Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (2) : 514-526    https://doi.org/10.1007/s11707-022-1027-9
RESEARCH ARTICLE
Study on fracture characteristics in coal and shale for coal-measure gas reservoir based on 3D CT reconstruction and fractal features
Huijun WANG1, Shangbin CHEN1,2(), Shaojie ZHANG1,2, Chengxing ZHANG3, Yang WANG1,2, Gaofeng YI1, Yixuan PENG1
1. School of Resources and Geoscience, China University of Mining and Technology, Xuzhou 221116, China
2. Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process (the Ministry of Education), China University of Mining and Technology, Xuzhou 221116, China
3. School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou 510275, China
 Download: PDF(7668 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pores and fractures are important components of flow channels in coal-measure gas reservoirs. While considerable studies have been conducted on pore structure evolution, very few studies have investigated the fracture distribution and self-similarity characteristics. To reveal the characteristics of fracture distribution in coal and shale reservoirs, computed tomography studies were performed on 15 coal and shale samples from the Shanxi and Taiyuan formations. The results show that the fracture distribution of samples of the same lithology differs significantly, and the fracture distribution heterogeneity of shale samples is much higher than that of coal samples. In shale, the heterogeneity of fracture distribution is mainly caused by pores and fractures smaller than 2 μm in the z-direction, with relatively little contributions from pores and fractures in the x and y directions. However, the heterogeneity of fracture distribution in coal is mainly controlled by pores and fractures larger than 2 μm in all directions, and the difference between the three directions is minor. It was shown that a great number of microscopic pores and fractures contribute to the highest fractions of porosity in different lithological samples. This method is useful for determining the fracture distribution characteristics in shale and coal-measure gas reservoir.

Keywords pore-fracture system      fracture distribution      directionality      heterogeneity      CT experiment      coal-measure gas reservoirs     
Corresponding Author(s): Shangbin CHEN   
Online First Date: 12 June 2023    Issue Date: 04 August 2023
 Cite this article:   
Huijun WANG,Shangbin CHEN,Shaojie ZHANG, et al. Study on fracture characteristics in coal and shale for coal-measure gas reservoir based on 3D CT reconstruction and fractal features[J]. Front. Earth Sci., 2023, 17(2): 514-526.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1027-9
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I2/514
Fig.1  Structural outline diagram (a) and sampling formation (b). (a) Formation geological period of each structural trace; (b) sampling locations of coal and shale samples used in this study.
Sample ID TOC/% Mass fraction/% Atomic ratio Type
C H O H/C O/C
Y-10 3.5 54.8 2.10 3.80 0.460 0.052 III
Y-11 3.5 70.7 2.60 3.80 0.441 0.040 III
Y-12 4.8 45.5 1.70 2.50 0.448 0.041 III
Y-13 3.2 46.7 1.80 3.10 0.463 0.050 III
Y-14 3.2 64.5 2.50 3.50 0.465 0.041 III
Y-15 3.3 68.5 2.50 3.70 0.438 0.041 III
Tab.1  Element composition and type identification of kerogen in shale samples
Sample ID Lithology TOC Depth/m Resolution/μm ROI number of voxels
Y-1 Coal 83.1 1406.2 1.4546 372 × 368 × 643
Y-2 Coal 85.3 1416.5 1.8989 389 × 327 × 715
Y-3 Coal 89.2 1426.3 1.9352 200 × 200 × 600
Y-4 Coal 80.8 1462.0 1.5495 478 × 406 × 815
Y-5 Coal 84.3 1440.5 1.8989 350 × 350 × 874
Y-6 Coal 82.4 1451.3 1.8989 450 × 450 × 750
Y-7 Coal 85.7 1402.8 1.5578 383 × 418 × 988
Y-8 Coal 90.1 1411.3 1.9102 205 × 197 × 523
Y-9 Coal 86.3 1419.8 2.4006 289 × 281 × 915
Y-10 Shale 3.5 2240.7 15.0897 371 × 394 × 460
Y-11 Shale 3.5 2240.7 15.0897 619 × 611 × 1347
Y-12 Shale 4.8 2239.3 15.3368 743 × 762 × 1039
Y-13 Shale 3.2 2219.2 15.0897 945 × 824 × 944
Y-14 Shale 3.2 2219.2 15.0897 372 × 368 × 643
Y-15 Shale 3.3 1458.3 15.9024 344 × 346 × 506
Tab.2  Voxel resolution and model volume information table
Fig.2  Schematic diagram of the sample and data processing flow. After the sample has undergone (a) fracture segmentation, (b) 3D model construction, (c) fracture parameter extraction and (d) binary data extraction, the obtained data are input into the CTSTA script for calculation, and the output file contains the pores and cracks required for our analysis and their fractal dimension information.
Fig.3  Schematic diagram of box-counting dimension division. The extracted ROI is divided into cubes with different side lengths for calculation.
Fig.4  Schematic diagram of pore and fracture visualization process and result display. The CT processing process of the sample includes (a) selecting the ROI; (b) extracting mineral components; (c) extracting pores and cracks; and (d) rendering pores and cracks.
Fig.5  Porosity contribution and porosity accumulation curve in the x, y, z directions.
Fig.6  Porosity component and its cumulative pore radius component.
Y-1 Y-2 Y-3 Y-4 Y-5
Fractal dimension Fractal dimension Fractal dimension Fractal dimension Fractal dimension
2.20268 2.44193 2.13249 2.27559 2.52048
log(1/ε) logN(ε) log(1/ε) logN(ε) log(1/ε) logN(ε) log(1/ε) logN(ε) log(1/ε) logN(ε)
−1.9758 4.23411 −0.49584 2.70805 −0.75139 2.63906 −0.86436 1.38629 −2.59803 5.45104
−2.1881 4.85981 −0.54759 2.83321 −1.09676 3.55535 −1.52413 2.83321 −2.82802 6.07074
−2.2817 5.0689 −0.7749 3.43399 −1.35 4.06044 −1.80838 3.49651 −3.02537 6.6107
−2.436 5.41165 −0.9847 3.91202 −1.5334 4.36945 −2.12369 4.11087 −3.16202 6.97354
−2.6986 5.96871 −1.03229 4.00733 −1.538 4.38203 −2.34382 4.67283 −3.46478 7.75662
−2.8196 6.21461 −1.6052 4.58497 −2.66528 5.45104 −3.70908 8.37931
−2.8243 6.22851 −1.80205 4.96981 −2.86699 5.93754 −3.93529 8.93879
−3.019 6.55962 −1.80236 4.97673 −2.98796 6.2106 −4.08995 9.31344
−1.9664 5.26269 −3.03427 6.27099 −4.37803 9.87473
Y-6 Y-7 Y-8 Y-9 Y-10
Fractal dimension Fractal dimension Fractal dimension Fractal dimension Fractal dimension
2.01242 2.74387 2.43728 2.45474 2.60968
log(1/ε) logN(ε) log(1/ε) logN(ε) log(1/ε) logN(ε) log(1/ε) logN(ε) log(1/ε) logN(ε)
−1.85925 4.17439 −0.99414 2.99573 −0.34269 2.19722 −0.9459 2.07944 −4.56691 7.99092
−2.11702 4.81218 −1.28118 3.71357 −0.66645 2.94444 −1.41993 3.17805 −4.66386 8.28853
−2.30659 5.21494 −1.45333 4.15888 −0.81245 3.3322 −1.56089 3.7612 −4.78789 8.64611
−2.42509 5.52943 −1.5206 4.34381 −0.94892 3.61092 −1.73194 4.2485 −4.87829 8.90788
−2.59682 5.95064 −1.67089 4.80402 −1.01819 3.82864 −1.94841 4.7362 −4.9879 9.20774
−2.82094 6.34739 −1.85081 5.34711 −1.09491 3.97029 −2.17525 5.22575 −5.12605 9.54438
−3.22038 6.86276 −1.99216 5.68698 −1.21777 4.29046 −2.32524 5.53733 −5.23066 9.77985
−1.33169 4.65396 −2.51257 5.83481 −5.35172 10.02796
−1.41787 4.77912
Y-11 Y-12 Y-13 Y-14 Y-15
Fractal dimension Fractal dimension Fractal dimension Fractal dimension Fractal dimension
2.61626 2.39535 2.75558 2.89323 2.19326
log(1/ε) logN(ε) log(1/ε) logN(ε) log(1/ε) logN(ε) log(1/ε) logN(ε) log(1/ε) logN(ε)
−1.62587 2.48491 −0.48652 1.38629 −4.29255 7.29912 −3.9649 6.43615 −1.18446 5.31321
−2.12201 3.52636 −1.10673 2.89037 −4.35831 7.58528 −3.96595 6.44731 −1.41969 6.3081
−2.44392 4.35671 −1.34144 3.3673 −4.37327 7.64779 −3.97124 6.4552 −1.6145 7.05618
−2.66628 4.97673 −1.60714 4.04305 −4.55733 8.36939 −3.97709 6.47389 −1.73443 7.46107
−2.81491 5.47227 −1.76709 4.40672 −4.57658 8.44741 −3.98245 6.49224 −1.9163 8.00169
−2.93916 5.86079 −1.90508 4.72739 −5.01464 9.49582 −3.98944 6.50578 −2.22405 8.55082
−3.09533 6.29895 −2.07776 5.15906 −5.19216 9.6303 −3.99269 6.52062 −2.53818 8.80387
−3.24189 6.62804 −2.17507 5.4161 −5.28837 9.67263 −3.99758 6.53524 −2.80462 8.97487
−3.42898 6.99760
Tab.3  The number of grids and the logarithm of grid side length
Fig.7  Fitting results of fracture fractal dimensions.
Fig.8  The 3D scatter plot of sample burial depth, porosity and fracture fractal dimension.
Fig.9  Variation trends of fractal dimension and porosity for coal and shale samples.
1 J, Chen W, Cheng G, Wang H M Li (2022). Effect of dominated coal pores and fractures on water migration after low-pressure water injection based on CT images.Fuel, 307: 121795
https://doi.org/10.1016/j.fuel.2021.121795
2 X J, Chen G Q, Yao J C, Cai Y T, Huang X Q Yuan (2017). Fractal and multifractal analysis of different hydraulic flow units based on micro-CT images.J Nat Gas Sci Eng, 48: 145–156
https://doi.org/10.1016/j.jngse.2016.11.048
3 X H, Fu Y, Qin G, Wang V Rudolph (2009). Evaluation of coal structure and permeability with the aid of geophysical logging technology.Fuel, 88(11): 2278–2285
https://doi.org/10.1016/j.fuel.2009.05.018
4 L Guo, Z Ru, X U Xiao-Lian, Y F Zhang (2015). CT image reconstruction of coal rock three-dimensional fractures and body fractal dimension under triaxial compression test. Rock Soil Mech, 36(6): 1633–1642 (in Chinese)
5 P, Hou X, Liang Y, Zhang J, He F, Gao J Liu (2021). 3D multi-scale reconstruction of fractured shale and influence of fracture morphology on shale gas flow.Nat Resour Res, 30(3): 2463–2481
https://doi.org/10.1007/s11053-021-09861-1
6 S, Karimpouli P, Tahmasebi H L Ramandi (2020). A review of experimental and numerical modeling of digital coalbed methane: imaging, segmentation, fracture modeling and permeability prediction.Int J Coal Geol, 228: 103552
https://doi.org/10.1016/j.coal.2020.103552
7 X Y, Li S B, Chen Y W, Wang Y K, Zhang Y, Wang J F, Wu J J, Zhang J Khan (2022). Influence of pore structure particularity and pore water on the occurrence of deep shale gas: Wufeng–Longmaxi Formation, Luzhou Block, Sichuan Basin.Nat Resour Res, 31(3): 1403–1423
https://doi.org/10.1007/s11053-022-10041-y
8 J, Liu G G, Pereira Q B, Liu K Regenauer-Lieb (2016). Computational challenges in the analyses of petrophysics using microtomography and upscaling: a review.Comput Geosci, 89: 107–117
https://doi.org/10.1016/j.cageo.2016.01.014
9 J Liu, K Regenauer-Lieb, C Hines, S Zhang, P Bourke, F Fusseis, D A Yuan (2013). Applications of Microtomography to Multiscale System Dynamics: Visual-isation, Characterisation and High-performance Computation. Berlin: Springer, 653–674
10 W, Liu G, Wang D Y, Han H, Xu X Y Chu (2021). Accurate characterization of coal pore and fissure structure based on CT 3D reconstruction and NMR.J Nat Gas Sci Eng, 96: 104242
https://doi.org/10.1016/j.jngse.2021.104242
11 X J, Liu J, Xiong L X Liang (2015). Investigation of pore structure and fractal characteristics of organic-rich Yanchang formation shale in central China by nitrogen adsorption/desorption analysis.J Nat Gas Sci Eng, 22: 62–72
https://doi.org/10.1016/j.jngse.2014.11.020
12 P W, Mou J N, Pan K, Wang J, Wei Y H, Yang X L Wang (2021). Influences of hydraulic fracturing on microfractures of high-rank coal under different in-situ stress conditions.Fuel, 287: 119566
https://doi.org/10.1016/j.fuel.2020.119566
13 X M, Ni W X, Chen Z Y, Li X Gao (2017a). Reconstruction of different scales of pore-fractures network of coal reservoir and its permeability prediction with Monte Carlo method.Int J Min Sci Technol, 27(4): 693–699
https://doi.org/10.1016/j.ijmst.2017.05.021
14 X M, Ni J, Miao R S, Lv X Y Lin (2017b). Quantitative 3D spatial characterization and flow simulation of coal macropores based on μCT technology.Fuel, 200: 199–207
https://doi.org/10.1016/j.fuel.2017.03.068
15 B S, Nie X F, Liu L L, Yang J Q, Meng X C Li (2015). Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy.Fuel, 158: 908–917
https://doi.org/10.1016/j.fuel.2015.06.050
16 Z J, Pan K, Wang Q L, Hou Q H, Niu H T, Wang Z M Ji (2016). Micro-pores and fractures of coals analyzed by field emission scanning electron microscopy and fractal theory.Fuel, 164: 277–285
https://doi.org/10.1016/j.fuel.2015.10.011
17 Y Qin, T A Moore, J Shen, Z B Yang, Y L Shen, G Wang (2018). Resources and geology of coalbed methane in China: a review. Int Geol Rev, 60(5–6): 777–812
https://doi.org/10.1080/00206814.2017.1408034
18 H, Safari M, Faramarzi-Palangar S M H, Hashemi O, Neisarifam B Sedaee (2022). A new approach to 3D saturation height modeling by coupling a capillary pressure model with pore throat size distribution.Nat Resour Res, 31(2): 1045–1059
https://doi.org/10.1007/s11053-022-10012-3
19 A, Salmachi M Haghighi (2012). Temperature effect on methane sorption and diffusion in coal: application for thermal recovery from coal seam gas reservoirs.APPEA J, 52(1): 291–300
https://doi.org/10.1071/AJ11021
20 A, Salmachi M, Rajabi P, Reynolds Z, Yarmohammadtooski C Wainman (2016). The effect of magmatic intrusions on coalbed methane reservoir characteristics: a case study from the Hoskissons coalbed, Gunnedah Basin, Australia.Int J Coal Geol, 165: 278–289
https://doi.org/10.1016/j.coal.2016.08.025
21 A, Salmachi M, Rajabi C, Wainman S, Mackie P, Mccabe B, Camac C Clarkson (2021). History, geology, in situ stress pattern, gas content and permeability of coal seam gas basins in Australia: a review.Energies, 14(9): 2651
https://doi.org/10.3390/en14092651
22 X H, Shi J N, Pan Q L, Hou Y, Jin Z Z, Wang Q H, Niu M Li (2018). Micrometer-scale fractures in coal related to coal rank based on micro-CT scanning and fractal theory.Fuel, 212: 162–172
https://doi.org/10.1016/j.fuel.2017.09.115
23 X B, Su F, Li L N, Su Q Wang (2020). The experimental study on integrated hydraulic fracturing of coal measures gas reservoirs.Fuel, 270: 117527
https://doi.org/10.1016/j.fuel.2020.117527
24 Y F, Sun Y X, Zhao L Yuan (2018). Quantifying nano-pore heterogeneity and anisotropy in gas shale by synchrotron radiation nano-CT.Microporous Mesoporous Mater, 258: 8–16
https://doi.org/10.1016/j.micromeso.2017.08.049
25 G, Wang D Y, Han C H, Jiang Z Y Zhang (2020a). Seepage characteristics of fracture and dead-end pore structure in coal at micro-and meso-scales.Fuel, 266: 117058
https://doi.org/10.1016/j.fuel.2020.117058
26 G, Wang D Y, Han X J, Qin Z, Liu J F Liu (2020b). A comprehensive method for studying pore structure and seepage characteristics of coal mass based on 3D CT reconstruction and NMR.Fuel, 281: 118735
https://doi.org/10.1016/j.fuel.2020.118735
27 M, Wang H T, Xue S S, Tian R W T, Wilkins A W Wang (2015). Fractal characteristics of upper Cretaceous lacustrine shale from the Songliao Basin, NE China.Mar Pet Geol, 67: 144–153
https://doi.org/10.1016/j.marpetgeo.2015.05.011
28 X L, Wang J N, Pan K, Wang P W, Mou J X Li (2022a). Fracture variation in high-rank coal induced by hydraulic fracturing using X-ray computer tomography and digital volume correlation.Int J Coal Geol, 252: 103942
https://doi.org/10.1016/j.coal.2022.103942
29 Z K, Wang F, Gao C Z, Cai S J, Su M L Du (2022b). Study on coal seam damage caused by liquid nitrogen under different ground temperature conditions.J Energy Resour Technol, 144(7): 072302
https://doi.org/10.1115/1.4052414
30 Z Z, Wang J N, Pan Q L, Hou B S, Yu M, Li Q H Niu (2018). Anisotropic characteristics of low-rank coal fractures in the Fukang mining area, China.Fuel, 211: 182–193
https://doi.org/10.1016/j.fuel.2017.09.067
31 H P Xie (1996). Fractal-Introduction to Rock Mechanics. Beijing: Science Press
32 S, Xu Z, Yang S, Wu L, Wang W, Wei F, Yang J Cai (2022). Fractal analysis of pore structure differences between shale and sandstone based on the nitrogen adsorption method.Nat Resour Res, 31(3): 1759–1773
https://doi.org/10.1007/s11053-022-10056-5
33 Y B, Yao D M, Liu Y D, Cai J Q Li (2010). Advanced characterization of pores and fractures in coals by nuclear magnetic resonance and X-ray computed tomography.Sci China Earth Sci, 53(6): 854–862
https://doi.org/10.1007/s11430-010-0057-4
34 Z, Yarmohammadtooski A, Salmachi A, White M Rajabi (2017). Fluid flow characteristics of Bandanna Coal Formation: a case study from the Fairview Field, eastern Australia.Aust J Earth Sci, 64(3): 319–333
https://doi.org/10.1080/08120099.2017.1292316
35 Q B, Zang C L, Liu R S, Awan X Y, Yang Z D, Lu G X, Li Y P, Wu D H, Feng Y Ran (2022). Comparison of pore size distribution, heterogeneity and occurrence characteristics of movable fluids of tight oil reservoirs formed in different sedimentary environments: a case study of the Chang 7 Member of Ordos Basin, China.Nat Resour Res, 31(1): 415–442
https://doi.org/10.1007/s11053-021-09986-3
36 J J, Zhang C T, Wei G Y, Yan G W Lu (2019). Structural and fractal characterization of adsorption pores of middle–high rank coal reservoirs in western Yunnan and eastern Guizhou: an experimental study of coals from the Panguan syncline and Laochang anticline.Energy Explor Exploit, 37(1): 251–272
https://doi.org/10.1177/0144598718790319
37 S J, Zhang Q, Sang M Z Dong (2021). Experimental study of pressure sensitivity in shale rocks: effects of pore shape and gas slippage.J Nat Gas Sci Eng, 89: 103885
https://doi.org/10.1016/j.jngse.2021.103885
38 X D, Zhang Z G, Du P P Li (2017). Physical characteristics of high-rank coal reservoirs in different coal-body structures and the mechanism of coalbed methane production.Sci China Earth Sci, 60(2): 246–255
https://doi.org/10.1007/s11430-016-5178-y
39 J L, Zhao H, Xu D Z, Tang J P, Mathews S, Li S Tao (2016). Coal seam porosity and fracture heterogeneity of macrolithotypes in the Hancheng Block, eastern margin, Ordos Basin, China.Int J Coal Geol, 159: 18–29
https://doi.org/10.1016/j.coal.2016.03.019
40 Y X, Zhao Y F, Sun S M, Liu Z W, Chen L Yuan (2018). Pore structure characterization of coal by synchrotron radiation nano-CT.Fuel, 215: 102–110
https://doi.org/10.1016/j.fuel.2017.11.014
[1] Qifeng JIA, Dameng LIU, Yidong CAI, Xianglong FANG, Lijing LI. Petrophysics characteristics of coalbed methane reservoir: a comprehensive review[J]. Front. Earth Sci., 2021, 15(2): 202-223.
[2] Yu LIU,Zhan-Ming CHEN,Hongwei XIAO,Wei YANG,Danhe LIU,Bin CHEN. Driving factors of carbon dioxide emissions in China: an empirical study using 2006--2010 provincial data[J]. Front. Earth Sci., 2017, 11(1): 156-161.
[3] Lianchong LI,Shaohua LI,Chun’an TANG. Fracture spacing behavior in layered rocks subjected to different driving forces: a numerical study based on fracture infilling process[J]. Front. Earth Sci., 2014, 8(4): 472-489.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed