Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2024, Vol. 18 Issue (1) : 68-82    https://doi.org/10.1007/s11707-022-1013-2
Geochronology, petrogenesis, and geological significance of the quartz vein-type copper deposits in Longwei area, north-west Dayaoshan, Guangxi
Song FU1, Shehong LI2(), Changxing LV3, Longqing SHI1, Xuhan HU2, Jinming WU2, Zhuolin XIE2
1. College of Earth Sciences & Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. School of Earth Sciences, Guilin University of Technology, Guilin 541006, China
3. Xinwen Mining Group Co., Ltd. Huafeng Coal Mine, Tai’an 271409, China
 Download: PDF(4913 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Quartz-vein-type copper deposits were discovered in SN-trend ore-bearing structures in north-west Dayaoshan, Guangxi. Lack of reports on the precise metallogenic age of these deposit has become a bottleneck in metallogenic research in this area. In this study, the quartz vein-type copper mine in Longwei area of Jinxiu was selected as the research object. Fresh illite samples in the fault gouges and ore samples were collected for testing and analysis. Based on the Re-Os isotope dating study, the age of pyrite isochron, belonging to the Caledonian period, was determined to be 417 ± 25 Ma, whereas that of chalcopyrite isochron belonging to the Indosinian period, was found to be 243 ± 18 Ma. Pyrite crystallized considerably earlier than chalcopyrite. The obtained EPMA data were combined with rock mineralogical analysis data, Metasomatous mineral pyrite and metasomatic mineral chalcopyrite were identified to have originated from different hydrothermal systems. In the Indosinian period, copper deposits in the Longwei area underwent pyrite crystallization, pyrite fragmentation, copper-bearing hydrothermal filling, and metasomatism, consolidating and forming minerals. The study determined the mineralisation time and ore sources of copper deposits in the Longwei area. The study provides evidence for the existence of Indosinian hydrothermal activities in the north-western Dayaoshan area.

Keywords Re-Os dating      electron probe      micro-analyser      quartz-vein copper deposit      Dayaoshan area     
Corresponding Author(s): Shehong LI   
Online First Date: 25 July 2023    Issue Date: 15 July 2024
 Cite this article:   
Song FU,Shehong LI,Changxing LV, et al. Geochronology, petrogenesis, and geological significance of the quartz vein-type copper deposits in Longwei area, north-west Dayaoshan, Guangxi[J]. Front. Earth Sci., 2024, 18(1): 68-82.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1013-2
https://academic.hep.com.cn/fesci/EN/Y2024/V18/I1/68
Fig.1  Regional geological image. (a) Location image of the study area; (b) the regional geological image in north-western Dayaoshan of Guangxi; (c) the regional geological image of Longwei copper deposits. 1. Quaternary; 2. Upper of Devonian; 3. Middle of Devonian; 4. Lower of Devonian; 5. Middle of Cambrian Shuikou Group; 6. Upper of Cambrian Shuikou Group; 7. Acidic Granite; 8. Lower part of the Devonian Lianhuashan Formation; 9. Upper Lianhuashan Formation of Devonian; 10. Fault; 11. Fault zone; 12. River; 13. Copper Deposit; 14. Lead Deposit; 15. Gold Deposit; 16. Tin Deposit; 17. Leod-zinc Deposit; 18. Copper-lead-zinc Deposit; 19. Co-Ni Deposit; 20. Attitude; 21. Copper; 22. Sampling point.
Fig.2  Characteristic of minerals in quartz. (a) Characteristics of the intruder; (b) characteristics of ore sections; (c) fragmented pyrite (reflected light); (d) characteristics of chalcopyrite (reflected light). Py: Pyrite; Ccp: Chalcopyrite; Qtz: Quartz; Cv: Covellite; Ccl: Chrysocolla.
SampleAsCuFeSbPbCdNiCoSZnTeMoTotal/%Ni/Co
G1-1-10.050.0246.510.030.000.000.010.1152.410.000.001.10100.220.10
G1-1-20.070.2645.200.000.020.000.010.0652.900.020.000.8599.380.11
G1-1-30.040.0746.020.000.000.000.020.0852.580.000.001.0799.870.19
G1-1-40.030.0244.340.020.000.040.020.0953.720.000.031.2099.470.17
G1-1-50.200.0144.690.020.030.050.290.3453.540.000.031.07100.240.88
G1-1-60.000.2244.460.000.000.030.010.1153.160.020.021.0799.090.10
G1-1-70.060.4645.500.000.000.030.000.1352.630.010.001.1399.950.00
G1-1-80.010.1245.910.020.000.010.010.0852.370.020.001.1299.650.14
G1-2-10.110.0045.690.010.000.050.000.0752.050.000.001.1499.120.00
G1-2-20.090.0845.760.000.010.090.030.1752.940.020.001.09100.280.15
G1-2-30.160.0046.110.020.000.040.000.0952.350.020.001.1399.900.00
G1-2-40.140.0845.000.040.000.020.000.2251.780.010.031.1198.410.00
G1-2-50.050.0246.160.000.000.050.020.1351.990.000.001.0999.490.14
G1-2-60.390.8445.190.040.000.000.020.1153.360.000.000.95100.900.39
G1-2-70.790.2145.630.050.100.000.150.2452.980.010.010.98101.130.79
G1-2-80.000.0246.290.000.000.060.010.0854.120.000.001.00101.570.00
G1-3-10.000.1445.720.030.040.010.000.0953.240.020.011.01100.300.00
G1-3-20.010.0046.080.000.000.020.020.2453.470.000.001.02100.850.01
G1-3-30.000.0046.010.000.010.020.030.1354.460.000.000.96101.600.00
G1-3-40.390.8445.190.040.000.000.020.1153.360.000.000.95100.900.39
G1-3-50.790.2145.630.050.100.000.150.2452.980.010.010.98101.130.79
G1-3-60.025.1144.190.000.140.010.020.0852.390.000.000.02101.970.02
G1-4-10.691.5844.090.000.010.000.010.0952.840.010.000.0299.350.69
G1-4-20.001.5746.830.000.090.000.170.0951.160.000.000.0099.910.00
G1-4-30.050.0246.510.030.000.000.010.1151.410.000.001.1099.220.05
G1-4-40.070.2644.200.000.020.000.010.0653.900.020.000.8599.380.07
G1-4-50.040.0746.020.000.000.000.020.0854.580.000.001.07101.870.04
G1-4-60.030.0244.340.020.000.040.020.0953.720.000.031.2099.490.03
G1-4-70.010.0046.080.000.000.020.020.2453.470.000.001.02100.850.01
G1-4-80.000.0046.010.000.010.020.030.1354.460.000.000.96101.600.00
G1-5-10.010.0246.910.000.040.000.000.1551.270.000.000.6299.000.01
G1-5-20.000.0045.980.010.000.000.010.1653.140.010.001.10100.420.00
G1-5-30.000.0046.530.030.000.030.020.1253.530.000.001.13101.390.00
G1-5-40.000.0245.460.000.000.030.040.1953.650.000.001.09100.480.00
G1-5-50.000.0245.950.000.000.020.010.0952.930.000.001.13100.140.00
G1-5-60.000.0045.520.010.000.050.010.1053.680.000.001.04100.410.00
Tab.1  EPMA analysis data of pyrite
SampleAsCuFeSbPbCdNiCoSZnTeMoTotal/%Ni/Co
T1-1-10.0235.1630.030.010.000.050.010.0434.690.010.000.66100.640.13
T1-1-20.0134.3329.560.000.000.030.010.0635.380.030.000.63100.040.19
T1-1-30.0033.9630.560.020.000.050.010.0835.140.030.030.68100.550.16
T1-1-40.0534.0830.650.020.000.020.000.0735.280.040.010.82100.990.06
T1-1-50.0033.6529.820.000.000.030.000.0534.980.040.000.7399.310.04
T1-1-60.0034.6329.560.000.000.000.020.0635.220.050.000.68100.210.36
T1-1-70.0034.4829.660.000.070.000.000.0634.800.040.000.6999.800.03
T1-1-80.0034.1229.350.000.000.000.000.0434.560.000.000.6498.710.00
T1-2-10.0234.2129.230.000.000.030.010.0433.910.050.000.6498.120.34
T1-2-20.0034.5529.340.010.050.040.000.0534.190.010.000.6598.900.06
T1-2-30.0036.1728.900.000.010.030.010.0634.380.020.000.71100.290.18
T1-2-40.0034.7629.610.000.000.010.000.0434.850.040.000.6099.910.03
T1-2-50.0034.7529.780.010.100.000.000.0434.600.040.000.76100.090.00
T1-2-60.0134.6329.970.000.010.050.000.0534.910.010.020.67100.330.00
T1-2-70.0034.6429.810.020.000.030.000.0434.900.000.000.72100.160.00
T1-2-80.0034.7029.780.000.030.050.000.0434.760.020.010.71100.110.00
T1-3-10.0034.4328.520.000.030.020.000.0634.410.040.000.6698.160.00
T1-3-20.0134.0028.890.000.090.000.000.0634.620.030.000.3698.050.00
T1-3-30.0035.0129.370.000.070.030.000.0634.340.050.000.2599.180.00
T1-3-40.0035.6729.620.000.050.010.000.0435.290.020.000.51101.190.00
T1-3-50.0035.1029.890.000.000.030.000.0534.440.040.000.60100.160.00
T1-3-60.0033.9429.880.080.000.040.000.0635.000.010.020.6999.730.00
T1-3-70.0034.4931.000.010.040.050.010.0834.590.010.000.52100.800.12
T1-3-80.0034.7130.180.000.010.000.000.0434.370.020.000.69100.010.00
T1-4-10.0034.1928.630.000.080.020.000.0534.630.020.000.7298.340.00
T1-4-20.0235.1329.100.000.000.030.000.0734.750.020.000.5999.690.00
T1-4-30.0234.6929.560.000.050.000.000.0634.880.060.000.73100.030.00
T1-4-40.0034.0729.790.020.080.000.000.0334.300.060.000.6298.960.00
T1-4-50.0034.8529.730.000.000.040.000.0535.240.000.000.67100.560.00
T1-4-60.0034.9128.550.000.000.020.000.0435.700.000.000.6499.860.03
T1-4-70.0035.6528.310.010.090.030.000.0535.090.070.000.6199.900.00
T1-4-80.0234.6828.650.070.010.000.000.0634.050.060.000.6098.170.00
T1-5-10.0034.6329.040.000.080.000.000.0734.320.000.000.6198.750.00
T1-5-20.0035.3328.900.010.000.000.000.0635.050.030.000.67100.040.00
Tab.2  EPMA analysis data of the chalcopyrite
SampleCommon ReCommon Os/ppt187Re/188Os187Os/188 Os
Value/pptValue/pptRatioRatio
TY-2262.9013.291.4870.0212851.01149.6218.120.24
TY-3141.935.690.8780.0686512.37470.0841.540.51
TY-4195.6814.091.3910.0131185.3386.055.880.08
TY-5175.4012.541.0700.0131082.9566.665.120.06
TY-6115.1611.700.4670.0193589.15392.4921.610.26
Tab.3  Re-Os isotope data for pyrite
SampleReOs187Re/188Os187Os/188 Os
Conc/pptConc/pptRatioRatio
HY-2195.0711.271.7920.0151513.2288.3514.580.13
HY-344.245.260.2550.0253313.98509.5022.830.29
HY-423.876.901.1180.011227.5865.839.420.09
HY-536.178.441.3450.014279.8674.319.720.10
HY-6318.4121.962.9640.057573.5381.0810.960.14
Tab.4  Re-Os isotope data for chalcopyrite
Fig.3  Re-Os isochron line of pyrite.
Fig.4  Re-Os isochron line of chalcopyrite.
SampleSample weighing/mgK2O/%(40Ar/38Ar)/m(38Ar/36Ar)/m40Ar/(mol·g–1)40K/(mol·g–1)Age/(Ma,1σ)
YLS013.3845.48.22708.321.95 × 10?91.29 × 10?7242.4 ± 5.1
Tab.5  Illite K-Ar data
Fig.5  Ore replacement structure. (a) Ore replacement structure of F1; (b) ore replacement structure of F2; (c) ore replacement structure of F3.
Fig.6  Ore fragmentation structure. Py: Pyrite; Ccp: Chalcopyrite; Qtz: quartz.
Fig.7  Co/Ni distribution of pyrite in ore. I. Volcanic origin; II. hydrothermal origin; III. sedimentary genesis; IV. origin of Magma.
Fig.8  Distribution spectrum of main trace metal elements in pyrite and chalcopyrite.
Fig.9  Sketch map of metallogenic model.
1 D C, Arne F P, Bierlin J W, Morgan H J Stein (2001). Re-Os dating of sulfides associated with gold mineralization in Central Victoria, Australia.Econ Geol, 96(6): 1455–1459
https://doi.org/10.2113/gsecongeo.96.6.1455
2 H Chen, Z Q Kang, J C Wu, D X Li, Y Cao, T W Wei, N S Wei, D Liu, T Zhou, D M Liu, H Y Lan (2020). Geochronology, genesis and geological significance of the Puquan granite in the Dayaoshan Area, Guangxi. Geoscience, 34(06): 1277–1290 (in Chinese)
3 M H Chen, Y Q Guo, B Liang, H W Huang (2012). Emplaced and metallogenetic ages of Wujie tungsten and molybdenum occurrence and geochemical characteristics of granodiorite in Cangwu. J Guilin U Technol, 32(01): 1–13 (in Chinese)
4 M H, Chen Z Y, Li Q, Li Z R, Wei H W, Huang Z Q, Zhang L Y Xiao (2015). A Preliminary study of multi-stage granitoids and related metallogenic series in Dayaoshan area of Guangxi, China.Earth Sci Front, 22(2): 41–53
https://doi.org/10.13745/j.esf.2015.02.004
5 W, Chen Y S, Wan H Q, Li Z Q, Zhang T M, Dai Z E, Shi J B Sun (2011). Isotope geochronology: technique and application.Acta Geol Sin, 85(11): 1917–1947
6 X H, Chen W J, Qu S Q, Han S, Eleonora N, Yang Z G, Chen F G, Zeng A D, Du Z H Wang (2010). Re-Os geochronology of Cu and W-Mo deposits in the Balkhash metallogenic belt, Kazakhstan and its geological significance.Geosci Front, 1(1): 115–124
https://doi.org/10.1016/j.gsf.2010.08.006
7 Y B Cui, Y Y Zhao, W J Qu, W Liu, R Ye, Y Liu (2011). Re-Os dating and ore-forming material tracing of the Lawu ore deposit in Damxung area, Tibet. Geol Bull China, 30(8): 1283–1293 (in Chinese)
8 Y, Dang M H, Chen B, Fu J W, Mao M C, Fanning Z Y Li (2018). Petrogenesis of the Yupo W-bearing and Dali Mo-bearing granitoids in the Dayaoshan area, south China: constraints of geochronology and geochemistry.Ore Geol Rev, 92: 643–655
https://doi.org/10.1016/j.oregeorev.2017.10.022
9 J Deng (2011). Genesis of the copper-gold polymetallic deposits in Dayaoshan of Guangxi, China. Geo Resour, 20(4): 287–297 (in Chinese)
10 J Deng (2012). Metallogenic series and model of copper and gold polymetallic deposits in Dayaoshan, Eastern Guangxi. Geo Resour, 21(6): 552–556 (in Chinese)
11 X H, Deng J B, Wang F, Pirajno Y W, Wang Y C, Li C, Li L M, Zhou Y J Chen (2016). Re-Os dating of chalcopyrite from selected mineral deposits in the Kalatag district in the eastern Tianshan Orogen, China.Ore Geol Rev, 77: 72–81
https://doi.org/10.1016/j.oregeorev.2016.01.014
12 R C, Duan W L, Ling Q, Li Z W, Chen H M, Yang L F Liu (2011). Correlations of the Late Yangshanian tectonomagmatic events with Metallogenesis in south China: geochemical constraints from the Longtoushan gold ore deposit of the Dayaoshan area, Guangxi Province.Acta Geol Sin, 85(10): 1644–1658
13 C Y, Feng D Q, Zhang W J, Qu A D, Du D X, Li H Q She (2006). Re-Os isotopic dating of pyrite in the Tuolugou SEDEX Cobalt (Gold) Deposit, Golmud, Qinghai Province.Acta Geol, 80(4): 571–576
14 W, Fu Y M, Zhang C J, Pang X W, Zeng X R, Huang M L, Yang Y, Shao H Lin (2018). Garnierite mineralization from a serpentinite-derived lateritic regolith, Sulawesi Island, Indonesia: mineralogy, geochemistry and link to hydrologic flow regime.J Geochem Explor, 188: 240–256
https://doi.org/10.1016/j.gexplo.2018.01.022
15 L L, Gao K Y, Wang C, Chen X B, Zhang J Li (2019). Tectonic setting and metallogenic chronology of the Ashele Cu-Zn of deposit in Xinjiang, NW China: constraints from Re-Os dating of pyrite, U-Pb dating of zircon and Hf isotopes.Ore Geol Rev, 115: 103163
https://doi.org/10.1016/j.oregeorev.2019.103163
16 L X, Gu X Q, Tang Y C, Zheng C Z, Wu Z M, Tian X J, Lu P Ni (2004). Deformation,metamorphism and ore-component remobilization of the Archaean massive sulphide deposit at Hongtoushan, Liaoning Province.Acta Petrol Sin, 4: 923–934
17 S X Hu, Y Zhao, J G Sun, H F Ling, Y Ye, B Lu, H Z Ji, B Xu, H Y Liu, C G Fang (2002). Fluids and Their sources for gold mineralizations in the north China Platform. J Nanjing U (Nat Sci), 3: 381–391 (in Chinese)
18 H M Huang, Z J He, B Cui (2003). Metallogenic series of granite in Dayaoshan of Guangxi. Geol Prospect, 39(4): 12–16 (in Chinese)
19 W T, Huang J, Wu H Y, Liang X L, Chen J, Zhang L Ren (2020). Geology, geochemistry and genesis of the Longhua low-temperature hydrothermal Ni-Co arsenide deposit in sedimentary rocks, Guangxi, South China.Ore Geol Rev, 120: 103393
https://doi.org/10.1016/j.oregeorev.2020.103393
20 X W Huang, L Qi, J F Gao, Y M Meng (2016). Some thoughts on sulfide Re-Os isotope dating. Bull Mine Petrol Geochem, 35(3): 432–440 (in Chinese)
21 X Z, Jiang Z Q, Kang J F, Xu Z H, Feng C J, Pang G C, Fang J C, Wu S Q Xiong (2017). Early paleozoic granodioritic plutons in the Shedong W-Mo ore district, Guangxi, southern China: products of re-melting of middle Proterozoic crust due to magma underplating.J Asian Earth Sci, 141: 59–73
https://doi.org/10.1016/j.jseaes.2016.11.004
22 Y F Jin, Y G Li, G C Fei, H Zhou, X B Sha, Y C Feng, H Wu (2017). Re-Os Isotopic dating of chalcopyrite in quartz vein from Dahongshan IOCG Deposit in Kangdian copper metallogenic belt and its significance. Acta Mine Sin, 37(04): 417–426 (in Chinese)
23 H Li, Y H Liu, Z Li, S F Zhou, X Li, J Z Wei (2016). Geochemical characteristics and geological significance of granite geochronology in Dayao mountain guangxi. J East China U Techn (Nat Sci), 39(1): 29–37 (in Chinese)
24 J, Li J F, Xu K, Suzuki B, He Y G, Xu Z Y Ren (2010). Os, Nd and Sr isotope and trace element geochemistry of the Mulipicrites: insights into the mantle source of the Emeishan Large Igneous Province.Lithos, 119(1–2): 108–122
https://doi.org/10.1016/j.lithos.2010.06.002
25 J, Li P, Zhao J J, Liu X C, Wang A W, Yang G Q, Wang J F Xu (2015a). Reassessment of hydrofluoric acid desilicification in the carius tube digestion technique for Re-Os isotopic determination in geological samples.Geostand Geoanal Res, 39(1): 17–30
https://doi.org/10.1111/j.1751-908X.2014.00299.x
26 J Li, L F Zhong, X L Tu, G Q Hu, Y M Sun, X R Liang, J F Xu (2011). Platinum group elements and Re-Os isotope analyses for geological samples using a single digestion procedure. Geochimica, 40(4): 372–380 (in Chinese)
27 X F Li, Y Yu, C Z Wang (2017). Caledonian granitoids in the Jinxiu area, Guangxi, South China: implications for their tectonic setting. Lithos, 272–273: 249–260
https://doi.org/10.1016/j.lithos.2016.12.016
28 X W, Li J, Li T, Bader X X, Mo M, Scheltens Z Y, Chen J F, Xu X H, Yu X F Huang (2015b). Evidence for crustal contamination in intra-continental OIB-like basalts from West Qinling, central China: a Re-Os perspestive.J Asian Earth Sci, 98: 436–445
https://doi.org/10.1016/j.jseaes.2014.11.027
29 P F, Liu J L, Zhang Z Q, Wu Q W, Zhang M L, Wen X R, Luo C J, Zheng W B Huang (2021). A geochronological and geochemical study on the granodiorite porphyry and its implication for the mineralization in the Dayaoshan metallogenic belt, southeastern China.Acta Geochim, 40(1): 106–122
https://doi.org/10.1007/s11631-020-00428-0
30 S F, Liu S B, Peng T, Kusky A, Polat Q S Han (2018). Origin and tectonic implications of an Early Paleozoic (460–440 Ma) subduction-accretion shear zone in the northwestern Yunkai Domain, south China.Lithos, 322: 104–128
https://doi.org/10.1016/j.lithos.2018.10.006
31 Y E Luo (2009). Ore-control factors and genesis of deposits in Cu, Pb, Zn polymetal ore belt in west of Dayaoshan, Guangxi autonomous region. Contributions to Geo Min Resourc Res, 24(1): 56–72 (in Chinese)
32 J W, Mao A D, Du R, Seltmann J J Yu (2003). Re-Os ages for the Shameika porphyry Mo deposit and the Lipovy Log rare metal pegmatite, central Urals, Russia.Miner Depos, 38(2): 251–257
https://doi.org/10.1007/s00126-002-0331-2
33 J W, Mao G D, Zhang A D Du (2001). Geology, Geochemistry, and Re-Os isotopic dating of the Huangjiawan Ni-Mo-PGE deposit, Zunyi, Guizhou Province-withe a discussion of the polymetallic mineralization of basal cambrian black shales in south China.Acta Geol Sin, 2: 234–243
34 Y F, Meng Y S, Zhai B Cui (2002). Typomorphic characteristics of Cambrian pyritein Dayaoshan-Xidamingshan, Guangxi, China.Mineral Deposits, 21(S): 900–912
35 L D, Saein P Afzal (2017). Correlation between Mo mineralization and faults using geostatistical and fractal modeling in porphyry deposits of Kerman Magmatic Belt, SE Iran.J Geochem Explor, 181: 333–343
https://doi.org/10.1016/j.gexplo.2017.06.014
36 H J, Stein R J, Markey J W, Morgan L, Hannah A Scherstén (2001). The remarkable Re-Os chronometer in molybdenite: how and why it works.Terra Nova, 13(6): 479–486
https://doi.org/10.1046/j.1365-3121.2001.00395.x
37 H J, Stein J W, Morgan A Schersten (2000). Re-Os dating of Low-level highly radiogenic (LLHR) sulfides: the Harnas gold deposit, southwest Sweden, records continental-scale tectonic events.Econ Geol, 95(8): 1657–1671
https://doi.org/10.2113/95.8.1657
38 G M Wang, C X Huang, Z R Wei, T Yang, Y L Ye, C J Wang, H C Yang, Y J Feng, X Y Guan, Y L Yan (2017). Spatial and temporal distribution of metal deposits in Dali area, Guangxi, south China. Geo Mine Resour South China, 33(1): 47–64 (in Chinese)
39 L Wang, W G Long, D Zhou, W C Xu, X B Jin (2016). Late Triassic zircon U-Pb ages and Sr-Nd-Hf isotopes of Darongshan granites in southesatern Guangxi and their geological implications. Geol Bull China, 35(8): 1291–1303 (in Chinese)
40 W B Wang, J H Li, Y J Xin, H S Sun, Y Q Yu (2018). Zircon LA-ICP-MS U-Pb datingand geochemical analysis of the Darongshan-Shiwandashan granitoids in sourthwestern South China and their geological implications. Acta Geosci Sin, 39(2): 179–188 (in Chinese)
41 X Y Wang, M Z Liu, G F Zhou, X Q Huang, R H Wang (2013). A correlation study of Au-Polymetallic mineralization and granite-porphyry magmatism in the Xinping mining area of the Dayaoshan metallogenic belt, eastern Guangxi. Geoscience, 3: 585–592 (in Chinese)
42 D M, Xu Z Y, Lin X Q, Luo K, Zhang X H, Zhang H Huang (2015). Metallogenetic series of major metallic deposits in the Qinzhou-Hangzhou metallogenic belt.Earth Sci Front, 22: 7–24
43 H Xu, Y L Cui, Zhang M H, Rong H F, Liang T X, Yang F M (2014). The ore prospect directions and EH4 electromagnetic sounding evidence of Dale copper polymetallic deposit in Guangxi. Sci Techn Engin, 14(30): 1–7 (in Chinese)
44 Y L Xu, D Z Huang, Z Liu, T Zhen, W J Zhou (2019). Re-Os isotopic dating of pyrite from the Washan iron deposit in Ningwu Basin and its geological implications. Acta Petrol Miner, 38(02): 219–229 (in Chinese)
45 L J, Ying D H, Wang C,Wang K, Li K J, Wang L G, Wang Y W,Zhang X, Wang J C Jiang (2017). Re-Os dating of sulfides in the north stratiform ore body in Dabaoshan, Guangdong Province and its indication.Earth Sci Front, 24(5): 31–38
46 G Z, Zhang C J, Xue G X, Chi J Y, Liu X B, Zhao B, Zu Y Zhao (2017). Multiple-stage mineralization in the Sawayaerdun orogenic gold deposit, western Tianshan, Xinjiang: constraints from paragenesis, EPMA analyses, Re-Os dating of pyrite (arsenopyrite) and U-Pb dating of zircon from the host rocks.Ore Geol Rev, 81: 326–341
https://doi.org/10.1016/j.oregeorev.2016.10.038
47 J Zhang, H B Liu, J J Li, G S Jin, J Han, J F Zhang, X Shi (2021). Determination of experimental parameters during measurement of 40 Ar content in K-Ar dilution method. Rock Mineral Analysis, 40(3): 451–459 (in Chinese)
48 Y, Zhang K L, Chen X Y Liu (2007). Study on the K-Ar dating of diagenetic illite in sedimentary rock samples-question and discussion.Rock Mineral Analysis, 26(2): 117–120
49 Z Q, Zhang M H, Chen J W, Mo L Y, Xiao Z Z, Huang J, Luo C H Qu (2014). Evolution and source tracing of the Shedong quartz vein type scheelite-molybdenite polymetallic deposit in Cangwu County, Guangxi.Acta Petrol Sin, 30(1): 281–291
50 L T, Zhao J B, Wang Y W, Wang X Y, Zhu C Li (2019). Pyrite Re-Os geochronology of the Sareke sediment-hosted Cu deposit, Xinjiang, NW China.Ore Geol Rev, 104: 620–627
https://doi.org/10.1016/j.oregeorev.2018.11.029
51 Y L Zhao, Q W Zhang, R G Hu, T Sun, R H Liu, J H Huang, J Lu, F D Su (2017). 3D modeling and analysis of ore-controlling factors of Daiwu gold deposit in Dayaoshan Metallogenetic belt, eastern Guangxi. Mine Resour Geo, 31(2): 408–413 (in Chinese)
52 Y, Zhao N B, Li Y H, Jiang H, Niu W B Yang (2018). Multi-stage Cu remobilization of the Huping metamorphic-hydrothermal deposit in the southern North China Craton.Ore Geol Rev, 101: 870–884
https://doi.org/10.1016/j.oregeorev.2018.08.030
53 X W Zhou, S R Li, L Lu, W B Lin (2005). Reserch on the composition typomorphism of pyrite from Longkeng gold-silver mineralization district in Wuyi, Zhejiang Province, China. Bull Mine Petrol Geochem, 24(4): 317–326 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed