Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (1) : 100-108    https://doi.org/10.1007/s11707-021-0958-x
RESEARCH ARTICLE
P-wave and S-wave response of coal rock containing gas-water with different saturation: an experimental perspective
Dameng LIU1,2(), Lijing LI1,2, Zheng ZHAO1,2, Wei CHEN3, Yidong CAI1,2, Yongkai QIU1,2, Yingfang ZHOU4
1. School of Energy Resources, China University of Geosciences, Beijing 100083, China
2. Coal Reservoir Laboratory of Natural Engineering Research Center of CBM Development & Utilization, China University of Geosciences, Beijing 100083, China
3. Beijing Furuibao Energy Technology Company, Beijing 100176, China
4. School of Engineering, King’s College, University of Aberdeen, AB24 3UE Aberdeen, UK
 Download: PDF(3146 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The acoustic response of gas and/or water saturated coal rock is fundamental for establishing the correspondence between the physical properties of the coal reservoir and the characteristics of the well-logging response, which is the technology essential for the geophysical exploration of coalbed methane (CBM). This acoustic response depends on water (Sw) and gas (Sg) saturation among other factors. In this study, we performed acoustic tests on dry and different gas-water saturated coal samples with different degrees of metamorphism and deformation, collected from several coal mining areas in China. These tests enabled us to analyze the influence of coal type and gas-water saturation on the acoustic response of CBM formations. Our results show that the acoustic velocity of P-wave and S-wave (Vp and Vs, respectively), and the relative anisotropy of and Vs, increased with increasing vitrinite reflectance, density, Vp and Sw. WithSw increasing from 0 to 100%, the growth rate of the acoustic velocity decreased with increasing vitrinite reflectance. The Vp/Vs ratio of tectonic coal was generally higher than that of primary coal. The growth rate of the relative anisotropy in tectonic coal was markedly higher than that in primary coal.

Keywords coal rock      gas-water      water saturation      acoustic velocity      relative anisotropy     
Corresponding Author(s): Dameng LIU   
About author:

* These authors contributed equally to this work.

Online First Date: 11 April 2022    Issue Date: 03 July 2023
 Cite this article:   
Dameng LIU,Lijing LI,Zheng ZHAO, et al. P-wave and S-wave response of coal rock containing gas-water with different saturation: an experimental perspective[J]. Front. Earth Sci., 2023, 17(1): 100-108.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0958-x
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I1/100
Fig.1  Coal samples (a) and (b) and ultrasonic P-wave and S-wave testing equipment (c).
Sample IDCoal structureSamplingpointsLocationRo,m/%L/mmD/mmDensity/(g·cm?3)Porosity/%
LHG7-1Primary coalChangjiJunggar Basin0.3450.3625.581.3011.08
L7Primary coalFukang0.7150.7225.551.320.94
LL-LLPrimary coalLvliangQinshui Basin1.0549.5725.471.370.99
LL-YTPrimary coalLvliang1.1850.2525.471.381.20
LL-ZJDPrimary coalLvliang1.4749.5025.801.411.56
LL-SCPrimary coalLvliang1.9850.7125.641.465.16
CCPrimary coalChangzhi2.0449.2625.811.473.89
YQ-5KPrimary coalYangquan2.5450.0225.461.532.78
GJTectonic coalGujiao1.4949.0225.481.403.18
Tab.1  Basic parameters of selected coals with different vitrinite reflectance
Fig.2  Schematic diagram of displacement experiment.
Fig.3  Variation of the acoustic velocity with the pseudo-azimuth angle of coal sample LHG7-1. (a) P-wave; (b) S-wave.
Sample IDVp/(m·s?1)Vs/(m·s?1)Vp/VsABRelative anisotropy
VpVsVpVsVpVs
LHG7-11707.65983.861.7480.5755.821699.50917.559.4812.17
L71853.851037.661.7972.3262.681892.131066.787.6411.75
LL-LL1931.991089.451.77130.9847.531909.721075.5313.728.83
LL-YT2009.651119.571.80131.06125.761905.091199.6313.7620.97
LL-ZJD2127.751186.291.79123.44130.162169.671259.5311.3820.67
LL-SC2364.171256.351.88188.4678.332448.001359.7015.4011.52
CC2385.191267.681.88134.2961.412285.351183.5911.7510.38
YQ-5K2593.361532.801.69172.48127.092451.811506.5114.0716.87
GJ2347.411246.881.88165.99115.692459.081192.0413.5019.41
Tab.2  Test results of acoustic parameters of each dry sample
Sample IDVp at different Sw/(m·s?1)Vs at different Sw/(m·s?1)
100%80%60%40%20%0100%80%60%40%20%0
LHG7-1245620901927172414491423133312451083934824803
L7244121481985164215781502126511881051825758746
LL-LL2595233222701946179117311358126611591080985970
LL-YT26572494221220211927182514431297126311251085985
LL-ZJD264124012213213320361990150513431311125911891150
LL-SC277125852450236421932148166515801433135312951247
CC262224382232214420762026148513231282122511971154
YQ-5K299028212785270625972548179617041654158315361514
GJ28862712243321762064191114011357121610881001956
Tab.3  Acoustic velocities at different Sw of coal samples
Sample IDRelative anisotropy of Vp at different Sw/(m·s?1)Relative anisotropy of Vs at different Sw/(m·s?1)
100%80%60%40%20%0100%80%60%40%20%0
LHG7-116.8315.2214.7111.6410.3810.1222.1524.319.2415.6815.3912.07
LL-ZJD18.0315.5713.8812.7913.4611.2526.7926.0125.7722.2619.6720.35
YQ-5K20.9819.2117.3316.9814.5314.0725.0422.6520.5216.718.7315.46
GJ19.7717.4417.0315.5813.8713.3928.8627.4825.8723.6920.4618.39
Tab.4  Relative anisotropies at different Sw of coal samples containing gas-water
Fig.4  Correlation of (a) vitrinite reflectance and (b) density with wave velocity of coal samples.
Fig.5  Correlation of (a) vitrinite reflectance and (b) density with relative anisotropy and Vp/Vs ratio of coal samples.
Fig.6  Acoustic velocity variations of gas-water saturated coal samples. (a) P-wave; (b) S-wave.
Fig.7  Differences in Vp/Vs ratio of primary coal sample and tectonic coal sample.
Fig.8  Acoustic anisotropy variations of coal samples containing mixed-phase fluid.
Sample IDRegression expression for 2A/B and Sw
VpR2VsR2
LHG7-12A/B = 0.0730Sw + 9.49710.93552A/B = 0.1153Sw + 12.37480.8500
LL-ZJD2A/B = 0.0590Sw + 11.21190.84362A/B = 0.0907Sw + 15.31570.8457
YQ-5K2A/B = 0.0699Sw + 13.68760.95882A/B = 0.0782Sw + 19.56570.8551
GJ2A/B = 0.0629Sw + 13.03290.98382A/B = 0.1080Sw + 18.72570.9759
Tab.5  Regression analysis results of acoustic anisotropy and water saturation
1 A M, Allan T, Vanorio J E P Dahl (2014). Pyrolysis-induced P-wave velocity anisotropy in organic-rich shales.Geophysics, 79(2): D41–D53
https://doi.org/10.1190/geo2013-0254.1
2 R, Altindag A Güney (2006). ISRM suggested method for determining the shore hardness value for rock.Int J Rock Mech Min Sci, 43(1): 19–22
https://doi.org/10.1016/j.ijrmms.2005.04.004
3 A, Banerjee R Chatterjee (2021). Fracture analysis using stoneley waves in a coalbed methane reservoir. Near Surf Geophys: nsg.12176
4 Y D, Cai D M, Liu J P, Mathews Z J, Pan D, Elsworth Y B, Yao J Q, Li X Q Guo (2014). Permeability evolution in fractured coal—combining triaxial confinement with X-ray computed tomography, acoustic emission and ultrasonic techniques.Int J Coal Geol, 122: 91–104
https://doi.org/10.1016/j.coal.2013.12.012
5 H D, Chen B, Jiang T J, Chen S C, Xu G Y Zhu (2017). Experimental study on ultrasonic velocity and anisotropy of tectonically deformed coal.Int J Coal Geol, 179: 242–252
https://doi.org/10.1016/j.coal.2017.06.003
6 G A, Dugarov A A, Duchkov A Y Manakov (2021). Acoustic properties of hydrate-bearing coal samples depending on temperature and water saturation type.Geophysics, 86(3): U31–U37
https://doi.org/10.1190/geo2020-0117.1
7 Z A, Erguler R Ulusay (2009). Water-induced variations in mechanical properties of claybearing rocks.Int J Rock Mech Min Sci, 46(2): 355–370
https://doi.org/10.1016/j.ijrmms.2008.07.002
8 J J, Feng E Y, Wang L, Chen X L, Li Z Y, Xu G A Li (2016). Experimental study of the stress effect on attenuation of normally incident P-wave through coal.J Appl Geophys, 132: 25–32
https://doi.org/10.1016/j.jappgeo.2016.07.001
9 L L, Hou X J, Liu L X, Liang J, Xiong P, Zhang B, Xie D Q Li (2020). Investigation of coal and rock geo-mechanical properties evaluation based on the fracture complexity and wave velocity.J Nat Gas Sci Eng, 75: 103133
https://doi.org/10.1016/j.jngse.2019.103133
10 W, Ju J, Shen C, Li K, Yu H Yang (2021). Natural fractures within unconventional reservoirs of Linxing Block, eastern Ordos Basin, central China.Front Earth Sci, 14(4): 770–782
https://doi.org/10.1007/s11707-020-0831-3
11 M, Khandelwal T N Singh (2009). Correlating static properties of coal measures rocks with P-wave velocity.Int J Coal Geol, 79(1–2): 55–60
https://doi.org/10.1016/j.coal.2009.01.004
12 M, Khandelwal P G Ranjith (2010). Correlating index properties of rocks with P-wave measurements.J Appl Geophys, 71(1): 1–5
https://doi.org/10.1016/j.jappgeo.2010.01.007
13 M Khandelwal (2013). Correlating P-wave velocity with the physico-mechanical properties of different rocks.Pure Appl Geophys, 170(4): 507–514
https://doi.org/10.1007/s00024-012-0556-7
14 X C, Li Y Y, Meng C L, Yang B S, Nie Y J, Mao X H Chen (2017). Effects of pore structure on acoustic wave velocity of coal samples.J Nanosci Nanotechnol, 17(9): 6532–6538
https://doi.org/10.1166/jnn.2017.14443
15 Z T, Li D M, Liu Y D, Cai Y P, Wang G Y Si (2020). Evaluation of coal petrophysics incorporating fractal characteristics by mercury intrusion porosimetry and low-field NMR.Fuel, 263: 116802
https://doi.org/10.1016/j.fuel.2019.116802
16 J Y, Lin S K, Hsu A T S, Lin Y C, Yeh C L Lo (2016). Vp/Vs distribution in the northern Taiwan area: implications for the tectonic structures and rock property variations.Tectonophysics, 692: 181–190
https://doi.org/10.1016/j.tecto.2015.09.013
17 D M, Liu Z, Zou Y D, Cai Y K, Qiu Y F, Zhou S He (2021). An updated study on CH4 isothermal adsorption and isosteric adsorption heat behaviors of variable rank coals.J Nat Gas Sci Eng, 89: 103899
https://doi.org/10.1016/j.jngse.2021.103899
18 G H, Liu Z T, Liu J J, Feng Z K, Song Z J Liu (2017a). Experimental research on the ultrasonic attenuation mechanism of coal.J Geophys Eng, 14(3): 502–512
https://doi.org/10.1088/1742-2140/aa5f23
19 J, Liu D M, Liu Y D, Cai Q, Gan Y B Yao (2017b). Effects of water saturation on P-wave propagation in fractured coals: an experimental perspective.J Appl Geophys, 144: 94–103
https://doi.org/10.1016/j.jappgeo.2017.07.001
20 Z S, Liu D M, Liu Y D, Cai Y B, Yao Z J, Pan Y F Zhou (2020). Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: a review.Int J Coal Geol, 218: 103261
https://doi.org/10.1016/j.coal.2019.103261
21 N, Lupton L D, Connell D, Heryanto R, Sander M, Camilleri D I, Down Z J Pan (2020). Enhancing biogenic methane generation in coalbed methane reservoirs—core flooding experiments on coals at in-situ conditions.Int J Coal Geol, 219: 103377
https://doi.org/10.1016/j.coal.2019.103377
22 M, Lebedev M E J, Wilson M Vassily (2014). An experimental study of solid matrix weakening in water-saturated Savonnières limestone.Geophys Prospect, 62(6): 1253–1265
https://doi.org/10.1111/1365-2478.12168
23 A, Morcote G, Mavko M Prasad (2010). Dynamic elastic properties of coal.Geophysics, 75(6): E227–E234
https://doi.org/10.1190/1.3508874
24 P K, Sharma T N Singh (2008). A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength.Bull Eng Geol Environ, 67(1): 17–22
https://doi.org/10.1007/s10064-007-0109-y
25 G, Wang J Z, Li Z Y, Liu X J, Qin S Yan (2020). Relationship between wave speed variation and microstructure of coal under wet conditions.Int J Rock Mech Min Sci, 126: 104203
https://doi.org/10.1016/j.ijrmms.2019.104203
26 H C, Wang J N, Pan S, Wang H T Zhu (2015). Relationship between macro-fracture density, P-wave velocity, and permeability of coal.J Appl Geophys, 117: 111–117
https://doi.org/10.1016/j.jappgeo.2015.04.002
27 N, Wang S S, Zhao J, Hui Q M Qin (2017). Three-dimensional audio-magnetotelluric sounding in monitoring coalbed methane reservoirs.J Appl Geophys, 138: 198–209
https://doi.org/10.1016/j.jappgeo.2017.01.028
28 Y, Wang X K, Xu D Y Yang (2014). Ultrasonic elastic characteristics of five kinds of metamorphic deformed coals under room temperature and pressure conditions.Sci China Earth Sci, 57(9): 2208–2216
https://doi.org/10.1007/s11430-014-4922-4
29 Y, Wang X K, Xu Y G Zhang (2016). Ultrasonic elastic characteristics of six kinds of metamorphic coals in China under room temperature and pressure conditions.Chin J Geophys, 59(7): 2726–2738
30 X M, Xu Y Q, Chang W W, Zhao H, Liu C, Lv H N, Wang (2020). Experimental study of correlating the acoustic velocity and the physical-mechanical properties of coal under varied stress based on clean coal energy development concept.Fresenius Environ Bull, 29(8): 6843–6852
31 Y B, Yao D M, Liu Y D, Cai J Q Li (2010). Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography.Sci China Earth Sci, 53(6): 854–862
https://doi.org/10.1007/s11430-010-0057-4
32 X D, Zhang P P, Li Y H, Yang Z G Du (2017). Characteristics of P-wave and S-wave times and their relationship with Young’s modulus of coals with different degrees of deformation.Arab J Geosci, 10(4): 75
https://doi.org/10.1007/s12517-017-2855-x
33 Z H, Zhang E Y, Wang X N, Liu Y H, Zhang S J, Li M, Khan Y K Gao (2021). Anisotropic characteristics of ultrasonic transmission velocities and stress inversion during uniaxial compression process.J Appl Geophys, 186: 104274
https://doi.org/10.1016/j.jappgeo.2021.104274
34 T B, Zhao X B, Gu W Y, Guo X F, Gong Y X, Xiao B A, Kong C G Zhang (2021). Influence of rock strength on the mechanical behavior and P-velocity evolution of coal-rock combination specimen.J Mater Res Technol, 12(1): 1113–1124
https://doi.org/10.1016/j.jmrt.2021.03.059
35 S D, Zhou D M, Liu Y D, Cai Y B, Yao Z T Li (2017). 3D characterization and quantitative evaluation of pore-fracture networks of two Chinese coals using FIB-SEM tomography.Int J Coal Geol, 174: 41–54
https://doi.org/10.1016/j.coal.2017.03.008
[1] Juan TENG, Zhigang WEN, Chen LI, Lingye MENG. Geophysical characteristics of anthracites with various structures: a case study on the southern Qinshui Basin, north China[J]. Front. Earth Sci., 2022, 16(3): 696-710.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed