Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (1) : 322-336    https://doi.org/10.1007/s11707-021-0966-5
RESEARCH ARTICLE
Gas in place and its controlling factors of deep shale of the Wufeng–Longmaxi Formations in the Dingshan area, Sichuan Basin
Ping GAO1, Xianming XIAO1(), Dongfeng HU2, Ruobing LIU2, Fei LI2, Qin ZHOU3, Yidong CAI1, Tao YUAN2, Guangming MENG1
1. School of Energy Resources, China University of Geosciences (Beijing), Beijing 100083, China
2. Sinopec Exploration Branch Company, Chengdu 610041, China
3. State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
 Download: PDF(4256 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Recently, deeply-buried shale (depth > 3500 m) has become an attractive target for shale gas exploration and development in China. Gas-in-place (GIP) is critical to shale gas evaluation, but the GIP content of deep shale and its controlling factors have rarely been investigated. To clarify this issue, an integrated investigation of deep gas shale (3740–3820 m depth) of the Lower Paleozoic Wufeng–Longmaxi Formations (WF–LMX) in the Dingshan area, Sichuan Basin had been carried out. Our results show that the GIP content of the studied WF–LMX shale in the Dingshan area ranges from 0.85 to 12.7 m 3/t, with an average of 3.5 m3/t. Various types of pores, including organic matter (OM) pore and inorganic pore, are widely developed in the deep shale, with total porosity of 2.2 to 7.3% (average = 4.5%). The OM pore and clay-hosted pore are the dominant pore types of siliceous shale and clay-rich shale, respectively. Authigenic quartz plays a critical role in the protection of organic pores in organic-rich shales from compaction. The TOC content controls the porosity of shale samples, which is the major factor controlling the GIP content of the deep shale. Clay minerals generally play a negative role in the GIP content. In the Sichuan Basin, the deep and ultra-deep WF–LMX shales display the relatively high porosity and GIP contents probably due to the widespread of organic pores and better preservation, revealing great potentials of deep and ultra-deep shale gas. From the perspective of rock mechanical properties, deep shale is the favorable exploration target in the Sichuan Basin at present. However, ultra-deep shale is also a potential exploration target although there remain great challenges.

Keywords Deep shale      porosity      organic pore      gas potential      authigenic quartz     
Corresponding Author(s): Xianming XIAO   
About author:

* These authors contributed equally to this work.

Online First Date: 30 June 2022    Issue Date: 03 July 2023
 Cite this article:   
Ping GAO,Xianming XIAO,Dongfeng HU, et al. Gas in place and its controlling factors of deep shale of the Wufeng–Longmaxi Formations in the Dingshan area, Sichuan Basin[J]. Front. Earth Sci., 2023, 17(1): 322-336.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0966-5
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I1/322
Fig.1  (a) Distribution and thickness of the Longmaxi Formation shale in the Sichuan Basin and their neighboring areas (modified from Guo and Zhang, 2014), and the location of studied Well DY5; (b) Stratigraphic column for the Upper Ordovician-Lower Silurian of the Well DY5. Notes: SNL = Shiniulan Formation; GYQ = Guanyinqiao Member; WF = Wufeng Formation; LX = Linxiang Formation; BT = Baota Formation.
Sample Depth/m Strata Lithology TOC/% Porosity/% Quartz/% Feldspar/% Carbonate/% Pyrite/% Clay/% Desorbed gas/(m3·t−1) Lost gas/(m3·t−1) GIP /(m3·t−1)
DY5-X-1 3740.19 Longmaxi Formation Mudstone NM 27 4.6 16.3 1.6 50.5 0.343 1.06 1.403
DY5-X-2 3741.02 Longmaxi Formation Mudstone NM 29.3 4.4 11 ND 55.3 NM
DY5-X-3 3741.69 Longmaxi Formation Mudstone 0.57 3.6 29.7 4.5 8.4 ND 57.4 0.345 1.076 1.421
DY5-X-4 3742.99 Longmaxi Formation Mudstone NM 3.8 30.8 4.6 10.2 ND 54.4 NM
DY5-X-5 3743.55 Longmaxi Formation Mudstone NM 29.8 4.8 8.7 ND 56.7 0.249 1.09 1.339
DY5-X-6 3744.97 Longmaxi Formation Mudstone 0.98 NM 30.3 5 8.8 1.5 54.4 NM
DY5-X-7 3745.97 Longmaxi Formation Mudstone NM 3.8 33.3 4.2 14.5 1.8 46.2 0.408 1.285 1.693
DY5-X-8 3747.07 Longmaxi Formation Mudstone NM 31.7 5 9.1 ND 54.2 NM
DY5-X-9 3748.16 Longmaxi Formation Mudstone 1.07 3.9 32.1 4.8 10.2 2.3 50.6 0.487 1.777 2.264
DY5-X-10 3748.8 Longmaxi Formation Mudstone NM 34.4 5.3 5.5 2.4 52.4 NM
DY5-X-11 3749.55 Longmaxi Formation Mudstone NM 31.8 3.9 9 2.1 53.2 0.446 2.158 2.604
DY5-X-12 3750.85 Longmaxi Formation Mudstone 1.12 3.9 33.6 6 5.4 1.7 53.3 NM
DY5-X-13 3751.55 Longmaxi Formation Mudstone NM 31.6 5 4.6 1.5 57.3 0.417 1.647 2.064
DY5-X-14 3752.84 Longmaxi Formation Mudstone NM 35.4 5.1 3.8 ND 55.7 NM
DY5-X-15 3753.87 Longmaxi Formation Mudstone 0.81 NM 35.2 5.6 3.2 ND 56 0.388 1.534 1.922
DY5-X-16 3754.82 Longmaxi Formation Mudstone NM 34.3 5 2.9 1.6 56.2 NM
DY5-X-17 3755.69 Longmaxi Formation Silty mudstone NM 36.1 5.2 4.2 ND 54.5 0.372 1.651 2.023
DY5-X-18 3756.72 Longmaxi Formation Silty mudstone 0.87 NM 34.9 5.9 2.8 ND 56.4 NM
DY5-X-19 3757.7 Longmaxi Formation Silty mudstone NM 3.9 33.3 4.8 2.7 ND 59.2 0.337 1.372 1.709
DY5-X-20 3758.9 Longmaxi Formation Silty mudstone NM 34.4 9.4 10.5 ND 45.7 NM
DY5-X-21 3759.69 Longmaxi Formation Silty mudstone 0.6 3 38.5 9.2 2.4 ND 49.9 0.392 1.274 1.666
DY5-X-22 3760.77 Longmaxi Formation Silty mudstone NM 38.6 8.5 7.2 ND 45.7 NM
DY5-X-23 3761.8 Longmaxi Formation Silty mudstone NM 34 10.8 2.7 ND 52.5 NM
DY5-X-24 3762.56 Longmaxi Formation Silty mudstone 1.1 NM 34.7 8.4 2.6 ND 54.3 0.332 2.108 2.44
DY5-X-25 3763.83 Longmaxi Formation Silty mudstone NM 30.7 7.5 7.4 ND 54.4 NM
DY5-X-26 3764.7 Longmaxi Formation Silty mudstone NM 32.7 8 7.2 ND 52.1 0.448 1.493 1.941
DY5-X-27 3765.82 Longmaxi Formation Silty mudstone 1.26 NM 34.2 9.4 2.9 1.2 52.3 NM
DY5-X-28 3766.7 Longmaxi Formation Silty mudstone NM 36.2 13.1 8.1 ND 42.6 0.446 2.059 2.505
DY5-X-29 3767.37 Longmaxi Formation Silty mudstone NM 34.8 8.9 3.2 1.3 51.8 NM
DY5-X-30 3768 Longmaxi Formation Silty mudstone 1.03 3.7 35.2 9.2 3.9 ND 51.7 0.381 0.539 0.92
DY5-X-31 3769.83 Longmaxi Formation Silty mudstone NM 23.1 5.6 30.4 ND 40.9 0.442 0.599 1.041
DY5-X-32 3770.29 Longmaxi Formation Silty mudstone NM 3.1 32.7 8.1 2.7 1.6 54.9 NM
DY5-X-33 3771.71 Longmaxi Formation Silty mudstone 1.03 NM 30.2 7.3 20.1 ND 42.4 0.402 0.618 1.02
DY5-X-34 3772.35 Longmaxi Formation Silty mudstone NM 35.6 10.9 6.1 ND 47.4 NM
DY5-X-35 3773.74 Longmaxi Formation Silty mudstone 1.13 2.2 38.4 10.1 0 ND 51.5 0.275 0.571 0.846
DY5-X-36 3774.37 Longmaxi Formation Silty mudstone 1.42 3.9 35.5 8.4 7.2 1.6 47.3 NM
DY5-X-37 3775.36 Longmaxi Formation Silty mudstone NM 37.6 9.9 3.7 1.7 47.1 NM
DY5-X-38 3776.02 Longmaxi Formation Silty mudstone 1.59 NM 33.8 9.1 4.8 2.2 50.1 0.448 1.382 1.83
DY5-X-39 3777.23 Longmaxi Formation Silty mudstone NM 32 9.3 12.5 ND 46.2 NM
DY5-X-40 3778.26 Longmaxi Formation Silty mudstone 1.26 3.3 38 10 5.3 ND 46.7 0.438 0.684 1.122
DY5-X-41 3779.35 Longmaxi Formation Silty mudstone NM 33.1 9.1 17.4 ND 40.4 NM
DY5-X-42 3780.31 Longmaxi Formation Silty mudstone 1.19 3.7 30.5 10 13.7 ND 45.8 0.294 0.816 1.11
DY5-X-43 3781.37 Longmaxi Formation Silty mudstone NM 32.3 10.3 15.2 ND 42.2 NM
DY5-X-44 3782.46 Longmaxi Formation Silty mudstone 1.31 3.8 36 10.9 9.8 2 41.3 0.431 0.885 1.316
DY5-X-45 3783.32 Longmaxi Formation Silty mudstone NM 27.5 8.9 13.5 1.3 48.8 NM
DY5-X-46 3784.98 Longmaxi Formation Silty mudstone 1.41 3.9 40.6 9.6 5.2 ND 44.6 0.472 1.454 1.926
DY5-X-47 3785.2 Longmaxi Formation Silty mudstone NM 35.3 10.6 7.5 1.7 44.9 NM
DY5-X-48 3785.91 Longmaxi Formation Silty mudstone 1.69 4.4 38.6 8.1 3.6 3 46.7 0.606 1.908 2.514
DY5-X-49 3787.2 Longmaxi Formation Silty mudstone 2.04 NM 36.2 7.7 9 2.8 44.3 0.789 2.73 3.519
DY5-X-50 3788.33 Longmaxi Formation Silty mudstone NM 5.4 39.8 9.2 9 ND 42 NM
DY5-X-51 3789.16 Longmaxi Formation Silty mudstone 2.39 NM 36 7.1 3.8 2.5 50.6 NM
DY5-X-52 3789.93 Longmaxi Formation Carbonaceous shale 2.3 NM 41.5 8 8 3.1 39.4 0.806 2.959 3.765
DY5-X-53 3791.38 Longmaxi Formation Carbonaceous shale NM 4.3 34.7 6.6 25.5 ND 33.2 NM
DY5-X-54 3791.97 Longmaxi Formation Carbonaceous shale 2.34 NM 41.6 6.3 4.4 2.2 45.5 0.652 2.774 3.426
DY5-X-55 3793.8 Longmaxi Formation Carbonaceous shale 2.23 4.6 43.1 6.5 3.6 5.1 41.7 0.811 3.636 4.447
DY5-X-56 3794.22 Longmaxi Formation Carbonaceous shale NM 40.8 7.5 4.6 2.3 44.8 NM
DY5-X-57 3795.21 Longmaxi Formation Carbonaceous shale 2.18 NM 41.4 6 4.8 3.5 44.3 NM
DY5-X-58 3796.13 Longmaxi Formation Carbonaceous shale 2.51 4.9 42.6 6.8 14.4 ND 36.2 0.835 4.351 5.186
DY5-X-59 3797.24 Longmaxi Formation Carbonaceous shale NM 42.9 4.9 7.5 2.7 42 NM
DY5-X-60 3798.3 Longmaxi Formation Carbonaceous shale 2.69 NM 43.7 5.3 7.5 2.3 41.2 0.675 4.422 5.097
DY5-X-61 3799.28 Longmaxi Formation Carbonaceous shale 2.94 NM 44 5.3 8.4 3.1 39.2 NM
DY5-X-62 3800.32 Longmaxi Formation Carbonaceous shale NM 5 46.6 4.7 9.2 ND 39.5 0.704 4.649 5.353
DY5-X-63 3801.2 Longmaxi Formation Carbonaceous shale 2.84 5.4 39.3 3.9 9.5 2.3 45 NM
DY5-X-64 3802.74 Longmaxi Formation Carbonaceous shale 2.51 NM 38.5 ND 18.9 2.9 39.7 0.831 4.453 5.284
DY5-X-65 3803.2 Longmaxi Formation Carbonaceous shale NM 39.8 3.3 10.5 2.9 43.5 NM
DY5-X-66 3804.34 Longmaxi Formation Carbonaceous shale 2.03 4.8 44.9 5.3 5.1 2.5 42.2 0.958 5.342 6.3
DY5-X-67 3805.2 Longmaxi Formation Carbonaceous shale 2.82 2.7 43 7.2 5.8 4.3 39.7 NM
DY5-X-68 3806.28 Longmaxi Formation Carbonaceous shale NM 37.5 5.7 10.9 3 42.9 NM
DY5-X-69 3807 Longmaxi Formation Siliceous shale 3.31 NM 54.5 3.3 7.3 2.6 32.3 0.728 5.317 6.045
DY5-X-70 3808.8 Longmaxi Formation Siliceous shale 4.32 6.3 50.8 5.4 3.7 5.3 34.8 1.071 7.247 8.318
DY5-X-71 3809.2 Longmaxi Formation Siliceous shale NM 6.5 50.4 5.2 8.1 3 33.3 NM
DY5-X-72 3810.17 Longmaxi Formation Siliceous shale 4.75 6.6 52.6 7.3 9.2 2.6 28.3 NM
DY5-X-73 3811.47 Longmaxi Formation Siliceous shale 4.99 7.3 57.7 7.6 9.9 3 21.8 1.231 8.851 10.082
DY5-X-74 3812.34 Longmaxi Formation Siliceous shale NM 63.2 8.9 2.1 1.8 24 NM
DY5-X-75 3813.23 Wufeng Formation Siliceous shale 4.42 5.7 71.3 ND 10.2 ND 18.5 1.269 11.469 12.738
DY5-X-76 3814.28 Wufeng Formation Siliceous shale 4.71 5.8 53.8 ND 10.7 5.4 30.1 NM
DY5-X-77 3815.33 Wufeng Formation Siliceous shale NM 5.5 58.9 2.6 7.3 ND 31.2 1.301 7.694 8.995
DY5-X-78 3816.26 Wufeng Formation Siliceous shale 2.49 NM 61.6 2.8 0 ND 35.6 NM
DY5-X-79 3817.3 Wufeng Formation Siliceous shale 3.56 5.4 NM 1.164 6.255 7.419
Tab.1  Basic information, TOC content, porosity, mineralogical compositions, gas contents of the studied shale samples from Well DY5
Fig.2  Vertical profiles showing mineral compositions, gas logging, TOC content, porosity, and gas contents of the Wufeng−Longmaxi Formations from the Well DY5. Total HC = Total hydrocarbon. See detailed lithology legend in Fig. 1.
Fig.3  SEM photographs illustrating various pore types in the studied WF-LMX shales from the Well DY5. Points delineated by red stars were analyzed by EDS. Notes: OM = organic matter; SB = solid bitumen; MiQ = microquartz; NaQ = nano-quartz; Py = pyrite; Cal = calcite; Dol = dolomite; Fe-Dol = ferrodolomite. (a) Siliceous shale is mainly composed of abundant microquartz grains, and a large volume of matrix-dispersed OM (probably migrated solid bitumen) was widely developed in the interparticle pores of authigenic microquartz grains. WF, 3813.6 m. (b) Interparticle pores of microquartz and nano-quartz particles are filled with the migrated OM (i.e., solid bitumen), and the linear clay minerals are usually occurred in the depositional OM (possibly alginite). Abundant OM pores can be observed in the migrated and depositional OM. WF, 3813.6 m. (c) Intraparticle pores of a pyrite framboid were filled with the SB, and abundant pores are developed within the SB. LMX, 3809.7 m. (d) Abundant intraparticle pores were developed within clay platelets, some of which were filled with porous solid bitumen and diagenetic pyrite grains. LMX, 3759.4 m. (e) Interparticle pores of detrital grains were filled with porous solid bitumen, while a large amount of intraparticle pores were developed within clay platelets (indicated by yellow dashed circles). A micro-fracture was developed along the bedding plane. LMX, 3759.4 m. (f) Few carbonate grains, including calcite and dolomite, were occurred in the shale. A dolomite grain was composed with the dolomite core and the ferrodolomite rim, and irregular intraparticle pores (or dissolved pores) were developed within the ferrodolomite rim. LMX, 3791.4 m.
Sample Depth/m Gas composition/%
Methane Ethane Propane N2 He H2 CO2
1 4165.00–5685.00 98.31 0.56 0.02 0.39 0.02 0.00 0.69
2 4165.00–5685.00 98.34 0.55 0.02 0.39 0.02 0.00 0.67
3 4165.00–5685.00 98.29 0.57 0.02 0.42 0.03 0.00 0.65
4 4165.00–5685.00 98.33 0.55 0.02 0.39 0.02 0.00 0.68
5 4165.00–5685.00 98.31 0.53 0.02 0.44 0.03 0.00 0.65
6 4165.00–5685.00 98.25 0.59 0.02 0.36 0.02 0.00 0.75
7 4165.00–5685.00 98.18 0.59 0.02 0.42 0.02 0.00 0.76
8 4165.00–5685.00 98.23 0.59 0.02 0.36 0.02 0.00 0.76
9 4165.00–5685.00 98.32 0.54 0.02 0.39 0.03 0.01 0.70
Average 98.28 0.56 0.02 0.40 0.023 0.0011 0.70
Tab.2  Gas compositions of the WF–LMX shale gas from the horizontal section of Well DY5
Fig.4  Cross-plot of TOC content and porosity of the studied WF–LMX shales from the Well DY5. Regression lines (solid) with 95% confidence intervals (pink zones) are shown. r = Pearson correlation coefficient; p(α) = significance.
Fig.5  Cross-plots of the GIP/desorbed gas contents versus (a) the TOC content and (b) the porosity value of the studied WF–LMX shales from the Well DY5. Regression lines (solid) with 95% confidence intervals (pink and grey zones) are shown.
Fig.6  Cross-plots of the GIP/desorbed gas contents versus (a) quartz content, (b) clay content, (c) feldspar content, and (d) carbonate content of the studied WF–LMX shales from the Well DY5. Regression lines (solid) with 95% confidence intervals (pink and grey zones) are shown.
Fig.7  Cross-plots of the TOC content versus (a) quartz content, and (b) clay content of the studied WF–LMX shales from the Well DY5. Regression lines (solid) with 95% confidence intervals (pink zones) are shown.
Fig.8  Cross-plots of the clay content versus (a) porosity/TOC ratio, and (b) GIP/TOC ratio of the studied WF–LMX shales from the Well DY5. Regression lines (solid) with 95% confidence intervals (pink zone) are shown.
Fig.9  Vertical variation of the porosity value of the WF–LMX shale from the Sichuan Basin with the increasing burial depths (Guo, 2014; Wang et al., 2015; Zhao et al., 2017; He et al., 2020; Sun et al., 2020). Data of the Well PS1 are provided from the Sinopec Exploration Branch Company. Data of the Barnett shale and the Haynesville shale are from Jarvie (2012).
Fig.10  Vertical variation of the GIP content of the WF−LMX shale from the Sichuan Basin with the increasing burial depths (Guo, 2014; Wang et al., 2015; Zhao et al., 2017; Long et al., 2018;Chen et al., 2020; Sun et al., 2020; Li et al., 2021). Data of the Well PS1 are provided from the Sinopec Exploration Branch Company. Data of the Barnett shale and the Haynesville shale are from Jarvie et al. (2004) and Jarvie (2012), respectively.
Fig.11  Cross-plot of GIP content and porosity of the WF–LMX shales at varied burial depths from the Sichuan Basin (Wang et al., 2015; Zhao et al., 2017; Sun et al., 2020). Regression lines (solid) with 95% confidence interval (pink zone) are shown.
Fig.12  Cross-plot of GIP and TOC contents of the WF–LMX shale reservoirs at varied burial depths from the Sichuan Basin (Guo, 2014; Wang et al., 2015; Zhao et al., 2017; Chen et al., 2020; Sun et al., 2020; Li et al., 2021) and the Barnett shale reservoir from the United State (Jarvie et al., 2004).
1 I S Abou-Sayed M A Sorrell R A Foster E L Atwood D R Youngblood ( 2011). Haynesville Shale development program—from vertical to horizontal. In: North American Unconventional Gas Conference and Exhibition. Woodlands, June 14– 16
2 R J Ambrose, R C Hartman, M Diaz-Campos, I Y Akkutlu, C H Sondergeld. ( 2012). Shale gas-in-place calculations part I: new pore-scale considerations. SPE J, 17( 01): 219– 229
https://doi.org/10.2118/131772-PA
3 R M Bustin A Bustin D Ross ( 2009). Shale gas opportunities and challenges. In: Search and Discovery Articles 40382
4 G R L Chalmers, R M Bustin. ( 2007). The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia. Int J Coal Geol, 70( 1−3): 223– 239
https://doi.org/10.1016/j.coal.2006.05.001
5 G R L Chalmers, R M Bustin, I M Power. ( 2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron/transmission electron microscopy image analyses: examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig unit. AAPG Bull, 96( 6): 1099– 1119
https://doi.org/10.1306/10171111052
6 S Chen, H Wang, Y Wang, T Jiang, Y Zhang, Z Gong. ( 2021). Differences in shale gas accumulation process and its significance in exploration of Lower Silurian Longmaxi Formation in northeast Yunnan. Front Earth Sci, 15( 2): 343– 359
https://doi.org/10.1007/s11707-021-0913-x
7 X Chen, J Rong, Y Li, A J Boucot. ( 2004). Facies patterns and geography of the Yangtze region, south China, through the Ordovician and Silurian transition. Palaeogeogr Palaeoclimatol Palaeoecol, 204( 3−4): 353– 372
https://doi.org/10.1016/S0031-0182(03)00736-3
8 Z Chen Y Zeng ( 2016). Present situations and prospects of multi-stage fracturing technology for deep shale gas development. Pet Drill Tech, 44: 6− 11 (in Chinese)
9 Z Chen, L Chen, G Wang, C Zou, S Jiang, Z Si, W Gao. ( 2020). Applying isotopic geochemical proxy for gas content prediction of Longmaxi shale in the Sichuan Basin, China. Mar Pet Geol, 116: 104329
https://doi.org/10.1016/j.marpetgeo.2020.104329
10 P Cheng, H Tian, X Xiao, H Gai, T Li, X Wang. ( 2017). Water distribution in overmature organic-rich shales: implications from water adsorption experiments. Energy Fuels, 31( 12): 13120– 13132
https://doi.org/10.1021/acs.energyfuels.7b01531
11 D Dong S Gao J Huang Q Guan S Wang Y Wang ( 2014). A discussion on the shale gas exploration and development prospect in the Sichuan Basin. Nat Gas Ind, 34( 12): 1− 15 (in Chinese)
12 T Dong, S He, M Chen, Y Hou, X Guo, C Wei, Y Han, R Yang. ( 2019). Quartz types and origins in the paleozoic Wufeng–Longmaxi Formations, eastern Sichuan Basin, China: implications for porosity preservation in shale reservoirs. Mar Pet Geol, 106: 62– 73
https://doi.org/10.1016/j.marpetgeo.2019.05.002
13 M Farinas, E Fonseca. ( 2013). Hydraulic fracturing simulation case study and post frac analysis in the Haynesville Shale. In: SPE Hydraulic Fracturing Technology Conference. Woodlands, Texas: USA
14 P Gao, X Xiao, D Hu, R Liu, Y Cai, T Yuan, G Meng. ( 2022). Water distribution in the ultra-deep shale of the Wufeng−Longmaxi Formations from the Sichuan Basin. Energies 15, 2215
https://doi.org/10.3390/en15062215
15 T Guo ( 2021). Progress and research direction of deep shale gas exploration and development. Reservoir Eval. Dev, 11: 1− 6 (in Chinese)
16 T L Guo, H R Zhang. ( 2014). Formation and enrichment mode of Jiaoshiba shale gas field, Sichuan Basin. Pet Explor Dev, 41( 1): 31– 40
https://doi.org/10.1016/S1876-3804(14)60003-3
17 X Guo ( 2014). Rules of two-factor enrichment for marine shale gas in southern China—understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area. Acta Geol Sin, 88: 1209− 1218 (in Chinese)
18 X Guo D Hu R Huang Z Wei J Duan X Wei X Fan Z Miao ( 2020). Deep and ultra-deep natural gas exploration in the Sichuan Basin: progress and prospect. Natur Gas Ind, 7( 5): 419− 423 (in Chinese)
19 C D Hall ( 2019). Compositional and diagenetic controls on brittleness in organic siliceous mudrocks. In: Camp W K, Milliken K L, Taylor K, Fishman N, Hackley P C, Macquaker J H S eds., Mudstone Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks. AAPG Memoir 120
20 F Hao, H Zou, Y Lu. ( 2013). Mechanisms of shale gas storage: implications for shale gas exploration in China. AAPG Bull, 97( 8): 1325– 1346
https://doi.org/10.1306/02141312091
21 Q He, T Dong, S He, G Zhai. ( 2019a). Methane adsorption capacity of marine-continental transitional facies shales: the case study of the Upper Permian Longtan Formation, northern Guizhou Province, southwest China. J Petrol Sci Eng, 183: 106406
https://doi.org/10.1016/j.petrol.2019.106406
22 Z He, S Li, H Nie, Y Yuan, H Wang. ( 2019b). The shale gas “sweet window”: “the cracked and unbroken” state of shale and its depth range. Mar Pet Geol, 101: 334– 342
https://doi.org/10.1016/j.marpetgeo.2018.11.033
23 Z He H Nie D Hu T Jiang R Wang Y Zhang G Zhang Z Lu ( 2020). Geological problems in the effective development of deep shale gas: a case study of Upper Ordovician Wufeng−Lower Silurian Longmaxi Formations in Sichuan Basin and its periphery. Acta Petrol Sin, 41: 379− 391 (in Chinese)
24 Y Hou, S He, J Yi, B Zhang, X Chen, Y Wang, J Zhang, C Cheng. ( 2014). Effect of pore structure on methane sorption potential of shales. Pet Explor Dev, 41( 2): 272– 281
https://doi.org/10.1016/S1876-3804(14)60033-1
25 D M Jarvie ( 2004). Evaluation of hydrocarbon generation and storage in Barnett shale, Fort Worth Basin, Texas. Texas: Humble Geochemical Services Division
26 D M Jarvie ( 2012). Shale resource systems for oil and gas: part I—shale-gas resource systems. In: Breyer J A ed., Shale Reservoirs—Giant Resources for the 21st Century: AAPG Memoir 97
27 D M Jarvie, R J Hill, T E Ruble, R M Pollastro. ( 2007). Unconventional shale-gas systems: the Mississippian Barnett Shale of northcentral Texas as one model for thermogenic shale-gas assessment. AAPG Bull, 91( 4): 475– 499
https://doi.org/10.1306/12190606068
28 L Ji, T Zhang, K L Milliken, J Qu, X Zhang. ( 2012). Experimental investigation of main controls to methane adsorption in clay-rich rocks. Appl Geochem, 27( 12): 2533– 2545
https://doi.org/10.1016/j.apgeochem.2012.08.027
29 M Z Khan, Q Feng, K Zhang, W Guo. ( 2019). Biogenic silica and organic carbon fluxes provide evidence of enhanced marine productivity in the Upper Ordovician-Lower Silurian of South China. Palaeogeogr Palaeoclimatol Palaeoecol, 534: 109278
https://doi.org/10.1016/j.palaeo.2019.109278
30 T H Kosanke J A Breyer R Denne R Nelson R L Rosen M Aldin A Warren ( 2019). Controls on Production in the Eagle Ford: permeability, stratigraphy, diagenesis, and fractures. In: Camp, W K, Milliken K L, Taylor K, Fishman N, Hackley P C, Macquaker J H S. eds., Mudstone Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks. AAPG Memoir 120
31 S Li, F Meng, X Zhang, Z Zhou, B Shen, S Wei, S Zhang. ( 2021). Gas composition and carbon isotopic variation during shale gas desorption: implication from the Ordovician Wufeng Formation−Silurian Longmaxi Formation in west Hubei, China. J Nat Gas Sci Eng, 87: 103777
https://doi.org/10.1016/j.jngse.2020.103777
32 S Long D Feng F Li W Du ( 2018). Prospect of the deep marine shale gas exploration and development in the Sichuan Basin. Nat. Gas Geosci., 29: 443− 451 (in Chinese)
33 M W Longman K L Milliken T M Olson W R Drake ( 2019). A comparison of silica diagenesis in the Devonian Woodford Shale (Central Basin Platform, West Texas) and Cretaceous Mowry Shale (Powder River Basin, Wyoming). In: Camp W K, Milliken K L, Taylor K, Fishman N, Hackley P C, Macquaker J H S. eds., Mudstone Diagenesis: Research Perspectives for Shale Hydrocarbon Reservoirs, Seals, and Source Rocks. AAPG Memoir 120
34 R G Loucks, R M Reed, S C Ruppel, U Hammes. ( 2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bull, 96( 6): 1071– 1098
https://doi.org/10.1306/08171111061
35 Z Lu Z He C Yu X Ye D Li W Du H Nie( 2021). Characteristics of shale gas enrichment in tectonically complex regions—a case study of the Wufeng−Longmaxi Formations of Lower Paleozoic in southeastern Sichuan Basin. Oil & Gas Geol, 42: 86− 97 (in Chinese)
36 X Ma, H Wang, S Zhou, Z Shi, L Zhang. ( 2021). Deep shale gas in China: geological characteristics and development strategies. Energy Rep, 7: 1903– 1914
https://doi.org/10.1016/j.egyr.2021.03.043
37 M Mastalerz, A Schimmelmann, A Drobniak, Y Chen. ( 2013). Porosity of Devonian and Mississippian New Albany Shale across a maturation gradient: insights from organic petrology, gas adsorption, and mercury intrusion. AAPG Bull, 97( 10): 1621– 1643
https://doi.org/10.1306/04011312194
38 K L Milliken, M Rudnicki, D N Awwiller, T Zhang. ( 2013). Organic matter–hosted pore system, Marcellus Formation (Devonian), Pennsylvania. AAPG Bull, 97( 2): 177– 200
https://doi.org/10.1306/07231212048
39 H Nie, Q Chen, G Zhang, C Sun, P Wang, Z Lu. ( 2021). An overview of the characteristic of typical Wufeng–Longmaxi shale gas fields in the Sichuan Basin,. China Nat Gas Ind B, 8( 3): 217– 230
https://doi.org/10.1016/j.ngib.2021.04.001
40 H Nie, Z Jin, C Sun, Z He, G Liu, Q Liu. ( 2019a). Organic matter types of the Wufeng and Longmaxi Formations in the Sichuan Basin, south China: implications for the formation of organic matter pores. Energ Fuel, 33( 9): 8076– 8100
https://doi.org/10.1021/acs.energyfuels.9b01453
41 H Nie, C Sun, G Liu, W Du, Z He. ( 2019b). Dissolution pore types of the Wufeng Formation and the Longmaxi Formation in the Sichuan Basin, south China: implications for shale gas enrichment. Mar Pet Geol, 101: 243– 251
https://doi.org/10.1016/j.marpetgeo.2018.11.042
42 L Pan, X Xiao, H Tian, Q Zhou, P Cheng. ( 2016). Geological models of gas in place of the Longmaxi shale in southeast Chongqing, south China. Mar Pet Geol, 73: 433– 444
https://doi.org/10.1016/j.marpetgeo.2016.03.018
43 Z Qiu, C Zou. ( 2020). Controlling factors on the formation and distribution of “sweet-spot areas” of marine gas shales in south China and a preliminary discussion on unconventional petroleum sedimentology. J Asian Earth Sci, 194: 103989
https://doi.org/10.1016/j.jseaes.2019.103989
44 D J K Ross, R M Bustin. ( 2002). Characterizing the shale gas resource potential of Devonian Mississippian strata in the Western Canada sedimentary basin: application of an integrated formation evaluation. AAPG Bull, 86: 1921– 1938
45 D J K Ross, R Marc Bustin. ( 2009). The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs. Mar Pet Geol, 26( 6): 916– 927
https://doi.org/10.1016/j.marpetgeo.2008.06.004
46 J Schoenherr, R Littke, J L Urai, P A Kukla, Z Rawahi. ( 2007). Polyphase thermal evolution in the Infra-Cambrian Ara group (South Oman salt basin) as deduced by maturity of solid reservoir bitumen. Org Geochem, 38( 8): 1293– 1318
https://doi.org/10.1016/j.orggeochem.2007.03.010
47 C Shen J Xie J Zhao Y Fan L Ren ( 2021). Whole-life cycle countermeasures to improve the stimulation effect of network fracturing in deep shale gas reservoirs of the southern Sichuan Basin. Nat Gas Ind, 41: 169− 177 (in Chinese)
48 J Sun, X Xiao, Q Wei, P Cheng, H Tian, Y Wu. ( 2020). Gas in place and its controlling factors of the shallow Longmaxi shale in the Xishui area, Guizhou, China. J Nat Gas Sci Eng, 77: 103272
https://doi.org/10.1016/j.jngse.2020.103272
49 J Sun, X Xiao, P Cheng. ( 2021a). Influence of water on shale pore heterogeneity and the implications for shale gas-bearing property — a case study of marine Longmaxi Formation shale in northern Guizhou. Mar Pet Geol, 134: 105379
https://doi.org/10.1016/j.marpetgeo.2021.105379
50 J Sun, X Xiao, Q Wei, P Cheng, H Tian. ( 2021b). Occurrence of irreducible water and its influences on gas-bearing property of gas shales from shallow Longmaxi Formation in the Xishui Area, Guizhou, southern China. Front Earth Sci, 9: 654136
https://doi.org/10.3389/feart.2021.654136
51 H Tian, L Pan, X Xiao, R W T Wilkins, Z Meng, B Huang. ( 2013). A preliminary study on the pore characterization of Lower Silurian black shales in the Chuandong Thrust Fold Belt, southwestern China using low pressure N2 adsorption and FE-SEM methods. Mar Pet Geol, 48: 8– 19
https://doi.org/10.1016/j.marpetgeo.2013.07.008
52 H Wang W Guo F Liang Q Zhao ( 2015). Biostratigraphy characteristics and scientific meaning of the Wufeng and Longmaxi Formations black shales at well Wei 202 of the Weiyuan Shale Gas Field, Sichuan Basin. J Stratigr, 39: 289− 293 (in Chinese)
53 S J Wang T Yang G S Zhang D Li X Chen ( 2012). Shale gas enrichment factors and the selection and evaluation the core area. Chin Eng Sci, 14: 94− 100 (in Chinese)
54 D Wood B Schmit L Riggins B J Johnson C Talley ( 2011). Cana Woodford stimulation practices—a case history. In: North American Unconventional Gas Conference and Exhibition Articles 143960, Woodlands, Texas, USA
55 Z Xi, S Tang, S Zhang, Y Yi, F Dang, Y Ye. ( 2019). Characterization of quartz in the Wufeng Formation in northwest Hunan Province, south China and its implications for reservoir quality. J Petrol Sci Eng, 179: 979– 996
https://doi.org/10.1016/j.petrol.2019.04.051
56 X M Xiao, Q Wei, H F Gai, T F Li, M L Wang, L Pan, J Chen, H Tian. ( 2015). Main controlling factors and enrichment area evaluation of shale gas of the Lower Paleozoic marine strata in south China. Petrol Sci, 12( 4): 573– 586
https://doi.org/10.1007/s12182-015-0057-2
57 R Yang, A Jia, S He, Q Hu, T Dong, Y Hou, J Yan. ( 2020). Water adsorption characteristics of organic-rich Wufeng and Longmaxi Shales, Sichuan Basin (China). J Petrol Sci Eng, 193: 107387
https://doi.org/10.1016/j.petrol.2020.107387
58 Y Yang( 2016). Application of bitumen and graptolite reflectance in the Silurian Longmaxi Shale, southeastern Sichuan Basin. Petrol Geo Experi, 38: 466− 472 (in Chinese)
59 J Zhao, Z Jin, Z Jin, X Wen, Y Geng. ( 2017a). Origin of authigenic quartz in organic-rich shales of the Wufeng and Longmaxi Formations in the Sichuan Basin, south China: implications for pore evolution. J Nat Gas Sci Eng, 38: 21– 38
https://doi.org/10.1016/j.jngse.2016.11.037
60 J Zhao, C Shen, L Ren, X Tan(2017b). Quantitative prediction of gas contents in different occurrence states of shale reservoirs: a case study of the Jiaoshiba Shale Gasfield in the Sichuan Basin. Natur Gas Ind, 37: 27−33 (in Chinese)
[1] Chengang LU, Ping GAO, Gang LI, Yue FENG, Xiaorong QU, Yufei SU, Xianming XIAO. Gas-in-place and its influence factors of the upper Paleozoic coal-bearing shale in the Qinshui Basin, China[J]. Front. Earth Sci., 2023, 17(1): 293-309.
[2] Jiang HAN, Caifang WU, Lu CHENG. Experimental study on the coupling effect of pore-fracture system and permeability controlled by stress in high-rank coal[J]. Front. Earth Sci., 2023, 17(1): 135-144.
[3] Jinkai WANG, Yuxiang FU, Zhaoxun YAN, Jialin FU, Jun XIE, Kaikai LI, Yongfu ZHAO. Influence of sedimentation and diagenesis on reservoir physical properties: a case study of the Funing Formation, Subei Basin, eastern China[J]. Front. Earth Sci., 2021, 15(4): 892-908.
[4] Xiaowei HOU, Yang WANG, Yanming ZHU, Jie XIANG. Pore structure complexity and its significance to the petrophysical properties of coal measure gas reservoirs in Qinshui Basin, China[J]. Front. Earth Sci., 2021, 15(4): 860-875.
[5] Mingjie LIU,Zhen LIU,Biao WANG,Xiaoming SUN,Jigang GUO. A new method for recovering paleoporosity of sandstone: case study of middle Es3 member of Paleogene formation in Niuzhuang Sag, Dongying Depression, Bohai Bay Basin in China[J]. Front. Earth Sci., 2015, 9(3): 521-530.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed