Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (4) : 906-915    https://doi.org/10.1007/s11707-021-0968-3
RESEARCH ARTICLE
Geochemical and mineralogical characteristics of some gold mine tailings in the Eastern Desert of Egypt
Mostafa REDWAN()
Geology Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
 Download: PDF(3704 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The adverse environmental effects of mine tailings disposal on the surrounding ecosystems are worldwide environmental problems. Due to environmental issues related to tailings discharged on land surface, detailed tailings characterization is a prerequisite for a long-term management solution. The tailings from four gold mines in Egypt, namely Fatira, El Sid, Barramiya, and Atud were investigated for their geochemical-mineralogical features and the effect of weathering behavior on the release of their heavy elements. The tailings samples were investigated by mineralogical (XRD and ESEM-EDS), physical (grain-size distribution) and geochemical (XRF) techniques. Most of the tailings have uniform silt-size with fine to very finesand and clay. Atud tailings have coarse to fine sands. High carbonate, predominantly calcite was found for the samples from Fatira and Atud, calcite-ankerite from El Sid and dolomite from Barramiya with little sulfide-content. High-mean of Cr (569287 mg/kg), Ni (89191 mg/kg) and Co (4221 mg/kg) values are coinciding with the ultramafic nature in Atud and Barramiya tailings. El Sid tailings have a high-mean concentration of Zn (1357 mg/kg) and Pb (1349 mg/kg). Barramiya tailings have a high-mean As concentration (2635 mg/kg). The Fatira tailings are characterized by high-mean values of Sr (444 mg/kg) and Cu (280 mg/kg) arising from auriferous mineralization. High Sr concentrations in Fatira tailings are mainly due to its adsorption to iron oxides. Pyrite oxidation is conceded along the cracks and/or the edges of the crystals in the El Sid, Barramiya and Atud tailings. The Threshold Effect Level (TEL) values indicated high contamination from heavy elements to the neighboring ecosystem. The tailings were deposited downstream into the small wadis. Wind and water erosion can dissolve efflorescent materials enriched in toxic elements like As, Zn, and Pb at tailings surface. The release of contaminants could be catastrophic for the environment without mine site rehabilitation strategies.

Keywords gold mine      tailings      geochemistry      mineralogy      Egypt     
Corresponding Author(s): Mostafa REDWAN   
Online First Date: 22 April 2022    Issue Date: 11 January 2023
 Cite this article:   
Mostafa REDWAN. Geochemical and mineralogical characteristics of some gold mine tailings in the Eastern Desert of Egypt[J]. Front. Earth Sci., 2022, 16(4): 906-915.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-021-0968-3
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I4/906
Fig.1  Location (Google earth) map of the study area showing the locations of Fatira, El Sid, Barramyia and Atud gold mine areas.
Fig.2  Geological maps of (a) Fatira (after Abd El Monsef et al. 2020), (b) El Sid (after Langwieder 1994), (c) Barramiya (after Harraz et al. 2012) and (d) Atud (after Harraz 2002; Klemm and Klemm 2013).
Fig.3  Dry tailings stacks (a) in front of the mine with blocks of agglutinated, (b) tailings from Fatira. (c) Surface and (d) lateral views of El Sid gold mine tailings with the distribution of desiccation cracks. (e) Surface view, (f) high intensive subrosion channels of Barramiya gold mine tailings. Disseminated heaps (g, h) of whitish tailings from Atud area.
Fig.4  Triangular plot of (a) SiO2, Al2O3, and Fe2O3, (b) MgO, Al2O3, and CaO, (c) Pb+Zn, K2O+Al2O3, and Cr+Ni, bivariate diagram for (d) Al2O3/TiO2 vs. SiO2 showing mixing trends according to host rocks lithology (quartz vein, granite and mafics/ultramafics) of the tailings materials.
Fig.5  Grain size distribution (in mm) of the tailings samples from El Sid, Barramiya, Atud and Fatira.
Fig.6  Rough estimate of relative mineral phase distribution depend on XRD measurements coded for major phases by order of intensity from 50 to 10, and for traces from 6 to 1 and afterwards accumulated to 100% on the basis of coding, of the tailings samples.
Fig.7  BSE images of a) finely ground tailings sample from Fatira mine rich in iron sulfates and Si, b) incipient pyrite alteration along the cracks filled by Si, Al, Si and Mg sulfates of El Sid tailings, c) pyrite alteration along the rims and cracks variable filled by Fe, Si, Al, Si and Mg sulfates from Barramiya tailings, d) Atud tailings with rim alteration rich in iron sulfates with variable Si and Al.
oxide/element El Sid1 El Sid2 Barramiya1 Barramiya2 Atud1 Atud2 Fatira1 Fatira2
SiO2/% 69.12 67.64 60.03 59.33 43.6 48.24 57 54.85
TiO2/% 0.611 0.627 0.54 0.541 0.4 0.489 1 0.926
Al2O3/% 7.03 7.11 10.69 10.28 16.5 18.95 17 15.89
Fe2O3/% 5 5.3 4.76 5.03 5.3 6.18 11 10.92
MnO/% 0.107 0.115 0.12 0.112 0.1 0.108 0 0.054
MgO/% 2.88 3.67 4.07 4.64 8.4 9.25 1 0.97
CaO/% 4.578 5.027 4.926 5.069 15.5 9.059 1 0.936
Na2O/% 1.66 1.22 1.06 1.12 1.3 1.07 1 2.10
K2O/% 1.464 1.522 1.916 1.706 0.2 0.222 5 4.384
P2O5/% 0.212 0.2 0.064 0.068 0.0 0.049 0 0.257
(SO3)/% 2.12 1.85 0.89 0.62 0.3 0.02 0 0.34
(Cl)/% 0.027 0.027 0.011 10.8 0.1 0.018 0 0.012
(F)/% 0.1 0.12 <0.05 <0.05 <0.05 <0.05 0 0.14
LOI/% 4.35 4.84 10.17 10.8 8.0 6.03 6 7.96
Sum/% 99.26 99.27 99.29 99.34 99.62 99.69 100 99.74
(As)/(mg·kg−1) 1078 1278 3092 2178 14 14 45 45
Ba/(mg·kg−1) 348 333 297 253 46 41 654 609
Ce/(mg·kg−1) 57 42 41 60 41 <18 <52 <52
Co/(mg·kg−1) 15 16 19 23 42 41 7 11
Cr/(mg·kg−1) 125 187 240 334 560 578 47 51
Cu/(mg·kg−1) 43 41 48 45 67 38 300 260
Ni/(mg·kg−1) 94 123 154 228 108 70 12 18
Pb/(mg·kg−1) 1446 1251 8 7 17 9 35 <6
Rb/(mg·kg−1) 38 41 48 43 7 7 114 108
Sc/(mg·kg−1) 8 10 18 16 34 34 17 <17
Sr/(mg·kg−1) 185 196 250 228 264 212 423 465
V/(mg·kg−1) 72 77 131 111 118 128 120 113
W/(mg·kg−1) 42 29 6 5 <4 <4 10 <8
Y/(mg·kg−1) 18 16 26 27 13 15 17 13
Zn/(mg·kg−1) 1477 1236 57 61 41 39 241 405
Zr/(mg·kg−1) 113 106 87 96 40 38 135 133
  Table S1 Chemical composition of tailings materials measured using XRF
1 El Monsef M Abd, M Slobodník, I A Salem. ( 2020). Characteristics and nature of gold-bearing fluids in Fatira area, North Eastern Desert of Egypt: possible transition from intrusion-related to orogenic deposits. Arab J Geosci, 13( 19): 1034
https://doi.org/10.1007/s12517-020-05982-8
2 A Abdelnasser, M Kumral. ( 2017). The nature of gold-bearing fluids in Atud gold deposit, Central Eastern Desert, Egypt. Int Geol Rev, 59( 15): 1845– 1860
https://doi.org/10.1080/00206814.2017.1299043
3 M I Attia. ( 1948). Geology of the Barramiya Mining District. Cairo: Geological Survey of Egypt, 1– 76
4 S A Azzaz, A H Sabet, M M Soliman, N S Botros. ( 1997). Mode of occurrence and genesis of the gold mineralizations in the North Eastern Desert of Egypt. Egyptian Mineral, 9: 169– 185
5 D W Blowes C J (2003) Ptacek. Mill tailings hydrogeology and geochemistry. In: Jambor J L, Blowes D W, Ritchie A I M, eds. Environmental Aspects of Mine Wastes. Mineral Assoc Canada Short Course Series 31, 95– 116
6 D W Blowes C J Ptacek J L Jambor C G Weisener ( 2003) The Geochemistry of Acid Mine Drainage. In: Holland H D, Turekian K K, eds. Treatise on Geochem Pergamon, 149– 204
7 N S Botros. ( 2004). A new classification of the gold deposits of Egypt. Ore Geol Rev, 25( 1−2): 1– 37
https://doi.org/10.1016/j.oregeorev.2003.07.002
8 F F Carmo, A O Lanchotti, L H Y Kamino. ( 2020). Mining waste challenges: environmental risks of gigatons of mud, dust and sediment in megadiverse regions in Brazil. Sustainability, 12( 20): 8466
https://doi.org/10.3390/su12208466
9 J A Centeno, C H Tseng, G B Van der Voet, R B Finkelman. ( 2007). Global impacts of geogenic arsenic: a medical geology research case. Ambio, 36( 1): 78– 81
https://doi.org/10.1579/0044-7447(2007)36[78:GIOGAA]2.0.CO;2
10 B Dold, L Fontboté. ( 2001). Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J Geochem Explor, 74( 1−3): 3– 55
https://doi.org/10.1016/S0375-6742(01)00174-1
11 J L Durocher, M Schindler. ( 2011). Iron-hydroxide, iron-sulfate and hydrous-silica coatings in acid-mine tailings facilities: a comparative study of their trace-element composition. Appl Geochem, 26( 8): 1337– 1352
https://doi.org/10.1016/j.apgeochem.2011.05.007
12 A M El-Bouseily, M A El-Dahhar, A I Arslan. ( 1985). Ore-microscopic and geochemical characteristics of gold-bearing sulfide minerals, El Sid Gold Mine, Eastern Desert, Egypt. Mineral Depos, 20( 3): 194– 200
https://doi.org/10.1007/BF00204565
13 Ramly M F El S S Ivanov G C Kochin F A Bassyouni Aziz A T Abdel I M Shalaby Hammady M Y (1970) El. The occurrence of gold in the Eastern Desert of Egypt. In: Moharram O, Gachechiladze D Z, El Ramly M F, Ivanov S S, Amer A F, eds. Studies on Some Mineral Deposits of Egypt. Part I, Sec. A, metallic minerals, Geol Surv Egypt, 21: 53– 64
14 A El-Taher, K L Kratz, A Nossair, A H Azzam. ( 2003). Determination of gold in two Egyptian gold ores using instrumental neutron activation analysis. Radiat Phys Chem, 68( 5): 751– 755
https://doi.org/10.1016/S0969-806X(03)00401-8
15 S Y Eom, D H Yim, M Huang, C H Park, G B Kim, S D Yu, B S Choi, J D Park, Y D Kim, H Kim. ( 2020). Copper-zinc imbalance induces kidney tubule damage and oxidative stress in a population exposed to chronic environmental cadmium. Int Arch Occup Environ Health, 93( 3): 337– 344
https://doi.org/10.1007/s00420-019-01490-9
16 S (1986) Gabra. Gold in Egypt: a commodity package, minerals, petroleum and groundwater assessment program: USAID project 363–0105. Geol Surv Egypt
17 J I Garver, P R Royce, T A Smick. ( 1996). Chromium and nickel in shale of the Taconic foreland: a case study for the provenance offine-gained sediments with an ultramafic source. J Sediment Res, 66: 100– 106
18 E M Ghoneim, N W Arnell, G M Foody. ( 2002). Characterizing the flash flood hazards potential along the Red Sea coast of Egypt. IAHS Publ, 271: 211– 216
19 H Z Harraz, M M Hamdy, M H El-Mamoney. ( 2012). Multi-element association analysis of stream sediment geochemistry data for predicting gold deposits in Barramiya gold mine, Eastern Desert, Egypt. J Afr Earth Sci, 68: 1– 14
https://doi.org/10.1016/j.jafrearsci.2012.03.009
20 J Helser, V Cappuyns. ( 2021). Trace elements leaching from Pb-Zn mine waste (Plombières, Belgium) and environmental implications. J Geochem Explor, 220: 106659
https://doi.org/10.1016/j.gexplo.2020.106659
21 K A Hudson-Edwards, H E Jamieson, B G Lottermoser. ( 2011). Mine wastes: past, present, future. Elements, 7( 6): 375– 380
https://doi.org/10.2113/gselements.7.6.375
22 A A (1990) Hussein. Mineral deposits. In: Said R, ed. The Geology of Egypt. Rotterdam: Balkema, 511−566
23 A M Jones, R N Collins, J Rose, T D Waite. ( 2009). The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe3+ minerals. Geochim Cosmochim Acta, 73( 15): 4409– 4422
https://doi.org/10.1016/j.gca.2009.04.025
24 D Klemm, R Klemm, A Murr. ( 2001). Gold of the Pharaohs—6000 years of gold mining in Egypt and Nubia. J Afr Earth Sci, 33( 3−4): 643– 659
https://doi.org/10.1016/S0899-5362(01)00094-X
25 R Klemm, D Klemm. ( 2013). Gold and Gold Mining in Ancient Egypt and Nubia. Berlin: Springer-Verlag,
26 G G Kochin F A (1968) Bassyuni. Mineral resources of the UAR. Report on the generalisation of geologic data on mineral resources in the UAR, carried out under contract 1247 (1966 to1968), part I: Metallic minerals. Internal Report 18/68, Geol Surv Egypt
27 M J Le Bas, R W Le Maitre, A Streckeisen, B Zanettin. ( 1986). A chemical classification of volcanic rocks based on the total alkali–silica diagram. J Petrol, 27( 3): 745– 750
https://doi.org/10.1093/petrology/27.3.745
28 Y Q Ma, Y W Qin, B H Zheng, L Zhang, Y M Zhao. ( 2015). Seasonal variation of enrichment, accumulation and sources of heavy metals in suspended particulate matter and surface sediments in the Daliao river and Daliao river estuary, northeast China. Environ Earth Sci, 73( 9): 5107– 5117
https://doi.org/10.1007/s12665-015-4325-7
29 J S Myers. ( 1997). Geology of granite. J R Soc West Aust, 80( 3): 87– 100
30 T D Mayer, W M Jarrell. ( 1996). Formation and stability of iron(II) oxidation products under natural concentrations of dissolved silica. Water Res, 30( 5): 1208– 1214
https://doi.org/10.1016/0043-1354(95)00265-0
31 M O Mendez, R M Maier. ( 2008). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environ Health Perspect, 116( 3): 278– 283
https://doi.org/10.1289/ehp.10608
32 A (1999) Murr. Genesis of the gold deposit districts of Fatira, Gidami, Atalla and Hangaliya in the Egyptian Eastern Desert , Münchner Geol. Hefte A 27, 203 pp (in German)
33 G M Naim A K Hassan E A El-Sirty A M Mansour A A Dardir A H Rasmy M Z (1997) Eskander. Project of economic evaluation and methods of treatment for dump and tailing of the old Egyptian gold mines. In: Geol Surv Egypt Documentation center (in Arabic)
34 T A Nedobukh V S (2020) Semenishchev. Strontium: source, occurrence, properties, and detection. In: Pathak P, Gupta D, eds. Strontium Contamination in the Environment. The Handbook of Environmental Chemistry, vol 88. Berlin: Springer Verlag
35 D K Nordstrom C N (1999) Alpers. Geochemistry of acid mine waters. In: Plumlee G S, Logsdon M J, eds. The Environmental Geochemistry of Mineral Deposits, Reviews in Economic Geology, vol. 6A, Society of Economic Geologists Inc Littleton, Colorado, USA, 133− 160
36 L M Plum, L Rink, H Haase. ( 2010). The essential toxin: impact of zinc on human health. Int J Environ Res Public Health, 7( 4): 1342– 1365
https://doi.org/10.3390/ijerph7041342
37 G S Plumlee T L (2003) Ziegler. The medical geochemistry of dusts, soils, and other earth materials. In: Lollar B S, Holland H D, Turekian K K, eds. Treatise on Geochemistry. Elsevier Publ, 9: 263− 310
38 M Redwan, A O Bamousa. ( 2019). Characterization and environmental impact assessment of gold mine tailings in arid regions: a case study of Barramiya gold mine area, Eastern Desert, Egypt. J Afr Earth Sci, 160: 103644
https://doi.org/10.1016/j.jafrearsci.2019.103644
39 M Redwan, D Rammlmair. ( 2012). Influence of climate, mineralogy and mineral processing on the weathering behaviour within two, low-sulfide, high-carbonate, gold mine tailings in the Eastern Desert of Egypt. Environ Earth Sci, 65: 2179– 2193
https://doi.org/10.1007/s12665-011-1460-7
40 S H Sadeghi, S Gharemahmudli, H Kheirfam, A Khaledi Darvishan, M Kiani Harchegani, P Saeidi, L Gholami, M Vafakhah. ( 2018). Effects of type, level and time of sand and gravel mining on particle size distributions of suspended sediment. Int Soil Water Conserv Res, 6( 2): 184– 193
https://doi.org/10.1016/j.iswcr.2018.01.005
41 N Sahai S A Carroll S Roberts P A (2000) O’Day. X-ray absorption spectroscopy of strontium (II) coordinationII: sorption and precipitation at kaolinite, amorphous silica, and goethite surfaces. J Colloid Interf Sci, 222(2): 198– 212
42 F Schoenbrunn, M Bach. ( 2015). The development of paste thickening and its application to the minerals industry; an industry review. Berg Huettenmaenn Monatsh, 160( 6): 257– 263
https://doi.org/10.1007/s00501-015-0377-y
43 R Souissi, F Souissi, M Ghorbel, M Munoz, P Courjault-Radé. ( 2015). Mobility of Pb, Zn and Cd in a soil developed on a carbonated bedrock in a semi-arid climate and contaminated by Pb–Zn tailing, Jebel Ressas (NE Tunisia). Environ Earth Sci, 73( 7): 3501– 3512
https://doi.org/10.1007/s12665-014-3634-6
44 G Yuan, Y Cao, H M Schulz, F Hao, J Gluyas, K Liu, T Yang, Y Wang, K Xi, F Li. ( 2019). A review of feldspar alteration and its geological significance in sedimentary basins: from shallow aquifers to deep hydrocarbon reservoirs. Earth Sci Rev, 191: 114– 140
https://doi.org/10.1016/j.earscirev.2019.02.004
45 P Zuddas. ( 2010). Water-rock interaction processes seen through thermodynamics. Elements, 6( 5): 305– 308
https://doi.org/10.2113/gselements.6.5.305
[1] Jianwei LV, Songhang ZHANG, Ning YANG, Chunbo FU, Xinlu YAN, Yang LI. Paleoenvironment controls on organic matter accumulation in transitional shales from the eastern Ordos Basin, China[J]. Front. Earth Sci., 2021, 15(4): 737-753.
[2] Carmine APOLLARO, Francesco PERRI, Emilia LE PERA, Ilaria FUOCO, Teresa CRITELLI. Chemical and minero-petrographical changes on granulite rocks affected by weathering processes[J]. Front. Earth Sci., 2019, 13(2): 247-261.
[3] Xunming WANG, Lili LANG, Ting HUA, Caixia ZHANG, Hui LI. The effects of sorting by aeolian processes on the geochemical characteristics of surface materials: a wind tunnel experiment[J]. Front. Earth Sci., 2018, 12(1): 86-94.
[4] Xin SHA, Jinrong WANG, Wanfeng CHEN, Zheng LIU, Xinwei ZHAI, Jinlong MA, Shuhua WANG. Late Paleozoic-Early Mesozoic tectonic evolution of the Paleo-Asian Ocean: geochronological and geochemical evidence from granitoids in the northern margin of Alxa, Western China[J]. Front. Earth Sci., 2018, 12(1): 191-214.
[5] Xin QIAN, Qinglai FENG, Chongpan CHONGLAKMANI, Denchok MONJAI. Geochemical and geochronological constrains on the Chiang Khong volcanic rocks (northwestern Thailand) and its tectonic implications[J]. Front Earth Sci, 2013, 7(4): 508-521.
[6] Jun HE, Teng MA, Yamin DENG, Hui YANG, Yanxin WANG. Environmental geochemistry of high arsenic groundwater at western Hetao plain, Inner Mongolia[J]. Front Earth Sci Chin, 2009, 3(1): 63-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed