Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (3) : 760-775    https://doi.org/10.1007/s11707-022-1025-y
RESEARCH ARTICLE
Effects of sub-/super-critical CO2 on the fracture-related mechanical characteristics of bituminous coal
Zedong SUN1,3, Hongqiang XIE2(), Gan FENG2, Xuanmin SONG1, Mingbo CHI4, Tao MENG5, Bole SUN6
1. Key Laboratory of In-situ Property Improving Mining (Ministry of Education), Taiyuan University of Technology, Taiyuan 030024, China
2. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
3. College of Coal Engineering, Shanxi Datong University, Datong 037003, China
4. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 102200, China
5. School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
6. China Railway Third Bureau Group Co., Ltd., Taiyuan 030001, China
 Download: PDF(6495 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Injecting carbon dioxide CO2 into a coal seam is an important way to improve coalbed methane recovery and to store geological carbon. The fracture mechanical characteristics of bituminous coal determine the propagation and evolution of cracks, which directly affect CO2 storage in coal seams and the efficiency of resource recovery. This study applied CO2 adsorption and three-point bending fracture experiments using bituminous coal samples in a gaseous state (4 MPa), subcritical state (6 MPa), and supercritical state (8 and 12 MPa) to investigate the influence of CO2 state and anisotropy on the fracture-related mechanical response of bituminous coal. The results show that the change in mechanical properties caused by CO2 adsorption is CO2 state-dependent. The supercritical CO2 adsorption at 8 MPa causes the largest decrease in the mode-I fracture toughness (KIC), which is 63.6% lower than the toughness before CO2 adsorption. The instability characteristics of bituminous coal show the transformation trend of “sudden-gradual-sudden fracture”. With or without CO2 adsorption, the order of the KIC associated with three types of bituminous coal specimens is crack-divider type > crack-arrester type > crack-short transverse type. Phenomenologically, the fracture toughness of bituminous coal is positively correlated with its specific surface area and total pore volume; the toughness is negatively correlated with its average pore size.

Keywords energy development      CO2 geological storage      rock mechanics      bituminous coal     
Corresponding Author(s): Hongqiang XIE   
Online First Date: 12 June 2023    Issue Date: 12 December 2023
 Cite this article:   
Zedong SUN,Hongqiang XIE,Gan FENG, et al. Effects of sub-/super-critical CO2 on the fracture-related mechanical characteristics of bituminous coal[J]. Front. Earth Sci., 2023, 17(3): 760-775.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1025-y
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I3/760
Sample Mad/% Aad/% Vdaf/% FCad/%
Bituminous coal 7.00 6.68 31.54 54.78
Tab.1  Industrial analysis of coal specimen
Fig.1  Three SCB specimen types and loading diagram: P-Load (N); B-Specimen thickness (mm); R-Sample radius (mm); a-Prefabricated grooving length (mm); S-Span between two loading ends (mm). (a) Crack-arrester type; (b) Crack-divider type; (c) Crack-short transverse type.
Fig.2  Schematic diagram showing the CO2 adsorption experimental system.
Fig.3  Fracture mechanics experiment of bituminous coal SCB sample.
Fig.4  Variation curve of mode-I fracture toughness of bituminous coal with CO2 pressure.
Fig.5  Anisotropy of bituminous coal fracture toughness under different CO2 pressures.
Fig.6  Load displacement curve of bituminous coal during loading.
Fig.7  Fracture track and fracture surface morphology of the three types of bituminous coal specimens. (a) Crack-arrester type; (b) crack-divider type; (c) crack-short transverse type.
Fig.8  Low temperature N2 adsorption-desorption isotherms of bituminous coal samples (Sun et al., 2022).
Fig.9  Pore structure parameters of bituminous coal samples. (a) Specific surface area; (b) total pore volume; (c) average pore size; (d) nitrogen adsorption capacity (Modified from Sun et al., 2022).
Fig.10  Plots of lnV vs lnln(p0/p1) from N2 adsorption data.
Pressure/MPa 0 4 6 8 12
D1 2.7667 2.7452 2.7546 2.6636 2.6872
Tab.2  Fractal dimension of bituminous coal samples under different CO2 pressures in the FHH model
Fig.11  Relationship curve between fracture toughness and pore structure parameters for bituminous coal: (a) comparison of fracture toughness and specific surface area; (b) comparison of fracture toughness and total pore volume; (c) comparison of fracture toughness and average aperture; (d) comparison of fracture toughness and nitrogen a dsorption capacity.
Fig.12  Delamination phenomenon of crack-divider bituminous coal sample.
1 E, Agartan L, Trevisan A, Cihan J, Birkholzer Q L, Zhou T H Illangasekare (2015). Experimental study on effects of geologic heterogeneity in enhancing dissolution trapping of supercritical CO2.Water Resour Res, 51(3): 1635–1648
https://doi.org/10.1002/2014WR015778
2 D, Avnir M Jaroniec (1989). An isotherm equation for adsorption on fractal surface of heterogeneous porous materials.Langmuir, 5(6): 1431–1433
https://doi.org/10.1021/la00090a032
3 S, Brunauer L S, Deming W S, Deming E Teller (1940). On a theory of the van der Waals adsorption of gases.J Am Chem Soc, 62(7): 1723–1732
https://doi.org/10.1021/ja01864a025
4 M R, Chandler P G, Meredith N, Brantut B R Crawford (2016). Fracture toughness anisotropy in shale.J Geophys Res Solid Earth, 121(3): 1706–1729
https://doi.org/10.1002/2015JB012756
5 P, Chareonsuppanimit S A, Mohammad R L, Robinson K A M Gasem (2014). Modeling gas-adsorption induced swelling and permeability changes in coals.Int J Coal Geol, 121: 98–109
https://doi.org/10.1016/j.coal.2013.11.009
6 K, Chen X F, Liu B S, Nie C P, Zhang D Z, Song L K, Wang T Yang (2022). Mineral dissolution and pore alteration of coal induced by interactions with supercritical CO2.Energy, 248: 123627
https://doi.org/10.1016/j.energy.2022.123627
7 T Y, Chen X T, Feng X W, Zhang W D, Cao C J Fu (2014). Experimental study on mechanical and anisotrpic propertiesof black shale. Chin J Rock Mech Eng, 33 (9): 1772–1779 (in Chinese)
8 L, Cheng D, Li W, Wang J Liu (2021). Heterogeneous transport of free CH4 and free CO2 in dual-porosity media controlled by anisotropic in situ stress during shale gas production by CO2 flooding: implications for CO2 geological storage and utilization.ACS Omega, 6(40): 26756–26765
https://doi.org/10.1021/acsomega.1c04220 pmid: 34661029
9 K, Czerw P, Baran J, Szczurowski K Zarębska (2021). Sorption and desorption of CO2 and CH4 in vitrinite- and inertinite-rich polish low-rank coal.Nat Resour Res, 30(1): 543–556
https://doi.org/10.1007/s11053-020-09715-2
10 I W, Farmer F D Pooley (1967). A hypothesis to explain the occurrence of outbursts in coal, based on a study of West Wales outburst coal.Int J Rock Mech Min Sci Geomech Abstr, 4(2): 189–193
https://doi.org/10.1016/0148-9062(67)90043-5
11 G, Feng Y, Kang F, Chen Y W, Liu X C Wang (2018). The influence of temperature on mixed-mode (I+II) and mode-II fracture toughness of sandstone.Eng Fract Mech, 189: 51–63
https://doi.org/10.1016/j.engfracmech.2017.07.007
12 G, Feng Y, Kang T, Meng Y Q, Hu X H Li (2017). The influence of temperature on mode I fracture toughness and fracture characteristics of sandstone.Rock Mech Rock Eng, 50(8): 2007–2019
https://doi.org/10.1007/s00603-017-1226-y
13 G, Feng Y, Kang Z D, Sun X C, Wang Y Q Hu (2019). Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale.Energy, 173: 870–882
https://doi.org/10.1016/j.energy.2019.02.069
14 G, Feng Y, Kang X C, Wang Y Q, Hu X H Li (2020c). Investigation on the failure characteristics and fracture classification of shale under Brazilian test conditions.Rock Mech Rock Eng, 53(7): 3325–3340
https://doi.org/10.1007/s00603-020-02110-6
15 G, Feng X C, Wang Y, Kang Z T Zhang (2020a). Effect of thermal cycling-dependent cracks on physical and mechanical properties of granite for enhanced geothermal system.Int J Rock Mech Min Sci, 134: 104476
https://doi.org/10.1016/j.ijrmms.2020.104476
16 G, Feng X C, Wang M, Wang Y Kang (2020b). Experimental investigation of thermal cycling effect on fracture characteristics of granite in a geothermal-energy reservoir.Eng Fract Mech, 235: 107180
https://doi.org/10.1016/j.engfracmech.2020.107180
17 M Z, Gao J, Xie Y N, Gao W Y, Wang C, Li B G, Yang J J, Liu H P Xie (2021). Mechanical behavior of coal under different mining rates: a case study from laboratory experiments to field testing.Int J Min Sci Technol, 31(5): 825–841
https://doi.org/10.1016/j.ijmst.2021.06.007
18 M Z, Gao J G, Zhang S W, Li M, Wang Y W, Wang P F Cui (2020). Calculating changes in fractal dimension of surface cracks to quantify how the dynamic loading rate affects rock failure in deep mining.J Cent South Univ, 27(10): 3013–3024
https://doi.org/10.1007/s11771-020-4525-5
19 P Y, Guo J, Gu Y, Su J, Wang Z W Ding (2021b). Effect of cyclic wetting–drying on tensile mechanical behavior and microstructure of clay-bearing sandstone.Int J Coal Sci Technol, 8(5): 956–968
https://doi.org/10.1007/s40789-020-00403-3
20 Y X, Guo Y H, Zhao S W, Wang G R, Feng Y J, Zhang H Y Ran (2021a). Stress-strain-acoustic responses in failure process of coal rock with different height to diameter ratios under uniaxial compression.J Cent South Univ, 28(6): 1724–1736
https://doi.org/10.1007/s11771-021-4729-3
21 S W, Hedges Y, Soong J R M, Jones D K, Harrison G, Irdi E, Frommell R, Dilmore C White (2007). Exploratory study of some potential environmental impacts of CO2 sequestration in unmineable coal seams.Int J Environ Pollut, 29(4): 457–473
https://doi.org/10.1504/IJEP.2007.014232
22 S, Heng C H, Yang Y T, Guo C Y, Wang L Wang (2015). Influence of bedding planes on hydraulic fracture propagationin shale formations. Chin J Rock Mech Eng, 34 (2): 228–237 (in Chinese)
23 L L, Hou X J, Liu L X, Liang J, Xiong P, Zhang B, Xie D Q Li (2020). Investigation of coal and rock geo-mechanical properties evaluation based on the fracture complexity and wave velocity.J Nat Gas Sci Eng, 75: 103133
https://doi.org/10.1016/j.jngse.2019.103133
24 J J, Hu H P, Xie Q, Sun C B, Li G K Liu (2021). Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action.Int J Min Sci Technol, 31(5): 843–852
https://doi.org/10.1016/j.ijmst.2021.07.010
25 J F, Jin W, Yuan Y, Wu Z Q Guo (2020). Effects of axial static stress on stress wave propagation in rock considering porosity compaction and damage evolution.J Cent South Univ, 27(2): 592–607
https://doi.org/10.1007/s11771-020-4319-9
26 M, Kataoka Y, Obara M Kuruppu (2015). Estimation of fracture toughness of anisotropic rocks by semi-circular bend (SCB) tests under water vapor pressure.Rock Mech Rock Eng, 48(4): 1353–1367
https://doi.org/10.1007/s00603-014-0665-y
27 K P, Keboletse F, Ntuli O P Oladijo (2021). Influence of coal properties on coal conversion processes-coal carbonization, carbon fiber production, gasification and liquefaction technologies: a review.Int J Coal Sci Technol, 8(5): 817–843
https://doi.org/10.1007/s40789-020-00401-5
28 X G, Kong D, He X F, Liu E Y, Wang S G, Li T, Liu P F, Ji D Y, Deng S R Yang (2022). Strain characteristics and energy dissipation laws of gas-bearing coal during impact fracture process.Energy, 242: 123028
https://doi.org/10.1016/j.energy.2021.123028
29 M D, Kuruppu Y, Obara M R, Ayatollahi K P, Chong T Funatsu (2014). ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen.Rock Mech Rock Eng, 47(1): 267–274
https://doi.org/10.1007/s00603-013-0422-7
30 A Lampert (2019). Over-exploitation of natural resources is followed by inevitable declines in economic growth and discount rate.Nat Commun, 10(1): 1419
https://doi.org/10.1038/s41467-019-09246-2 pmid: 30926790
31 Y J, Li L H, Song Y J, Tang J P, Zuo D J Xue (2022). Evaluating the mechanical properties of anisotropic shale containing bedding and natural fractures with discrete element modeling.Int J Coal Sci Technol, 9(1): 18
https://doi.org/10.1007/s40789-022-00473-5
32 Z W, Liao X F, Liu D Z, Song X Q, He B S, Nie T, Yang L K Wang (2021). Micro-structural damage to coal induced by liquid CO2 phase change fracturing.Nat Resour Res, 30(2): 1613–1627
https://doi.org/10.1007/s11053-020-09782-5
33 B, Liu Y X, Zhao C, Zhang J L, Zhou Y T, Li Z Sun (2021a). Characteristic strength and acoustic emission properties of weakly cemented sandstone at different depths under uniaxial compression.Int J Coal Sci Technol, 8(6): 1288–1301
https://doi.org/10.1007/s40789-021-00462-0
34 C R, Liu Y F, Tang H Q, Wang Z Q, Liu S, Yang C J, Li W T Jin (2022a). Comparison of life cycle performance of distributed energy system and conventional energy system for district heating and cooling in China.J Cent South U, 29(7): 2357–2376
https://doi.org/10.1007/s11771-022-5073-y
35 J, Liu L, Xie D, Elsworth Q Gan (2019a). CO2/CH4 competitive adsorption in shale: implications for enhancement in gas production and reduction in carbon emissions.Environ Sci Technol, 53(15): 9328–9336
https://doi.org/10.1021/acs.est.9b02432 pmid: 31318200
36 J, Liu Y, Yao D, Liu D Elsworth (2017). Experimental evaluation of CO2 enhanced recovery of adsorbed-gas from shale.Int J Coal Geol, 179: 211–218
https://doi.org/10.1016/j.coal.2017.06.006
37 K D Liu, Q S Liu, Y G Zhu(2013). Experimental study of coal considering directivity effect of bedding plane under Brazilian splitting and uniaxial compression. Chin J Rock Mech Eng, 32: 308–315 (in Chinese)
38 S M, Liu X L, Li D K, Wang D M Zhang (2021b). Experimental study on temperature response of different ranks of coal to liquid nitrogen soaking.Nat Resour Res, 30(2): 1467–1480
https://doi.org/10.1007/s11053-020-09768-3
39 X F, Liu B S Nie (2016). Fractal characteristics of coal samples utilizing image analysis and gas adsorption.Fuel, 182: 314–322
https://doi.org/10.1016/j.fuel.2016.05.110
40 X F, Liu D Z, Song X Q, He B S, Nie L K Wang (2019c). Insight into the macromolecular structural differences between hard coal and deformed soft coal.Fuel, 245: 188–197
https://doi.org/10.1016/j.fuel.2019.02.070
41 X F, Liu L K, Wang X G, Kong Z T, Ma B S, Nie D Z, Song T Yang (2022d). Role of pore irregularity in methane desorption capacity of coking coal.Fuel, 314: 123037
https://doi.org/10.1016/j.fuel.2021.123037
42 X F, Liu C L, Zhang B S, Nie C P, Zhang D Z, Song T, Yang Z T Ma (2022c). Mechanical response and mineral dissolution of anthracite induced by supercritical CO2 saturation: influence of saturation time.Fuel, 319: 123759
https://doi.org/10.1016/j.fuel.2022.123759
43 X, Liu D, Song X, He Z, Wang M, Zeng K Deng (2019b). Nanopore structure of deep-burial coals explored by AFM.Fuel, 246: 9–17
https://doi.org/10.1016/j.fuel.2019.02.090
44 Z Y, Liu G, Wang J Z, Li H X, Li H F, Zhao H W, Shi J L Lan (2022b). Water-immersion softening mechanism of coal rock mass based on split Hopkinson pressure bar experiment.Int J Coal Sci Technol, 9(1): 61
https://doi.org/10.1007/s40789-022-00532-x
45 Q, Ma Y L, Tan X S, Liu Z H, Zhao D Y, Fan L Purev (2021). Experimental and numerical simulation of loading rate effects on failure and strain energy characteristics of coal-rock composite samples.J Cent South U, 28(10): 3207–3222
https://doi.org/10.1007/s11771-021-4831-6
46 M, Mabuza K, Premlall M O Daramola (2022). Modelling and thermodynamic properties of pure CO2 and fue gas sorption data on South African coals using Langmuir, Freundlich, Temkin, and extended Langmuir isotherm models.Int J Coal Sci Technol, 9(1): 45
https://doi.org/10.1007/s40789-022-00515-y
47 A J, Mandile A C Hutton (1995). Quantitative X-ray diffraction analysis of mineral and organic phases in organic-rich rocks.Int J Coal Geol, 28(1): 51–69
https://doi.org/10.1016/0166-5162(95)00004-W
48 M S, Masoudian D W, Airey A El-Zein (2013). A chemo-poro-mechanical model for sequestration of carbon dioxide in coalbeds.Geotechnique, 63(3): 235–243
https://doi.org/10.1680/geot.SIP13.P.026
49 M S, Masoudian D W, Airey A El-Zein (2014). Experimental investigations on the effect of CO2 on mechanics of coal.Int J Coal Geol, 128–129: 12–23
https://doi.org/10.1016/j.coal.2014.04.001
50 P V, Nikolenko S A, Epshtein V L, Shkuratnik P S Anufrenkova (2021). Experimental study of coal fracture dynamics under the influence of cyclic freezing–thawing using shear elastic waves.Int J Coal Sci Technol, 8(4): 562–574
https://doi.org/10.1007/s40789-020-00352-x
51 Q H, Niu L W, Cao S X, Sang W, Wang X Z, Zhou W, Yuan Z M, Ji J F, Chang M Y Li (2021). Experimental study on the softening effect and mechanism of anthracite with CO2 injection.Int J Rock Mech Min Sci, 138: 104614
https://doi.org/10.1016/j.ijrmms.2021.104614
52 Q, Niu L, Cao S, Sang X, Zhou W, Wang W, Yuan Z M, Ji H C, Wang Y Nie (2020). Study on the anisotropic permeability in different rank coals under influences of supercritical CO2 adsorption and effective stress and its enlightenment for CO2 enhance coalbed methane recovery.Fuel, 262: 116515
https://doi.org/10.1016/j.fuel.2019.116515
53 O J, Omotilewa P, Panja C, Vega-Ortiz J McLennan (2021). Evaluation of enhanced coalbed methane recovery and carbon dioxide sequestration potential in high volatile bituminous coal.J Nat Gas Sci Eng, 91: 103979
https://doi.org/10.1016/j.jngse.2021.103979
54 Z J, Pan L D Connell (2007). A theoretical model for gas adsorption-induced coal swelling.Int J Coal Geol, 69(4): 243–252
https://doi.org/10.1016/j.coal.2006.04.006
55 M J, Patel E F, May M L Johns (2016). High-fidelity reservoir simulations of enhanced gas recovery with supercritical CO2.Energy, 111: 548–559
https://doi.org/10.1016/j.energy.2016.04.120
56 M S A, Perera P G, Ranjith D R Viete (2013). Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin.Appl Energy, 110: 73–81
https://doi.org/10.1016/j.apenergy.2013.03.069
57 P, Pfeiferper D Avnir (1983). Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces.J Chem Phys, 79(7): 3558–3565
https://doi.org/10.1063/1.446210
58 L M, Qiu Z T, Liu E Y, Wang X Q, He J J, Feng B L Li (2020). Early-warning of rock burst in coal mine by lowfrequency electromagnetic radiation.Eng Geol, 279: 105755
https://doi.org/10.1016/j.enggeo.2020.105755
59 A S, Ranathunga M S A, Perera P G, Ranjith H Bui (2016). Super-critical CO2 saturation-induced mechanical property alterations in low rank coal: an experimental study.J Supercrit Fluids, 109: 134–140
https://doi.org/10.1016/j.supflu.2015.11.010
60 P G, Ranjith M S A Perera (2012). Effects of cleat performance on strength reduction of coal in CO2 sequestration.Energy, 45(1): 1069–1075
https://doi.org/10.1016/j.energy.2012.05.041
61 A, Raza R, Gholami R, Rezaee V, Rasouli M Rabiei (2019). Significant aspects of carbon capture and storage – a review.Petroleum, 5(4): 335–340
https://doi.org/10.1016/j.petlm.2018.12.007
62 N P, Say M Yücel (2006). Energy consumption and CO2 emissions in Turkey: empirical analysis and future projection based on an economic growth.Energy Policy, 34(18): 3870–3876
https://doi.org/10.1016/j.enpol.2005.08.024
63 K S W, Sing D H, Everett R A W, Haul L, Moscou R A, Pierotti J, Rouquerol T Siemieniewska (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.Pure Appl Chem, 57(4): 603–619
https://doi.org/10.1351/pac198557040603
64 Agbodjan Y, Souley Z, Liu J, Wang C, Yue Z Luo (2022). Modeling and optimization of a multi-carrier renewable energy system for zero-energy consumption buildings.J Cent South U, 29(7): 2330–2345
https://doi.org/10.1007/s11771-022-5107-5
65 Z D, Sun G, Feng X M, Song T, Meng D F, Zhu Y M, Huo Z L Wang (2022). Effects of CO2 state and anisotropy on the progressive failure characteristics of bituminous coal: an experimental study. Chin J Rock Mech Eng, 41(11): 70–81 (in Chinese)
66 L H, Tan T, Ren X H, Yang X Q He (2018). A numerical simulation study on mechanical behaviour of coal with bedding planes under coupled static and dynamic load.Int J Min Sci Technol, 28(5): 791–797
https://doi.org/10.1016/j.ijmst.2018.08.009
67 P F Wu, W G Liang, M T Cao, J F Yang, L Li (2017). Experimental investigation on model I fracture characteristics of coal in different stratification orientation. Chin J Undergr Sp Eng.,13(Supp.2): 538–545 (in Chinese)
68 H, Yin J P, Zhou Y D, Jiang X F, Xian Q L Liu (2016). Physical and structural changes in shale associated with supercritical CO2 exposure.Fuel, 184: 289–303
https://doi.org/10.1016/j.fuel.2016.07.028
69 R, Zagorščak H R Thomas (2018). Effects of subcritical and supercritical CO2 sorption on deformation and failure of high-rank coals.Int J Coal Geol, 199: 113–123
https://doi.org/10.1016/j.coal.2018.10.002
70 G L, Zhang P G, Ranjith Z S, Li M Z, Gao Z Y Ma (2021a). Long-term effects of CO2-water-coal interactions on structural and mechanical changes of bituminous coal.J Petrol Sci Eng, 207: 109093
https://doi.org/10.1016/j.petrol.2021.109093
71 H, Zhang Z C, Hu Y, Xu X X, Fu W, Li D F Zhang (2021c). Impacts of long-term exposure to supercritical carbon dioxide on physicochemical properties and adsorption and desorption capabilities of moisture-equilibrated coals.Energy Fuels, 35(15): 12270–12287
https://doi.org/10.1021/acs.energyfuels.1c01152
72 Y B, Zhang X L, Yao P, Liang K X, Wang L, Sun B Z, Tian X X, Liu S Y Wang (2021b). Fracture evolution and localization effect of damage in rock based on wave velocity imaging technology.J Cent South U, 28(9): 2752–2769
https://doi.org/10.1007/s11771-021-4806-7
73 P, Zhao B, He B, Zhang J Liu (2022). Porosity of gas shale: is the NMR-based measurement reliable?.Petrol Sci, 19(2): 509–517
https://doi.org/10.1016/j.petsci.2021.12.013
74 Y X, Zhao S, Gong X J, Hao Y, Peng Y D Jiang (2017). Effects of loading rate and bedding on the dynamic fracture toughness of coal: laboratory experiments.Eng Fract Mech, 178: 375–391
https://doi.org/10.1016/j.engfracmech.2017.03.011
[1] Zhaohui LU, Ke LI, Xingbing LIU, Peng ZHAO, Jun LIU. Low-field NMR application in the characterization of CO2 geological storage and utilization related to shale gas reservoirs: a brief review[J]. Front. Earth Sci., 2023, 17(3): 739-751.
[2] Taotao YAN, Chao YANG, Shuai ZHENG, Yadong BAI, Wei CHEN, Yanfei LIU, Wenguang TIAN, Shasha SUN, Shangwen JIN, Jiahang WANG, Zhenxing LIU, Huifang YAO. Geochemical characteristics of produced fluids from CBM wells and their indicative significance for gas accumulation in Daning-Jixian block, Ordos Basin[J]. Front. Earth Sci., 2023, 17(3): 661-678.
[3] Ke ZHANG, Shuheng TANG, Zhaodong XI, Yapei YE. Quartz types, genesis and their geological significance within the Wufeng-Longmaxi Formation in north-western Hunan, China[J]. Front. Earth Sci., 2023, 17(2): 455-469.
[4] Fulai LI, Hao DIAO, Wenkuan MA, Maozhen WANG. Study of corrosion mechanism of dawsonite led by CO2 partial pressure[J]. Front. Earth Sci., 2022, 16(2): 465-482.
[5] Wanchun ZHAO, Xin LI, Tingting WANG, Xuehai FU. Pore size distribution of high volatile bituminous coal of the southern Junggar Basin: a full-scale characterization applying multiple methods[J]. Front. Earth Sci., 2021, 15(2): 237-255.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed