|
|
|
Effects of sub-/super-critical CO2 on the fracture-related mechanical characteristics of bituminous coal |
Zedong SUN1,3, Hongqiang XIE2( ), Gan FENG2, Xuanmin SONG1, Mingbo CHI4, Tao MENG5, Bole SUN6 |
1. Key Laboratory of In-situ Property Improving Mining (Ministry of Education), Taiyuan University of Technology, Taiyuan 030024, China 2. State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China 3. College of Coal Engineering, Shanxi Datong University, Datong 037003, China 4. State Key Laboratory of Water Resource Protection and Utilization in Coal Mining, Beijing 102200, China 5. School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China 6. China Railway Third Bureau Group Co., Ltd., Taiyuan 030001, China |
|
|
|
|
Abstract Injecting carbon dioxide CO2 into a coal seam is an important way to improve coalbed methane recovery and to store geological carbon. The fracture mechanical characteristics of bituminous coal determine the propagation and evolution of cracks, which directly affect CO2 storage in coal seams and the efficiency of resource recovery. This study applied CO2 adsorption and three-point bending fracture experiments using bituminous coal samples in a gaseous state (4 MPa), subcritical state (6 MPa), and supercritical state (8 and 12 MPa) to investigate the influence of CO2 state and anisotropy on the fracture-related mechanical response of bituminous coal. The results show that the change in mechanical properties caused by CO2 adsorption is CO2 state-dependent. The supercritical CO2 adsorption at 8 MPa causes the largest decrease in the mode-I fracture toughness (KIC), which is 63.6% lower than the toughness before CO2 adsorption. The instability characteristics of bituminous coal show the transformation trend of “sudden-gradual-sudden fracture”. With or without CO2 adsorption, the order of the KIC associated with three types of bituminous coal specimens is crack-divider type > crack-arrester type > crack-short transverse type. Phenomenologically, the fracture toughness of bituminous coal is positively correlated with its specific surface area and total pore volume; the toughness is negatively correlated with its average pore size.
|
| Keywords
energy development
CO2 geological storage
rock mechanics
bituminous coal
|
|
Corresponding Author(s):
Hongqiang XIE
|
|
Online First Date: 12 June 2023
Issue Date: 12 December 2023
|
|
| 1 |
E, Agartan L, Trevisan A, Cihan J, Birkholzer Q L, Zhou T H Illangasekare (2015). Experimental study on effects of geologic heterogeneity in enhancing dissolution trapping of supercritical CO2.Water Resour Res, 51(3): 1635–1648
https://doi.org/10.1002/2014WR015778
|
| 2 |
D, Avnir M Jaroniec (1989). An isotherm equation for adsorption on fractal surface of heterogeneous porous materials.Langmuir, 5(6): 1431–1433
https://doi.org/10.1021/la00090a032
|
| 3 |
S, Brunauer L S, Deming W S, Deming E Teller (1940). On a theory of the van der Waals adsorption of gases.J Am Chem Soc, 62(7): 1723–1732
https://doi.org/10.1021/ja01864a025
|
| 4 |
M R, Chandler P G, Meredith N, Brantut B R Crawford (2016). Fracture toughness anisotropy in shale.J Geophys Res Solid Earth, 121(3): 1706–1729
https://doi.org/10.1002/2015JB012756
|
| 5 |
P, Chareonsuppanimit S A, Mohammad R L, Robinson K A M Gasem (2014). Modeling gas-adsorption induced swelling and permeability changes in coals.Int J Coal Geol, 121: 98–109
https://doi.org/10.1016/j.coal.2013.11.009
|
| 6 |
K, Chen X F, Liu B S, Nie C P, Zhang D Z, Song L K, Wang T Yang (2022). Mineral dissolution and pore alteration of coal induced by interactions with supercritical CO2.Energy, 248: 123627
https://doi.org/10.1016/j.energy.2022.123627
|
| 7 |
T Y, Chen X T, Feng X W, Zhang W D, Cao C J Fu (2014). Experimental study on mechanical and anisotrpic propertiesof black shale. Chin J Rock Mech Eng, 33 (9): 1772–1779 (in Chinese)
|
| 8 |
L, Cheng D, Li W, Wang J Liu (2021). Heterogeneous transport of free CH4 and free CO2 in dual-porosity media controlled by anisotropic in situ stress during shale gas production by CO2 flooding: implications for CO2 geological storage and utilization.ACS Omega, 6(40): 26756–26765
https://doi.org/10.1021/acsomega.1c04220
pmid: 34661029
|
| 9 |
K, Czerw P, Baran J, Szczurowski K Zarębska (2021). Sorption and desorption of CO2 and CH4 in vitrinite- and inertinite-rich polish low-rank coal.Nat Resour Res, 30(1): 543–556
https://doi.org/10.1007/s11053-020-09715-2
|
| 10 |
I W, Farmer F D Pooley (1967). A hypothesis to explain the occurrence of outbursts in coal, based on a study of West Wales outburst coal.Int J Rock Mech Min Sci Geomech Abstr, 4(2): 189–193
https://doi.org/10.1016/0148-9062(67)90043-5
|
| 11 |
G, Feng Y, Kang F, Chen Y W, Liu X C Wang (2018). The influence of temperature on mixed-mode (I+II) and mode-II fracture toughness of sandstone.Eng Fract Mech, 189: 51–63
https://doi.org/10.1016/j.engfracmech.2017.07.007
|
| 12 |
G, Feng Y, Kang T, Meng Y Q, Hu X H Li (2017). The influence of temperature on mode I fracture toughness and fracture characteristics of sandstone.Rock Mech Rock Eng, 50(8): 2007–2019
https://doi.org/10.1007/s00603-017-1226-y
|
| 13 |
G, Feng Y, Kang Z D, Sun X C, Wang Y Q Hu (2019). Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale.Energy, 173: 870–882
https://doi.org/10.1016/j.energy.2019.02.069
|
| 14 |
G, Feng Y, Kang X C, Wang Y Q, Hu X H Li (2020c). Investigation on the failure characteristics and fracture classification of shale under Brazilian test conditions.Rock Mech Rock Eng, 53(7): 3325–3340
https://doi.org/10.1007/s00603-020-02110-6
|
| 15 |
G, Feng X C, Wang Y, Kang Z T Zhang (2020a). Effect of thermal cycling-dependent cracks on physical and mechanical properties of granite for enhanced geothermal system.Int J Rock Mech Min Sci, 134: 104476
https://doi.org/10.1016/j.ijrmms.2020.104476
|
| 16 |
G, Feng X C, Wang M, Wang Y Kang (2020b). Experimental investigation of thermal cycling effect on fracture characteristics of granite in a geothermal-energy reservoir.Eng Fract Mech, 235: 107180
https://doi.org/10.1016/j.engfracmech.2020.107180
|
| 17 |
M Z, Gao J, Xie Y N, Gao W Y, Wang C, Li B G, Yang J J, Liu H P Xie (2021). Mechanical behavior of coal under different mining rates: a case study from laboratory experiments to field testing.Int J Min Sci Technol, 31(5): 825–841
https://doi.org/10.1016/j.ijmst.2021.06.007
|
| 18 |
M Z, Gao J G, Zhang S W, Li M, Wang Y W, Wang P F Cui (2020). Calculating changes in fractal dimension of surface cracks to quantify how the dynamic loading rate affects rock failure in deep mining.J Cent South Univ, 27(10): 3013–3024
https://doi.org/10.1007/s11771-020-4525-5
|
| 19 |
P Y, Guo J, Gu Y, Su J, Wang Z W Ding (2021b). Effect of cyclic wetting–drying on tensile mechanical behavior and microstructure of clay-bearing sandstone.Int J Coal Sci Technol, 8(5): 956–968
https://doi.org/10.1007/s40789-020-00403-3
|
| 20 |
Y X, Guo Y H, Zhao S W, Wang G R, Feng Y J, Zhang H Y Ran (2021a). Stress-strain-acoustic responses in failure process of coal rock with different height to diameter ratios under uniaxial compression.J Cent South Univ, 28(6): 1724–1736
https://doi.org/10.1007/s11771-021-4729-3
|
| 21 |
S W, Hedges Y, Soong J R M, Jones D K, Harrison G, Irdi E, Frommell R, Dilmore C White (2007). Exploratory study of some potential environmental impacts of CO2 sequestration in unmineable coal seams.Int J Environ Pollut, 29(4): 457–473
https://doi.org/10.1504/IJEP.2007.014232
|
| 22 |
S, Heng C H, Yang Y T, Guo C Y, Wang L Wang (2015). Influence of bedding planes on hydraulic fracture propagationin shale formations. Chin J Rock Mech Eng, 34 (2): 228–237 (in Chinese)
|
| 23 |
L L, Hou X J, Liu L X, Liang J, Xiong P, Zhang B, Xie D Q Li (2020). Investigation of coal and rock geo-mechanical properties evaluation based on the fracture complexity and wave velocity.J Nat Gas Sci Eng, 75: 103133
https://doi.org/10.1016/j.jngse.2019.103133
|
| 24 |
J J, Hu H P, Xie Q, Sun C B, Li G K Liu (2021). Changes in the thermodynamic properties of alkaline granite after cyclic quenching following high temperature action.Int J Min Sci Technol, 31(5): 843–852
https://doi.org/10.1016/j.ijmst.2021.07.010
|
| 25 |
J F, Jin W, Yuan Y, Wu Z Q Guo (2020). Effects of axial static stress on stress wave propagation in rock considering porosity compaction and damage evolution.J Cent South Univ, 27(2): 592–607
https://doi.org/10.1007/s11771-020-4319-9
|
| 26 |
M, Kataoka Y, Obara M Kuruppu (2015). Estimation of fracture toughness of anisotropic rocks by semi-circular bend (SCB) tests under water vapor pressure.Rock Mech Rock Eng, 48(4): 1353–1367
https://doi.org/10.1007/s00603-014-0665-y
|
| 27 |
K P, Keboletse F, Ntuli O P Oladijo (2021). Influence of coal properties on coal conversion processes-coal carbonization, carbon fiber production, gasification and liquefaction technologies: a review.Int J Coal Sci Technol, 8(5): 817–843
https://doi.org/10.1007/s40789-020-00401-5
|
| 28 |
X G, Kong D, He X F, Liu E Y, Wang S G, Li T, Liu P F, Ji D Y, Deng S R Yang (2022). Strain characteristics and energy dissipation laws of gas-bearing coal during impact fracture process.Energy, 242: 123028
https://doi.org/10.1016/j.energy.2021.123028
|
| 29 |
M D, Kuruppu Y, Obara M R, Ayatollahi K P, Chong T Funatsu (2014). ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen.Rock Mech Rock Eng, 47(1): 267–274
https://doi.org/10.1007/s00603-013-0422-7
|
| 30 |
A Lampert (2019). Over-exploitation of natural resources is followed by inevitable declines in economic growth and discount rate.Nat Commun, 10(1): 1419
https://doi.org/10.1038/s41467-019-09246-2
pmid: 30926790
|
| 31 |
Y J, Li L H, Song Y J, Tang J P, Zuo D J Xue (2022). Evaluating the mechanical properties of anisotropic shale containing bedding and natural fractures with discrete element modeling.Int J Coal Sci Technol, 9(1): 18
https://doi.org/10.1007/s40789-022-00473-5
|
| 32 |
Z W, Liao X F, Liu D Z, Song X Q, He B S, Nie T, Yang L K Wang (2021). Micro-structural damage to coal induced by liquid CO2 phase change fracturing.Nat Resour Res, 30(2): 1613–1627
https://doi.org/10.1007/s11053-020-09782-5
|
| 33 |
B, Liu Y X, Zhao C, Zhang J L, Zhou Y T, Li Z Sun (2021a). Characteristic strength and acoustic emission properties of weakly cemented sandstone at different depths under uniaxial compression.Int J Coal Sci Technol, 8(6): 1288–1301
https://doi.org/10.1007/s40789-021-00462-0
|
| 34 |
C R, Liu Y F, Tang H Q, Wang Z Q, Liu S, Yang C J, Li W T Jin (2022a). Comparison of life cycle performance of distributed energy system and conventional energy system for district heating and cooling in China.J Cent South U, 29(7): 2357–2376
https://doi.org/10.1007/s11771-022-5073-y
|
| 35 |
J, Liu L, Xie D, Elsworth Q Gan (2019a). CO2/CH4 competitive adsorption in shale: implications for enhancement in gas production and reduction in carbon emissions.Environ Sci Technol, 53(15): 9328–9336
https://doi.org/10.1021/acs.est.9b02432
pmid: 31318200
|
| 36 |
J, Liu Y, Yao D, Liu D Elsworth (2017). Experimental evaluation of CO2 enhanced recovery of adsorbed-gas from shale.Int J Coal Geol, 179: 211–218
https://doi.org/10.1016/j.coal.2017.06.006
|
| 37 |
K D Liu, Q S Liu, Y G Zhu(2013). Experimental study of coal considering directivity effect of bedding plane under Brazilian splitting and uniaxial compression. Chin J Rock Mech Eng, 32: 308–315 (in Chinese)
|
| 38 |
S M, Liu X L, Li D K, Wang D M Zhang (2021b). Experimental study on temperature response of different ranks of coal to liquid nitrogen soaking.Nat Resour Res, 30(2): 1467–1480
https://doi.org/10.1007/s11053-020-09768-3
|
| 39 |
X F, Liu B S Nie (2016). Fractal characteristics of coal samples utilizing image analysis and gas adsorption.Fuel, 182: 314–322
https://doi.org/10.1016/j.fuel.2016.05.110
|
| 40 |
X F, Liu D Z, Song X Q, He B S, Nie L K Wang (2019c). Insight into the macromolecular structural differences between hard coal and deformed soft coal.Fuel, 245: 188–197
https://doi.org/10.1016/j.fuel.2019.02.070
|
| 41 |
X F, Liu L K, Wang X G, Kong Z T, Ma B S, Nie D Z, Song T Yang (2022d). Role of pore irregularity in methane desorption capacity of coking coal.Fuel, 314: 123037
https://doi.org/10.1016/j.fuel.2021.123037
|
| 42 |
X F, Liu C L, Zhang B S, Nie C P, Zhang D Z, Song T, Yang Z T Ma (2022c). Mechanical response and mineral dissolution of anthracite induced by supercritical CO2 saturation: influence of saturation time.Fuel, 319: 123759
https://doi.org/10.1016/j.fuel.2022.123759
|
| 43 |
X, Liu D, Song X, He Z, Wang M, Zeng K Deng (2019b). Nanopore structure of deep-burial coals explored by AFM.Fuel, 246: 9–17
https://doi.org/10.1016/j.fuel.2019.02.090
|
| 44 |
Z Y, Liu G, Wang J Z, Li H X, Li H F, Zhao H W, Shi J L Lan (2022b). Water-immersion softening mechanism of coal rock mass based on split Hopkinson pressure bar experiment.Int J Coal Sci Technol, 9(1): 61
https://doi.org/10.1007/s40789-022-00532-x
|
| 45 |
Q, Ma Y L, Tan X S, Liu Z H, Zhao D Y, Fan L Purev (2021). Experimental and numerical simulation of loading rate effects on failure and strain energy characteristics of coal-rock composite samples.J Cent South U, 28(10): 3207–3222
https://doi.org/10.1007/s11771-021-4831-6
|
| 46 |
M, Mabuza K, Premlall M O Daramola (2022). Modelling and thermodynamic properties of pure CO2 and fue gas sorption data on South African coals using Langmuir, Freundlich, Temkin, and extended Langmuir isotherm models.Int J Coal Sci Technol, 9(1): 45
https://doi.org/10.1007/s40789-022-00515-y
|
| 47 |
A J, Mandile A C Hutton (1995). Quantitative X-ray diffraction analysis of mineral and organic phases in organic-rich rocks.Int J Coal Geol, 28(1): 51–69
https://doi.org/10.1016/0166-5162(95)00004-W
|
| 48 |
M S, Masoudian D W, Airey A El-Zein (2013). A chemo-poro-mechanical model for sequestration of carbon dioxide in coalbeds.Geotechnique, 63(3): 235–243
https://doi.org/10.1680/geot.SIP13.P.026
|
| 49 |
M S, Masoudian D W, Airey A El-Zein (2014). Experimental investigations on the effect of CO2 on mechanics of coal.Int J Coal Geol, 128–129: 12–23
https://doi.org/10.1016/j.coal.2014.04.001
|
| 50 |
P V, Nikolenko S A, Epshtein V L, Shkuratnik P S Anufrenkova (2021). Experimental study of coal fracture dynamics under the influence of cyclic freezing–thawing using shear elastic waves.Int J Coal Sci Technol, 8(4): 562–574
https://doi.org/10.1007/s40789-020-00352-x
|
| 51 |
Q H, Niu L W, Cao S X, Sang W, Wang X Z, Zhou W, Yuan Z M, Ji J F, Chang M Y Li (2021). Experimental study on the softening effect and mechanism of anthracite with CO2 injection.Int J Rock Mech Min Sci, 138: 104614
https://doi.org/10.1016/j.ijrmms.2021.104614
|
| 52 |
Q, Niu L, Cao S, Sang X, Zhou W, Wang W, Yuan Z M, Ji H C, Wang Y Nie (2020). Study on the anisotropic permeability in different rank coals under influences of supercritical CO2 adsorption and effective stress and its enlightenment for CO2 enhance coalbed methane recovery.Fuel, 262: 116515
https://doi.org/10.1016/j.fuel.2019.116515
|
| 53 |
O J, Omotilewa P, Panja C, Vega-Ortiz J McLennan (2021). Evaluation of enhanced coalbed methane recovery and carbon dioxide sequestration potential in high volatile bituminous coal.J Nat Gas Sci Eng, 91: 103979
https://doi.org/10.1016/j.jngse.2021.103979
|
| 54 |
Z J, Pan L D Connell (2007). A theoretical model for gas adsorption-induced coal swelling.Int J Coal Geol, 69(4): 243–252
https://doi.org/10.1016/j.coal.2006.04.006
|
| 55 |
M J, Patel E F, May M L Johns (2016). High-fidelity reservoir simulations of enhanced gas recovery with supercritical CO2.Energy, 111: 548–559
https://doi.org/10.1016/j.energy.2016.04.120
|
| 56 |
M S A, Perera P G, Ranjith D R Viete (2013). Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin.Appl Energy, 110: 73–81
https://doi.org/10.1016/j.apenergy.2013.03.069
|
| 57 |
P, Pfeiferper D Avnir (1983). Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces.J Chem Phys, 79(7): 3558–3565
https://doi.org/10.1063/1.446210
|
| 58 |
L M, Qiu Z T, Liu E Y, Wang X Q, He J J, Feng B L Li (2020). Early-warning of rock burst in coal mine by lowfrequency electromagnetic radiation.Eng Geol, 279: 105755
https://doi.org/10.1016/j.enggeo.2020.105755
|
| 59 |
A S, Ranathunga M S A, Perera P G, Ranjith H Bui (2016). Super-critical CO2 saturation-induced mechanical property alterations in low rank coal: an experimental study.J Supercrit Fluids, 109: 134–140
https://doi.org/10.1016/j.supflu.2015.11.010
|
| 60 |
P G, Ranjith M S A Perera (2012). Effects of cleat performance on strength reduction of coal in CO2 sequestration.Energy, 45(1): 1069–1075
https://doi.org/10.1016/j.energy.2012.05.041
|
| 61 |
A, Raza R, Gholami R, Rezaee V, Rasouli M Rabiei (2019). Significant aspects of carbon capture and storage – a review.Petroleum, 5(4): 335–340
https://doi.org/10.1016/j.petlm.2018.12.007
|
| 62 |
N P, Say M Yücel (2006). Energy consumption and CO2 emissions in Turkey: empirical analysis and future projection based on an economic growth.Energy Policy, 34(18): 3870–3876
https://doi.org/10.1016/j.enpol.2005.08.024
|
| 63 |
K S W, Sing D H, Everett R A W, Haul L, Moscou R A, Pierotti J, Rouquerol T Siemieniewska (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity.Pure Appl Chem, 57(4): 603–619
https://doi.org/10.1351/pac198557040603
|
| 64 |
Agbodjan Y, Souley Z, Liu J, Wang C, Yue Z Luo (2022). Modeling and optimization of a multi-carrier renewable energy system for zero-energy consumption buildings.J Cent South U, 29(7): 2330–2345
https://doi.org/10.1007/s11771-022-5107-5
|
| 65 |
Z D, Sun G, Feng X M, Song T, Meng D F, Zhu Y M, Huo Z L Wang (2022). Effects of CO2 state and anisotropy on the progressive failure characteristics of bituminous coal: an experimental study. Chin J Rock Mech Eng, 41(11): 70–81 (in Chinese)
|
| 66 |
L H, Tan T, Ren X H, Yang X Q He (2018). A numerical simulation study on mechanical behaviour of coal with bedding planes under coupled static and dynamic load.Int J Min Sci Technol, 28(5): 791–797
https://doi.org/10.1016/j.ijmst.2018.08.009
|
| 67 |
P F Wu, W G Liang, M T Cao, J F Yang, L Li (2017). Experimental investigation on model I fracture characteristics of coal in different stratification orientation. Chin J Undergr Sp Eng.,13(Supp.2): 538–545 (in Chinese)
|
| 68 |
H, Yin J P, Zhou Y D, Jiang X F, Xian Q L Liu (2016). Physical and structural changes in shale associated with supercritical CO2 exposure.Fuel, 184: 289–303
https://doi.org/10.1016/j.fuel.2016.07.028
|
| 69 |
R, Zagorščak H R Thomas (2018). Effects of subcritical and supercritical CO2 sorption on deformation and failure of high-rank coals.Int J Coal Geol, 199: 113–123
https://doi.org/10.1016/j.coal.2018.10.002
|
| 70 |
G L, Zhang P G, Ranjith Z S, Li M Z, Gao Z Y Ma (2021a). Long-term effects of CO2-water-coal interactions on structural and mechanical changes of bituminous coal.J Petrol Sci Eng, 207: 109093
https://doi.org/10.1016/j.petrol.2021.109093
|
| 71 |
H, Zhang Z C, Hu Y, Xu X X, Fu W, Li D F Zhang (2021c). Impacts of long-term exposure to supercritical carbon dioxide on physicochemical properties and adsorption and desorption capabilities of moisture-equilibrated coals.Energy Fuels, 35(15): 12270–12287
https://doi.org/10.1021/acs.energyfuels.1c01152
|
| 72 |
Y B, Zhang X L, Yao P, Liang K X, Wang L, Sun B Z, Tian X X, Liu S Y Wang (2021b). Fracture evolution and localization effect of damage in rock based on wave velocity imaging technology.J Cent South U, 28(9): 2752–2769
https://doi.org/10.1007/s11771-021-4806-7
|
| 73 |
P, Zhao B, He B, Zhang J Liu (2022). Porosity of gas shale: is the NMR-based measurement reliable?.Petrol Sci, 19(2): 509–517
https://doi.org/10.1016/j.petsci.2021.12.013
|
| 74 |
Y X, Zhao S, Gong X J, Hao Y, Peng Y D Jiang (2017). Effects of loading rate and bedding on the dynamic fracture toughness of coal: laboratory experiments.Eng Fract Mech, 178: 375–391
https://doi.org/10.1016/j.engfracmech.2017.03.011
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|