R2 indicates a high correlation between the two dependent and independent variables.
Fig.5  The scanning electron microscopy images of the control (a), inoculation of bacteria (b), inoculation of cyanobacteria (c), and co-inoculation of bacteria and cyanobacteria (d) treatments.
1 H Ahmady-Birgani, E Agahi, S J Ahmadi, M Erfanian. ( 2018). Sediment source fingerprinting of the Lake Urmia sand dunes. Sci Rep, 8( 1): 206
https://doi.org/10.1038/s41598-017-18027-0
2 S Ansari, T Fatma. ( 2016). Cyanobacterial polyhydroxybutyrate (PHB): screening, optimization and characterization. PLoS One, 11( 6): e0158168
https://doi.org/10.1371/journal.pone.0158168
3 F Avecilla, J E Panebianco, D E Buschiazzo. ( 2015). Variable effects of saltation and soil properties on wind erosion of different textured soils. Aeolian Res, 18: 145– 153
https://doi.org/10.1016/j.aeolia.2015.07.005
4 J Belnap, B J Walker, S M Munson, R A Gill. ( 2014). Controls on sediment production in two US deserts. Aeolian Res, 14: 15– 24
https://doi.org/10.1016/j.aeolia.2014.03.007
5 J Belnap, B P Wilcox, M W Van Scoyoc, S L Phillips. ( 2013). Successional stage of biological soil crusts: an accurate indicator of ecohydrological condition. Ecohydrology, 6( 3): 474– 482
https://doi.org/10.1002/eco.1281
6 P Borrelli, C Ballabio, P Panagos, L Montanarella. ( 2014). Wind erosion susceptibility of European soils. Geoderma, 232-234: 471– 478
https://doi.org/10.1016/j.geoderma.2014.06.008
7 P Borrelli, P Panagos, C Ballabio, E Lugato, M Weynants, L Montanarella. ( 2016). Towards a pan—European assessment of land susceptibility to wind erosion. Land Degrad Dev, 27( 4): 1093– 1105
https://doi.org/10.1002/ldr.2318
8 J E Bullard, A Ockelford, C L Strong, H Aubault. ( 2018). Impact of multi-day rainfall events on surface roughness and physical crusting of very fine soils. Geoderma, 313: 181– 192
https://doi.org/10.1016/j.geoderma.2017.10.038
9 S Chamizo, G Mugnai, F Rossi, G Certini, R De Philippis. ( 2018). Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Front Environ Sci, 6: 49
https://doi.org/10.3389/fenvs.2018.00049
10 W S Chepil. ( 1950). Properties of soil which influence wind erosion: I. the governing principle of surface roughness. Soil Sci, 69( 2): 149– 162
11 W S Chepil, N P Woodruff. ( 1954). Estimations of wind erodibility of field surfaces. J Soil Water Conserv, 9: 257– 265
12 J C Colazo, D E Buschiazzo. ( 2010). Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina. Geoderma, 159( 1−2): 228– 236
https://doi.org/10.1016/j.geoderma.2010.07.016
13 O Y A Costa, J M Raaijmakers, E E Kuramae. ( 2018). Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol, 9: 1636
https://doi.org/10.3389/fmicb.2018.01636
14 N A Cutler, L R Belyea, A J Dugmore. ( 2008). The spatiotemporal dynamics of a primary succession. J Ecol, 96( 2): 231– 246
https://doi.org/10.1111/j.1365-2745.2007.01344.x
15 M Danesh-Yazdi, B Ataie-Ashtiani. ( 2019). Lake Urmia crisis and restoration plan: planning without appropriate data and model is gambling. J Hydrol (Amst), 576: 639– 651
https://doi.org/10.1016/j.jhydrol.2019.06.068
16 L A de Oro, J C Colazo, F Avecilla, D E Buschiazzo, C Asensio. ( 2019). Relative soil water content as a factor for wind erodibility in soils with different texture and aggregation. Aeolian Res, 37: 25– 31
https://doi.org/10.1016/j.aeolia.2019.02.001
17 M C Duniway, A A Pfennigwerth, S E Fick, T W Nauman, J Belnap, N N Barger. ( 2019). Wind erosion and dust from US drylands: a review of causes, consequences, and solutions in a changing world. Ecosphere, 10( 3): e02650
https://doi.org/10.1002/ecs2.2650
18 W Farebrother, P P Hesse, H C Chang, C Jones. ( 2017). Dry lake beds as sources of dust in Australia during the Late Quaternary: a volumetric approach based on lake bed and deflated dune volumes. Quat Sci Rev, 161: 81– 98
https://doi.org/10.1016/j.quascirev.2017.02.019
19 B Fan, Y Zhou, Q Ma, Q Yu, C Zhao, K Sun. ( 2018). The bet-hedging strategies for seedling emergence of Calligonum mongolicum to adapt to the extreme desert environments in northwestern China. Front Plant Sci, 9: 1167
https://doi.org/10.3389/fpls.2018.01167
20 D W Fryrear, J D Bilbro, A Saleh, H Schomberg, J E Stout, T M Zobeck. ( 2000). RWEQ: improved wind erosion technology. J Soil Water Conserv, 55( 2): 183– 189
21 D W Fryrear, C A Krammes, D L Williamson, T M Zobeck. ( 1994). Computing the wind erodible fraction of soils. J Soil Water Conserv, 49( 2): 183– 188
22 L Gao, M A Bowker, M Xu, H Sun, D Tuo, Y Zhao. ( 2017). Biological soil crusts decrease erodibility by modifying inherent soil properties on the Loess Plateau, China. Soil Biol Biochem, 105: 49– 58
https://doi.org/10.1016/j.soilbio.2016.11.009
23 P Garbeva, O Tyc, M N P Remus-Emsermann, A van der Wal, M Vos, M Silby, W de Boer. ( 2011). No apparent costs for facultative antibiotic production by the soil bacterium Pseudomonas fluorescens Pf0-1. PLoS One, 6( 11): e27266
https://doi.org/10.1371/journal.pone.0027266
24 D A Gillette, J Adams, A Endo, D Smith, R Kihl. ( 1980). Threshold velocities for input of soil particles into the air by desert soils. J Geophys Res Oceans, 85( C10): 5621– 5630
https://doi.org/10.1029/JC085iC10p05621
25 P H Janssen, P S Yates, B E Grinton, P M Taylor, M Sait. ( 2002). Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl Environ Microbiol, 68( 5): 2391– 2396
https://doi.org/10.1128/AEM.68.5.2391-2396.2002
26 C Jiang, H Zhang, Z Zhang, D Wang. ( 2019). Model-based assessment soil loss by wind and water erosion in China’s Loess Plateau: dynamic change, conservation effectiveness, and strategies for sustainable restoration. Global Planet Change, 172: 396– 413
https://doi.org/10.1016/j.gloplacha.2018.11.002
27 H Kheirfam. ( 2020). Increasing soil potential for carbon sequestration using microbes from biological soil crusts. J Arid Environ, 172: 104022
https://doi.org/10.1016/j.jaridenv.2019.104022
28 H Kheirfam M Roohi ( 2020). Accelerating the formation of biological soil crusts in the newly dried-up lakebeds using the inoculation-based technique. Sci. Total Environ, 706: 136036
29 H Kheirfam, S H R Sadeghi, M Homaee, B Zarei Darki. ( 2017a). Quality improvement of an erosion-prone soil through microbial enrichment. Soil Tillage Res, 165: 230– 238
https://doi.org/10.1016/j.still.2016.08.021
30 H Kheirfam, S H R Sadeghi, B Zarei Darki, M Homaee. ( 2017b). Controlling rainfall-induced soil loss from small experimental plots through inoculation of bacteria and cyanobacteria. Catena, 152: 40– 46
https://doi.org/10.1016/j.catena.2017.01.006
31 Y Le Bissonnais. ( 2016). Aggregate stability and assessment of soil crustability and erodibility: I. theory and methodology. Eur J Soil Sci, 67( 1): 11– 21
https://doi.org/10.1111/ejss.4_12311
32 R H Loeppert D L Suarez ( 1996) Carbonate and gypsum. In: Bigham JM, editor. Methods of soil analysis, part 3—chemical methods. Madiscon: American Society of Agronomy, 437− 474
33 M V López, Dios Herrero J M de, G G Hevia, R Gracia, D E Buschiazzo. ( 2007). Determination of the wind-erodible fraction of soils using different methodologies. Geoderma, 139( 3−4): 407– 411
https://doi.org/10.1016/j.geoderma.2007.03.006
34 D M Mahlmann, J Jahnke, P Loosen. ( 2008). Rapid determination of the dry weight of single, living cyanobacterial cells using the Mach-Zehnder double-beam interference microscope. Eur J Phycol, 43( 4): 355– 364
https://doi.org/10.1080/09670260802168625
35 D M Mager, A D Thomas. ( 2011). Extracellular polysaccharides from cyanobacterial soil crusts: a review of their role in dryland soil processes. J Arid Environ, 75( 2): 91– 97
https://doi.org/10.1016/j.jaridenv.2010.10.001
36 M Maleki, S Ebrahimi, F Asadzadeh, M Emami Tabrizi. ( 2016). Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil. Int J Environ Sci Technol, 13( 3): 937– 944
https://doi.org/10.1007/s13762-015-0921-z
37 G Mugnai, F Rossi, Vincent J M N L Felde, C Colesie, B Büdel, S Peth, A Kaplan, Philippis R De. ( 2018). The potential of the cyanobacterium Leptolyngbya ohadii as inoculum for stabilizing bare sandy substrates. Soil Biol Biochem, 127: 318– 328
https://doi.org/10.1016/j.soilbio.2018.08.007
38 M Muñoz-Rojas, J R Román, B Roncero-Ramos, T E Erickson, D J Merritt, P Aguila-Carricondo, Y Cantón. ( 2018). Cyanobacteria inoculation enhances carbon sequestration in soil substrates used in dryland restoration. Sci Total Environ, 636: 1149– 1154
https://doi.org/10.1016/j.scitotenv.2018.04.265
39 S N Naik, V V Goud, P K Rout, A K Dalai. ( 2010). Production of first and second generation biofuels: a comprehensive review. Renew Sustain Energy Rev, 14( 2): 578– 597
https://doi.org/10.1016/j.rser.2009.10.003
40 L Pásztor, G Négyesi, A Laborczi, T Kovács, E László, Z Bihari. ( 2016). Integrated spatial assessment of wind erosion risk in Hungary. Nat Hazards Earth Syst Sci, 16( 11): 2421– 2432
https://doi.org/10.5194/nhess-16-2421-2016
41 B Roncero-Ramos, J R Román, C Gómez-Serrano, Y Cantón, F G Acién. ( 2019). Production of a biocrust-cyanobacteria strain (Nostoc commune) for large-scale restoration of dryland soils. J Appl Phycol, 31( 4): 2217– 2230
https://doi.org/10.1007/s10811-019-1749-6
42 F Rossi, R De Philippis. ( 2015). Role of cyanobacterial exopolysaccharides in phototrophic biofilms and in complex microbial mats. Life (Basel), 5( 2): 1218– 1238
https://doi.org/10.3390/life5021218
43 F Rossi, E J Olguín, L Diels, Philippis R De. ( 2015). Microbial fixation of CO2 in water bodies and in drylands to combat climate change, soil loss and desertification. N Biotechnol, 32( 1): 109– 120
https://doi.org/10.1016/j.nbt.2013.12.002
44 O Rozenstein, E Zaady, I Katra, A Karnieli, J Adamowski, H Yizhaq. ( 2014). The effect of sand grain size on the development of cyanobacterial biocrusts. Aeolian Res, 15: 217– 226
https://doi.org/10.1016/j.aeolia.2014.08.003
45 S H R Sadeghi, H Kheirfam, M Homaee, B Zarei Darki, M Vafakhah. ( 2017). Improving runoff behavior resulting from direct inoculation of soil micro-organisms. Soil Tillage Res, 171: 35– 41
https://doi.org/10.1016/j.still.2017.04.007
46 C H Sequeira, M M Alley. ( 2011). Soil organic matter fractions as indices of soil quality changes. Soil Sci Soc Am J, 75( 5): 1766– 1773
https://doi.org/10.2136/sssaj2011.0067
47 N Shahabinejad, M Mahmoodabadi, A Jalalian, E Chavoshi. ( 2019). The fractionation of soil aggregates associated with primary particles influencing wind erosion rates in arid to semiarid environments. Geoderma, 356: 113936
https://doi.org/10.1016/j.geoderma.2019.113936
48 R K Stuart, X Mayali, J Z Lee, R Craig Everroad, M Hwang, B M Bebout, P K Weber, J Pett-Ridge, M P Thelen. ( 2016). Cyanobacterial reuse of extracellular organic carbon in microbial mats. ISME J, 10( 5): 1240– 1251
https://doi.org/10.1038/ismej.2015.180
49 Z Vacek, D Řeháček, J Cukor, S Vacek, T Khel, R P Sharma, J Kučera, J Král, V Papaj. ( 2018). Windbreak efficiency in agricultural landscape of the central Europe: Multiple approaches to wind erosion control. Environ Manage, 62( 5): 942– 954
https://doi.org/10.1007/s00267-018-1090-x
50 A Walkley, I A Black. ( 1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci, 37( 1): 29– 38
https://doi.org/10.1097/00010694-193401000-00003
51 W B Wang, Y D Liu, D H Li, C X Hu, B Q Rao. ( 2009). Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area. Soil Biol Biochem, 41( 5): 926– 929
https://doi.org/10.1016/j.soilbio.2008.07.001
52 J W Whitney, G N Breit, S E Buckingham, R L Reynolds, R C Bogle, L Luo, H L Goldstein, J M Vogel. ( 2015). Aeolian responses to climate variability during the past century on Mesquite Lake Playa, Mojave Desert. Geomorphology, 230: 13– 25
https://doi.org/10.1016/j.geomorph.2014.10.024
53 B A Whitton M Potts ( 2012). Introduction to the cyanobacteria. In: Whitton B A, ed. Ecology of Cyanobacteria II. Berlin: Springer, 1− 13
54 M Pagliai G Stoops ( 2010). Physical and biological surface crusts and seals. In: Stoops G, Marcelino V, Mees F, eds. Interpretation of Micromorphological Features of Soils and Regoliths. New York: Elsevier, 419− 440
55 Y Yan, X Wang, Z Guo, J Chen, X Xin, D Xu, R Yan, B Chen, L Xu. ( 2018). Influence of wind erosion on dry aggregate size distribution and nutrients in three steppe soils in northern China. Catena, 170: 159– 168
https://doi.org/10.1016/j.catena.2018.06.013
56 M Zeinoddini, M A Tofighi, F Vafaee. ( 2009). Evaluation of dike-type causeway impacts on the flow and salinity regimes in Urmia Lake, Iran. J Great Lakes Res, 35( 1): 13– 22
https://doi.org/10.1016/j.jglr.2008.08.001
57 X Zou, J Li, H Cheng, J Wang, C Zhang, L Kang, W Liu, F Zhang. ( 2018). Spatial variation of topsoil features in soil wind erosion areas of northern China. Catena, 167: 429– 439
https://doi.org/10.1016/j.catena.2018.05.022
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed