Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (3) : 818-831    https://doi.org/10.1007/s11707-022-1034-x
RESEARCH ARTICLE
Study on in situ stress testing method based on Kaiser effect of acoustic emission and COMSOL simulation
Chenyu WANG1,2, Dongming ZHANG1,2(), Shujian LI3,4, Yu CHEN1,2, Chongyang WANG1,2, Kangde REN1,2
1. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
2. School of Resources and Safety Engineering, Chongqing University, Chongqing 400044, China
3. Yunnan Phosphate Chemical Group Co., Ltd., Kunming 650600, China
4. National Engineering and Technology Research Center for Development and Utilization of Phosphate Resources, Kunming 650600, China
 Download: PDF(7565 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In situ stress testing can improve the safety and efficiency of coal mining. Identifying the Kaiser effect point is vital for in situ stress calculations; however, the in situ stress calculation is limited by the rock sampling angle. Here, the Kaiser effect point identification theory is established and applied to the Xuyong Coal Mine. Uniaxial compression and acoustic emission experiments were carried out on sandstone with 6 sampling directions. Furthermore, COMSOL simulation is applied to study the in situ stress distribution in the coal mine to verify the calculation accuracy. The results are as follows. 1) The failure mode of non-bedded and vertical-bedded rocks is primarily tensile shear failure with obvious brittleness in mechanical and acoustic emission characteristics. Shear slip along the bedding plane is the primary failure mode of inclined-bedded rock. Additional take-off points exist in the AE count curve. 2) The Kaiser point identification method based on the variation of AE count curve parameters Δti and τi can effectively calculate the in situ stress. According to the numerical value of Kaiser point and sampling direction, the in situ stress of the conveyor roadway in the Xuyong Coal Mine was calculated as σ1=22.81M Pa, σ 2=10.87M Pa and σ 3=6.14M Pa. 3) By the COMSOL simulation study, it was found that a stress concentration zone of 16.13 MPa exists near the two sides roadway. Compared with the Kaiser effect method, the deviation rates of the three-direction principal stress calculated by COMSOL were all less than 5%. This verifies that the in situ stress calculation by Kaiser effect in this study can be applied to the Xuyong Coal Mine.

Keywords Kaiser effect point      in-situ stress calculation      Xuyong Coal Mine      uniaxial compression      acoustic emission      COMSOL simulation     
Corresponding Author(s): Dongming ZHANG   
Online First Date: 03 August 2023    Issue Date: 12 December 2023
 Cite this article:   
Chenyu WANG,Dongming ZHANG,Shujian LI, et al. Study on in situ stress testing method based on Kaiser effect of acoustic emission and COMSOL simulation[J]. Front. Earth Sci., 2023, 17(3): 818-831.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1034-x
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I3/818
Fig.1  Acoustic emission AE counts with take-off points (referring to rock sample with an angle Y55Z).
Fig.2  Stress distribution of tetrahedron.
Fig.3  Stress distribution of plane OXY.
Fig.4  Sampling and processing of rock specimens. (a) Rock specimens sampling site; (b) schematic diagram of field sampling; (c) specimens sampling directions; (d) Sample preparation process.
Fig.5  Experimental equipment and principle. (a) Overall view of the equipment; (b) schematic diagram of the equipment.
Fig.6  Strain-stress curves of rock in 6 directions.
Fig.7  Kaiser point discrimination based on curves of time, stress, and cumulative AE count. (a) Axis X; (b) Axis Y; (c) Axis Z; (d) X40 Y; (e) Y55 Z; (f) X30 Z.
Fig.8  Kaiser point discrimination basis based on curves of time, stress, Δti and τi of rock specimens. (a) Axis X; (b) Axis Y; (c) Axis Z; (d) X40 Y; (e) Y55 Z; (f) X30 Z.
Fig.9  Geometric physical model construction. (a) Meshing; (b) boundary condition.
Fig.10  Three principal stress distribution nephogram. (a) Maximum principal stress (σ1); (b) Intermediate principal stress (σ2); (c) Minimum principal stress (σ3); (d) Principal stress difference (σ1 σ 3).
Fig.11  Three principal stresses at the monitoring line. (a) X monitoring line; (b) Z monitoring line.
Physical parameters X-axis Y-axis Z-axis X40Y Y55Z X30Z
Length/mm 100.1 100.0 99.9 100.0 99.8 100.1
Diameter/mm 49.9 50.0 50.0 49.9 50.1 49.9
Quality/g 495.47 488.32 495.09 487.74 493.03 402.09
Density/(g·cm−3) 2.531 2.487 2.524 2.494 2.506 2.054
  The physical parameters of rock samples
Drilling direction of rock specimen Time/s Δti/s τi/(° ) Stress/MPa
X-axis 164.27 0.16 87.41 17.0
Y-axis 246.25 0.21 89.93 20.0
Z-axis 345.53 0.19 88.42 24.0
X∠40°Y 311.45 0.10 88.76 6.7
Y∠55°Z 286.84 0.15 87.94 17.2
X∠30°Z 318.93 0.10 89.69 14.5
  Kaiser effect point parameters
In situ stress Values/MPa Azimuth angle/(° ) Inclination angle/(° )
Maximum principal stress (σ1) 22.81 162.35 −7.52
Intermediate principal stress (σ2) 10.87 61.25 −81.65
Minimum principal stress (σ3) 6.14 257.68 −13.56
  In situ stress results by the Kaiser effect
Density/(kg·m−3) Elastic modulus/GPa Poisson?s ratio Cohesion/MPa Friction angle/(° ) Tensile strength/MPa
2700 39 0.28 8 37 1.2
  Rock physical and mechanical parameters
1 H, Alkan Y, Cinar G Pusch (2007). Rock salt dilatancy boundary from combined acoustic emission and triaxial compression tests.Int J Rock Mech Min Sci, 44(1): 108–119
https://doi.org/10.1016/j.ijrmms.2006.05.003
2 X, Bai D M, Zhang H, Wang S J, Li Z Rao (2018). A novel in situ stress measurement method based on acoustic emission Kaiser effect: a theoretical and experimental study.R Soc Open Sci, 5(10): 181263
https://doi.org/10.1098/rsos.181263
3 F, Basirat C F, Tsang A, Tatomir Y, Guglielmi P, Dobson P, Cook B, Dessirier C, Juhlin A Niemi (2021). Hydraulic modeling of induced and propagated fractures: analysis of flow and pressure data from hydromechanical experiments in the COSC-1 deep borehole in crystalline rock near Åre, Sweden.Water Resour Res, 57(11): e2020WR029484
https://doi.org/10.1029/2020WR029484
4 Z Z, Cao Y, Wang H X, Lin Q, Sun X G, Wu X S Yang (2022). Hydraulic fracturing mechanism of rock mass under stress-damage-seepage coupling effect.Geofluids, 2022: 5241708
https://doi.org/10.1155/2022/5241708
5 Y L, Chen Q B, Meng Y C, Li H, Pu K Zhang (2020). Assessment of appropriate experimental parameters for studying the Kaiser effect of rock.Appl Sci (Basel), 10(20): 7324–7338
https://doi.org/10.3390/app10207324
6 Y L, Chen J, Ni W, Shao R Azzam (2012). Experimental study on the influence of temperature on the mechanical properties of granite under uniaxial compression and fatigue loading.Int J Rock Mech Min Sci, 56: 62–66
https://doi.org/10.1016/j.ijrmms.2012.07.026
7 A, Damani C H, Sondergeld C S Rai (2018). Experimental investigation of in situ and injection fluid effect on hydraulic fracture mechanism using acoustic emission in Tennessee sandstone.J Petrol Sci Eng, 171(7): 315–324
https://doi.org/10.1016/j.petrol.2018.07.027
8 P, Ganne A, Vervoort M Wevers (2007). Quantification of pre-peak brittle damage: correlation between acoustic emission and observed micro-fracturing.Int J Rock Mech Min Sci, 44(5): 720–729
https://doi.org/10.1016/j.ijrmms.2006.11.003
9 Q Y, He Y C, Li S She (2019). Mechanical properties of basalt specimens under combined compression and shear loading at low strain rates.Rock Mech Rock Eng, 52(10): 4101–4112
https://doi.org/10.1007/s00603-019-01806-8
10 E R, Heimisson P, Einarsson F, Sigmundsson B Brandsdottir (2015). Kilometer-scale Kaiser effect identified in Krafla volcano, Iceland.Geophys Res Lett, 42(19): 7958–7965
https://doi.org/10.1002/2015GL065680
11 Q A, Jiang X T, Feng T B, Xiang G S Su (2010). Rock burst characteristics and numerical simulation based on a new energy index: a case study of a tunnel at 2500 m depth.Bull Eng Geol Environ, 69(3): 381–388
https://doi.org/10.1007/s10064-010-0275-1
12 Y, Jin Z L, Qi M A, Chen G Q, Zhang G Q Xu (2009). Time-sensitivity of the Kaiser effect of acoustic emission in limestone and its application to measurements of in-situ stress.Petrol Sci, 6(2): 176–180
https://doi.org/10.1007/s12182-009-0028-6
13 H, Krietsch V, Gischig K, Evans J, Doetsch N O, Dutler B, Valley F Amann (2019). Stress measurements for an in situ stimulation experiment in crystalline rock: integration of induced seismicity, stress relief and hydraulic methods.Rock Mech Rock Eng, 52(2): 517–542
https://doi.org/10.1007/s00603-018-1597-8
14 C Y, Lai L, Wong M Wallace (2019). Review and assessment of in-situ rock stress in Hong Kong for territory-wide geological domains and depth profiling.Eng Geol, 248: 267–282
https://doi.org/10.1016/j.enggeo.2018.11.008
15 A Lavrov (2003). The Kaiser effect in rocks: principles and stress estimation techniques.Int J Rock Mech Min Sci, 40(2): 151–171
https://doi.org/10.1016/S1365-1609(02)00138-7
16 D X, Li E Y, Wang X G, Kong H S, Jia D M, Wang A Muhammad (2019a). Damage precursor of construction rocks under uniaxial cyclic loading tests analyzed by acoustic emission.Constr Build Mater, 206(10): 169–178
17 X B, Li J Z, Chen C D, Ma L Q, Huang C J, Li J, Zhang Y Z Zhao (2022). A novel in-situ stress measurement method incorporating non-oriented core ground re-orientation and acoustic emission: a case study of a deep borehole.Int J Rock Mech Min Sci, 152(5): 105079
https://doi.org/10.1016/j.ijrmms.2022.105079
18 Y C, Li S Y, Sun C A Tang (2019b). Analytical prediction of the shear behaviour of rock joints with quantified waviness and unevenness through wavelet analysis.Rock Mech Rock Eng, 52(10): 3645–3657
https://doi.org/10.1007/s00603-019-01817-5
19 Y H, Li Y J, Yang J P, Liu X D Zhao (2010). Experimental and theoretical analysis on the procedure for estimating geo-stresses by the Kaiser effect.Int J Miner Metall Mater, 17(5): 514–518
https://doi.org/10.1007/s12613-010-0351-3
20 D, Liu J C, Fan S N Wu (2018). Acoustic wave-based method of locating tubing leakage for offshore gas wells.Energies, 11(12): 3454–3474
https://doi.org/10.3390/en11123454
21 G F, Liu X T, Feng Q, Jiang Z B, Yao S J Li (2017). In situ observation of spalling process of intact rock mass at large cavern excavation.Eng Geol, 226: 52–69
https://doi.org/10.1016/j.enggeo.2017.05.012
22 X H, Liu F, Dai R, Zhang J F Liu (2015). Static and dynamic uniaxial compression tests on coal rock considering the bedding directivity.Environ Earth Sci, 73(10): 5933–5949
https://doi.org/10.1007/s12665-015-4106-3
23 J, Lu G Z, Yin D M, Zhang H, Gao C B, Li M H Li (2020). True triaxial strength and failure characteristics of cubic coal and sandstone under different loading paths.Int J Rock Mech Min Sci, 135(11): 104439
https://doi.org/10.1016/j.ijrmms.2020.104439
24 Q B, Meng Y L, Chen M W, Zhang L J, Han H, Pu J F Liu (2019). On the Kaiser effect of rock under cyclic loading and unloading conditions: insights from acoustic emission monitoring.Energies, 12(17): 3255–3272
https://doi.org/10.3390/en12173255
25 S J, Miao M F, Cai Q F, Guo Z J Huang (2016). Rock burst prediction based on in-situ stress and energy accumulation theory.Int J Rock Mech Min Sci, 83: 86–94
https://doi.org/10.1016/j.ijrmms.2016.01.001
26 T, Nian G W, Wang C W, Xiao L, Zhou L, Deng R J Li (2016). The in situ stress determination from borehole image logs in the Kuqa depression.J Nat Gas Sci Eng, 34(2): 1077–1084
https://doi.org/10.1016/j.jngse.2016.08.005
27 I A, Panteleev V A, Mubassarova A V, Zaitsev N I, Shevtsov Y F, Kovalenko V I Karev (2020). Kaiser effect in sandstone in polyaxial compression with multistage rotation of an assigned stress ellipsoid.J Min Sci, 56(3): 370–377
https://doi.org/10.1134/S1062739120036653
28 A E, Radwan W K, Abdelghany M A Elkhawaga (2021). Present-day in-situ stresses in Southern Gulf of Suez, Egypt: insights for stress rotation in an extensional rift basin.J Struct Geol, 147: 104334
https://doi.org/10.1016/j.jsg.2021.104334
29 S Sabanov (2018). Comparison of unconfined compressive strengths and acoustic emissions of Estonian oil shale and brittle rocks.Oil Shale, 35(1): 26–38
https://doi.org/10.3176/oil.2018.1.02
30 M, Sause S, Schmitt B, Hoeck A Monden (2019). Acoustic emission based prediction of local stress exposure.Compos Sci Technol, 173: 90–98
https://doi.org/10.1016/j.compscitech.2019.02.004
31 A, Schubnel B D, Thompson J, Fortin Y, Gueguen R P Young (2007). Fluid‐induced rupture experiment on Fontainebleau sandstone: premonitory activity, rupture propagation, and aftershocks.Geophys Res Lett, 34(19): L19307
https://doi.org/10.1029/2007GL031076
32 D S Subrahmanyam (2019). Evaluation of hydraulic fracturing and overcoring methods to determine and compare the in situ stress parameters in porous rock mass.Geotech Geol Eng, 37(6): 4777–4787
https://doi.org/10.1007/s10706-019-00937-7
33 L G, Tham H, Liu C A, Tang P, Lee Y Tsui (2005). On tension failure of 2-d rock specimens and associated acoustic emission.Rock Mech Rock Eng, 38(1): 1–19
https://doi.org/10.1007/s00603-004-0031-6
34 Y Q, Wu S L, Li D W, Wang G H Zhao (2019). Damage monitoring of masonry structure under in-situ uniaxial compression test using acoustic emission parameters.Constr Build Mater, 215: 812–822
https://doi.org/10.1016/j.conbuildmat.2019.04.192
35 W J, Xiao G, Yu H T, Li W Y, Zhan D M Zhang (2021). Experimental study on the failure process of sandstone subjected to cyclic loading and unloading after high temperature treatment.Eng Geol, 293: 106305
https://doi.org/10.1016/j.enggeo.2021.106305
36 H P, Xie Y, Ju S H, Ren F, Gao J Z, Liu Y Zhu (2019). Theoretical and technological exploration of deep in situ fluidized coal mining.Front Energy, 13(4): 603–611
https://doi.org/10.1007/s11708-019-0643-x
37 C, Ye D M, Zhang X, Zhou X L, Wang H Yang (2021). Reconstruction and sampling analysis of parent fracture group in underground mining.Rock Mech Rock Eng, 54(12): 6155–6172
https://doi.org/10.1007/s00603-021-02596-8
38 G Z, Yin C B, Jiang J G, Wang J Xu (2015). Geomechanical and flow properties of coal from loading axial stress and unloading confining pressure tests.Int J Rock Mech Min Sci, 76: 155–161
https://doi.org/10.1016/j.ijrmms.2015.03.019
39 G Z, Yin C B, Jiang J, Xu L S, Guo S J, Peng W P Li (2012). An experimental study on the effects of water content on coalbed gas permeability in ground stress fields.Transp Porous Media, 94(1): 87–99
https://doi.org/10.1007/s11242-012-9990-3
40 T, Yokoyama O, Sano A, Hirata K, Ogawa Y, Nakayama T, Ishida Y Mizuta (2014). Development of borehole-jack fracturing technique for in situ stress measurement.Int J Rock Mech Min Sci, 67: 9–19
https://doi.org/10.1016/j.ijrmms.2013.12.008
41 X Y, Yu X W Mao (2020). A preliminary discrimination model of a deep mining landslide and its application in the Guanwen coal mine.Bull Eng Geol Environ, 79(1): 485–493
https://doi.org/10.1007/s10064-019-01565-4
42 D, Zhang Y, Yang H, Wang X, Bai C, Ye S Li (2018). Experimental study on permeability characteristics of gas-containing raw coal under different stress conditions.R Soc Open Sci, 5(7): 180558
https://doi.org/10.1098/rsos.180558
43 G Q, Zhang M Chen (2010). Study of influence of Kaiser sampling deviation on underground stress measurements.Energy Sources A Recovery Util Environ Effects, 32(10): 886–893
https://doi.org/10.1080/15567030802606319
44 H H, Zhang J X, Wang C J, Fan H J, Bi L, Chen C Y Xu (2022). An improved coupled modeling method for coalbed methane extraction after hydraulic fracturing.Geofluids, 2022: 8895347
https://doi.org/10.1155/2022/8995347
45 S K, Zhang S D Yin (2014). Determination of in situ stresses and elastic parameters from hydraulic fracturing tests by geomechanics modeling and soft computing.J Petrol Sci Eng, 124: 484–492
https://doi.org/10.1016/j.petrol.2014.09.002
46 K, Zhao S J, Gu Y J, Yan K P, Zhou Q, Li S T Zhu (2018). A simple and accurate interpretation method of in situ stress measurement based on rock kaiser effect and its application.Geofluids, 2018: 9463439
https://doi.org/10.1155/2018/9463439
47 X G, Zhao J, Wang X H, Qin M, Cai R, Su J G, He Z H, Zong L K, Ma R L, Ji M, Zhang S, Zhang L, Yun Q C, Chen L, Niu Q M An (2015). In-situ stress measurements and regional stress field assessment in the Xinjiang candidate area for China’s HLW disposal.Eng Geol, 197: 42–56
https://doi.org/10.1016/j.enggeo.2015.08.015
48 J B, Zhu T, Zhou Z Y, Liao L, Sun X B, Li R Chen (2018). Replication of internal defects and investigation of mechanical and fracture behaviour of rock using 3D printing and 3D numerical methods in combination with X-ray computerized tomography.Int J Rock Mech Min Sci, 106: 198–212
https://doi.org/10.1016/j.ijrmms.2018.04.022
[1] Juan TENG, Zhigang WEN, Chen LI, Lingye MENG. Geophysical characteristics of anthracites with various structures: a case study on the southern Qinshui Basin, north China[J]. Front. Earth Sci., 2022, 16(3): 696-710.
[2] Huijun LU, Ru ZHANG, Li REN, Anlin ZHANG, Yiming YANG, Xiaopeng LI. Damage characterization of shale under uniaxial compression by acoustic emission monitoring[J]. Front. Earth Sci., 2021, 15(4): 817-830.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed