Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (1) : 351-360    https://doi.org/10.1007/s11707-022-1037-7
RESEARCH ARTICLE
First Asian fossil record of Platydictya (Amblystegiaceae) from the lower Miocene and its paleoenvironmental significance
Liyan GUO1,2,4, Liang XIAO1,2,4(), Ya LI2, Xiangchuan LI1,2,4, Qin LENG3, Nan SUN1, Junfeng GUO1, Chaofeng FU1, Jianan WANG1, Deshuang JI1
1. College of Earth Sciences and Resources & Key Laboratory of Western Mineral Resources and Geological Engineering (the Ministry of Education), Chang᾽an University, Xi᾽an 710054, China
2. State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
3. Laboratory for Terrestrial Environments, Bryant University, Smithfield, RI 02917, USA
4. Shaanxi Key Laboratory of Early Life and Environments & State Key Laboratoty of Continental Dynamics, Northwest University, Xi᾽an 710069, China
 Download: PDF(3015 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mosses form a diverse land plant group in modern vegetation but have rarely showed up in the fossil record compared with vascular plants. Here, we report an extraordinarily-preserved early Miocene moss fossil from the lower Laoliangdi Formation in the Pingzhuang Coal Mine in Chifeng, Inner Mongolia Autonomous Region, northern China. Although lacking rhizoids and most reproductive organs, the well-preserved fossil allows us to assign it to Platydictya cf. jungermannioides (Amblystegiaceae) based upon its detailed gross and micro-morphology. The diagnostic characteristics include a small-sized body with slender stems bearing spirally arranged ovate-lanceolate leaves that lack costae. Leaf margins are mostly partly entire and partly dentate, a few dentate, and rarely completely entire. It represents the first fossil record of Platydictya in Asia. The specific living microenvironment of the extant P. jungermannioides enriched our understanding of the early Miocene environment that was previously based upon vascular plant fossils and sedimentary lithofacies in the area. Our early Miocene Platydictya cf. jungermannioides fossil lived in a warm and humid lush forest with a dense understory that received adequate water supplies.

Keywords moss      the Pingzhuang Coal Mine      Inner Mongolia      Platydictya      paleoenvironment     
Corresponding Author(s): Liang XIAO   
About author:

* These authors contributed equally to this work.

Online First Date: 16 May 2023    Issue Date: 03 July 2023
 Cite this article:   
Liyan GUO,Liang XIAO,Ya LI, et al. First Asian fossil record of Platydictya (Amblystegiaceae) from the lower Miocene and its paleoenvironmental significance[J]. Front. Earth Sci., 2023, 17(1): 351-360.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1037-7
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I1/351
Age Genus/Species Region Location References
Eocene 37–57 Ma Drepanocladus Europe Baltic Saxon amber Frahm, 2004
Early Miocene22 Ma Amblystegium varium, Leptodictyum riparium,Drepanocladus trichophyllus Asia Weichang mud shale, Hebei, China Guo et al., 2013
Pliocene3.58–2.60 Ma Cenococcum geophilum North America Shallow water marine deposits of North-east Greenland Bennike et al., 2002
Late Pliocene3 Ma Calliergon giganteum, Campylium stellatum, C. arcticum, Drepanocladus aduncus, D. exannulatus, D.revolvens, D.uncinatus, Hygrohypnum polare North America Alaska and northern Canada Matthews and Ovenden, 1990
Early Pleistocene2.0–2.5 Ma Calliergon giganteum, Drepanocladus crassicostatus, Scorpidium scorpioides, Platydictya cf. jungermannioides North America Clastic rocks on Ellesmere Island Ovenden, 1993
Middle Pleistocene 131 ± 11 ka Pseudocalliergon brevifolium, P. turgescens,Campylium stellatum, C. giganteum North America Peat deposits in the east of the Beringian Land Bridge Reyes et al., 2010
Late Pleistocene18 ka Campylium hispidulum, C. stellatum, Drepanocladus brevifolius, Amblystegium serpens, A. varium North America Bering Land Bridge Glacier Highlands on the northern Seward Peninsula Goetcheus and Birks, 2001
Late Pleistocene17.78 ± 0.6 ka Drepanocladus fluitans Asia Paleosilicified sediments from the northern shore of Lake Usoriko, Japan Satake et al., 1995
Late Pleistocene12 ka Drepanocladus exannulatus, D. trichophyllus Europe Marine clay of western Norway Övestedal and Aarseth, 1975
Late Pleistocene12 ka Leptodontium flexifolium North America Peat deposits of the Yukon Territory, Canada Miller, 1980b
Late Pleistocene12–11.5 ka Calliergon giganteum, Drepanocladus aduncus North America Late Glacial Strata, Portland, Maine, US Geotcheus and Birks, 2001
Late Pleistocene11.5–12.1 ka Calliergon richardsonii, C. stellatum,Drepanocladus revolensvar, Scorpidium scorpioides North America North American glacial woodland marshes Janssens and Zander, 1980
Pleistocene and Holocene Drepanocladus crassicostatus North America Western of North America Janssens, 1983
Holocene Drepanocladus fluitans Europe Peat layer of Rownia pod Sniezka swamp, Poland Kuder and Kruge, 1998
Holocene Drepanocladus fluitans Europe Peat deposits of northern Sweden Elverland and Vorren, 2008
Holocene 5 ka Warnstorfia fluitans, W. exannulataStraminergon stramineum Europe Sedimentary sequence of coastal marshes in northern Norway Van der Linden et al., 2008
Late Holocene 5 ka Drepanocladus exannulatus, D. purpurascens,D. procerus, D. schulzei Europe Swedish subarctic peat bogs Kokfelt et al., 2010
Tab.1  Global fossil records of Amblystegiaceae
Fig.1  Stratigraphic column of the Pingzhuang Coal Mine, showing the plant fossiliferous layer (indicated by ♣).
Fig.2  Photographs showing gross morphology of the fossil (specimen # PZX-17-013). (a) The complete specimen, showing eight (1–8) connected and two (9–10) isolated branches. The stems are more or less erect and irregularly branched. Scale bar = 2 mm. (b–f) Closer up images of some branches, showing the size, shape, and texture of leaves. The arrows indicate that the leaves are homogeneous without a costa. (b) Branch 5. Scale bar = 0.4 mm. (c) Branches 4–5. Scale bar = 0.5 mm. (d) Closer up of (c), showing a fine tooth (arrow) at the leaf margin. Scale bar = 0.2 mm. (e) Branch 8. Scale bar = 0.5 mm. (f) Branch 5. A leaf within the red box (also indicated by an arrow) is obviously homogeneous. Scale bar = 0.5 mm. (g) The apical part of Branch 6. The arrows indicate the capsules. Scale bar = 0.5 mm.
Fig.3  SEM (a–c) and light microscope (d–f) photographs showing micro-morphology of leaves. (a–c) A leaf fragment observed under SEM. Scale bar = 0.1 mm. (a) A folded leaf, showing that the middle part of it is flat thus with no costa. (b–c) Closer up images of (a), with the fine teeth at leaf margins indicated by arrows. (d–f) Leaf fragments observed under LM. (d) The apical part of a leaf. The dentate margins are highlighted. Scale bar = 0.1 mm. (e) Fragments of a leaf base and part of the stem. Leaf base is thickened, no stipules. Cells at leaf margin are polygonal in shape while those in the middle are columnar or long quadrilateral. Scale bar = 0.2 mm. (f) Two leaf fragments, showing their thin and almost semitransparent texture. Leaf margin is thickened, with about two layers of cells while there is only one cell layer of the most part of the leaf. Cells are rhombus or irregularly quadrilateral in shape. Scale bar = 0.2 mm.
Fig.4  Line drawings showing part of Branch 4 (a) and two leaves (b–c). Scale bar = 0.2 mm. (a) Branch 5 in Fig. 2(a) showing the arrangement of leaves on the stem. Fine teeth on leaf margins are not shown. (b) A leaf with dentate margins. Teeth are denser at the lower part. (c) A leaf showing its cell outlines.
Family Species Stem branching Stem form Stem length/cm Leaf shape Leaf margin Leaf length/mm Leaf width/mm Costae Stipule
Platydictya cf. jungermannioides Irregular branching More or less erect 0.6–1.2 Ovate-lanceolate acuminate Partly entire and partly dentate (particularly at base) 0.14–0.25 0.04–0.06 Absent Invisible, likely absent
Amblystegiaceae Platydictya jungermannioides (Brid.) Crum Irregular branching Erect 1–1.5 Ovate-lanceolate or lanceolate Dentate or partly (at base) dentate 0.2–0.35 0.06–0.09 Absent or inconspicuous Absent
Amblystegiaceae Campylium porphyriticum C. Muell. Irregular branching Erect or decumbent 1–2 Ovate heart-shaped Dentate 0.6–0.9 0.5 Two short middle costae, one long middle costa or none Present
Amblystegiaceae Campylophyllum halleri (Hedw.) Fleisch. Subpinnate branching Decumbent 2–5 Base ovate, distally lanceolate and everted Dentate at upper part 0.6–0.8 0.5 Short or absent Absent
Erpodiaceae Aulacopilum abbreviatum Mitt. Irregular branching Decumbent amphitropous 0.5–1 Ovate-lanceolate Entire 0.5–0.7 < 0.2 Absent Absent
Erpodiaceae Venturiella sinensis (Vent.) C. Müll. Irregular branching Decumbent and serried 1–2.5 Ovate-shaped or ovate-lanceolate Dentate at upper part 1–2.5 0.5 Absent Absent
Hedwigiaceae Braunia alopecura (Brid.) Limpr. Irregular branching Strong 2 Broad ellipse or ovate curving Entire 1.5–2 0.7–1.1 Absent Absent
Hedwigiaceae Hedwigia ciliata (Hedw.) Ehrh. Irregular branching Thick andstrong 3–5 Ovate-lanceolate, concave Entire 1.3–3.3 0.6–0.9 Absent Absent
Leucodontaceae Leucodon pendulus Lindb. Branches serried Branches short and overhanging 2–3 Long oval and adnate Entire 2–2.5 1–1.5 Absent Absent
Myuriaceae Palisadula chrysophylla (Card.) Toy. Branches serried Erect and outstretched 2 Ovate Dentate nucleus 2–5 1–1.5 Short Absent
Thamnobryaceae Pinnatella anacamptolepis (C. Mull.) Broth. Irregular branching Decumbent Up to 5 Base oblate semicircular and short leaf apex lanceolate Dentate at upper part 1.8–2 1 Two short middle costae, one long middle costae or none Absent
Eucomiaceae Leucomium strumosun (Hornsch.) Mitt. Irregular branching Decumbent 2 Acuminate lanceolate Invisible 1.5–2 0.5 Absent Absent
Fabroniaceae Schwetschkeopsis fabronia (Schwaegr.) Broth. Pinnate branching Decumbent extension 1.5–3 Ovate-lanceolate, mucronate Entire, occasionally dentate 0.5–0.7 < 0.2 Absent Absent
Thuidiaceae Leptopterigynandrum incuryatum Broth. Branches serried Decumbent tilting stand > 5 Ovate or broadly ovate Entire 1.4 < 0.5 Two middle costae, short Present
Entodontaceae Entodon dolichocucullatus S.Okam. Irregularly pinnate branching Decumbent 5–8 Linear lanceolate Dentate at upper part 0.8–1.1 < 0.5 Absent Present
Tab.2  Feature comparison of the studied fossil with extant species containing ovate-lanceolate leaves lacking costae
1 P G C, Amaral de Oliveira M, Bernardes F, Ricardi-Branco J Broutin (2004). Presencia de Bryopsida fértil en los niveles Westfalianos del subgrup Itarar, Cuenca de Paraná, Brasil.Trop Bryol, 25: 101–110
2 R G, Baker E A III, Bettis D G Horton (1993). Late Wisconsinan–early Holocene riparian paleoenvironment insoutheastern Iowa.Geol Soc Am Bull, 105(2): 206–212
https://doi.org/10.1130/0016-7606(1993)105<0206:LWEHRP>2.3.CO;2
3 O, Bennike N, Abrahamsen M, Bak C, Israelson P, Konradi J, Matthiessen A Witkowski (2002). A multi-proxy study of Pliocene sediments from Île de France, North-East Greenland.Palaeogeogr Palaeoclimatol Palaeoecol, 186(1–2): 1–23
https://doi.org/10.1016/S0031-0182(02)00439-X
4 F Bittmann (2007). Reconstruction of the Allerod vegetation of the Neuwied Basin, western Germany, and its surroundings at 12,900cal B.P.Veg Hist Archaeobot, 16(2–3): 139–156
https://doi.org/10.1007/s00334-006-0082-6
5 R, Blöcher J P Frahm (2002). A comparison of the moss floras of Chile and New Zealand.Trop Bryol, 21: 81–92
6 B, Bomfleur A A, Klymiuk E L, Taylor T N, Taylor E L, Gulbranson J L Isbell (2014). Diverse bryophyte mesofossils from the Triassic of Antarctica.Lethaia, 47(1): 120–132
https://doi.org/10.1111/let.12044
7 H A Crum, L E Anderson (1981). Mosses of Eastern North America.II. New York: Columbia University Press, 916–1105
8 C Delgadillo (2009). Floristic corridors for moss distribution across the Neovolcanic Belt of Mexico, IV, The Toluca and Chalco corridors.J Bryol, 31(1): 30–40
https://doi.org/10.1179/174328209X404907
9 E, Elverland K D Vorren (2008). 7500 yr of mire-pool development and the history of Pinus sylvestris (L.) in Sub Arctic coastal Norway.Rev Palaeobot Palynol, 150(1–4): 48–58
https://doi.org/10.1016/j.revpalbo.2008.01.004
10 J P, Frahm A E Newton (2005). A new contribution to the moss flora of dominican amber.Bryologist, 108(4): 526–536
https://doi.org/10.1639/0007-2745(2005)108[0526:ANCTTM]2.0.CO;2
11 J P Frahm (2004). A new contribution to the moss flora of Baltic and Saxon amber.Rev Palaeobot Palynol, 129(1–2): 81–101
https://doi.org/10.1016/j.revpalbo.2003.11.004
12 V G, Goetcheus H H Birks (2001). Full-glacial upland tundra vegetation preserved under tephra in the Beringia National Park, Seward Peninsula, Alaska.Quat Sci Rev, 20(1–3): 135–147
https://doi.org/10.1016/S0277-3791(00)00127-X
13 B Goffinet, A J Shaw (2009). Bryophyte Biology. Second Edition. Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo: Cambridge University Press
14 C Q, Guo J X, Yao P C, Wu C S Li (2013). Early Miocene mosses from Weichang, North China, and their environmental significance.Acta Geol Sin (English Edition), 87(6): 1508–1519
https://doi.org/10.1111/1755-6724.12155
15 C Q Guo, Y Li, P C Wu, J X Yao (2016). Phytogeographic significance of early Miocene mosses from Weichang, Hebei province. Geological Bulletin of China, 35(12): 1976–1984 (in Chinese)
16 S J Harris (2008). Traditional uses and folk classification of Bryophytes.Bryologist, 111(2): 169–217
https://doi.org/10.1639/0007-2745(2008)111[169:ETUAFC]2.0.CO;2
17 R L Hu, Y F Wang (1994). Bryography of China (VII). Beijing: Science Press, 18–21
18 S, Huttunen M S, Ignatov D, Quandt L Hedenäs (2013). Phylogenetic position and delimitation of the moss family Plagiotheciaceae in the order Hypnales.Botanical Journal of the Linnean Society, 117(2): 330–353
https://doi.org/10.1111/j.1095-8339.2012.01322.x
19 M S, Ignatov E V Maslova (2021). Fossil mosses: what do they tell us about moss evolution?.Bryophyt Divers Evol, 43(1): 72–97
https://doi.org/10.11646/bde.43.1.7
20 J A, Janssens R H Zander (1980). Leptodontium flexifolium and Pseudocrossidium revolutum as 60000-year-old subfossils from the Yukon Territory, Canada.Bryologist, 83(4): 486–496
https://doi.org/10.2307/3242301
21 J A Janssens (1983). Past and present record of Drepanocladus crassicostatus sp. nov. (Musci: Amblystegiaceae) and the status of D. trichophyllus in North America.Bryologist, 86(1): 44–53
https://doi.org/10.2307/3242699
22 J A, Janssens P H Glaser (1986). The bryophyte flora and major peat-forming mosses at Red Lake peatland, Minnesota.Can J Bot, 64(2): 427–442
https://doi.org/10.1139/b86-058
23 H Kanda (1976). A revision of the family Amblystegiaceae of Japan. II. J Sci Hiroshima U, Series B, Div.2 (Botany), 16: 47–119
24 U, Kokfelt N, Reuss E, Struyf M, Sonesson M, Rundgren G, Skog P, Rosén D Hammarlund (2010). Wetland development, permafrost history and nutrient cycling inferred from late Holocene peat and lake sediment records in subarctic Sweden.J Paleolimnol, 44(1): 327–342
https://doi.org/10.1007/s10933-010-9406-8
25 T, Kuder M A Kruge (1998). Preservation of biomolecules in sub-fossil plants from raised peat bogs—a potential paleoenvironmental proxy.Org Geochem, 29(5–7): 1355–1368
https://doi.org/10.1016/S0146-6380(98)00092-8
26 der Linden M, Van J, Barke E, Vickery D J, Charman Geel B Van (2008). Late Holocene human impact and climate change recorded in a North Swedish peat deposit.Palaeogeogr Palaeoclimatol Palaeoecol, 258(1–2): 1–27
https://doi.org/10.1016/j.palaeo.2007.11.006
27 J V Jr, Matthews L E Ovenden (1990). Late Tertiary plant macrofossils from localities inarctic/subarctic North America: a review of the data.Arctic, 43(4): 384–392
https://doi.org/10.14430/arctic1631
28 N G Miller (1980a). Quaternary fossil bryophytes in North America: catalog and annotated bibliography.J Hattori Bot Lab, 47: 1–34
29 N G Miller (1980b). Mosses as paleoecological indicators of lateglacial terrestrial environments: some North American studies.Bull Torrey Bot Club, 107(3): 373–391
https://doi.org/10.2307/2484158
30 N G Miller (1984). Tertiary and Quaternary fossils. In: Schuster R M, ed. New Manual of Bryology, Nichinan, Japan: The Hattori Botanical Laboratory, 2: 1194–1232
31 P, Moisan S, Voigt J W, Schneider H Kerp (2012). New fossil bryophytes from the Triassic Madygen Lagerstätte (SW Kyrgyzstan).Rev Palaeobot Palynol, 187: 29–37
https://doi.org/10.1016/j.revpalbo.2012.08.009
32 A E Newton, N Wikstrom, N Bell, L L Forrest, M S Ignatov (2007). Dating the diversification of the pleurocarpous mosses. In: Newton A E, Tangney R S, eds. Pleurocarpous Mosses: Systematics and Evolution. Boca Raton: CRC Press, 337–366
33 A Noguchi (1991a). Illustrated moss flora of Japan. Japan: Hattori Botanical Laboratory. Part 4: 886–1012
34 A Noguchi (1991b). Illustrated moss flora of Japan. Japan: Hattori Botanical Laboratory. Part 5: 1013–1069
35 C Oostendorp (1987). The Bryophytes of the Palaeozoic and the Mesozoic. In: BryophytorumBiblotheca, Band 34. Berlin & Stuttgart: J. Cramer, 112
36 L Ovenden (1993). Late Tertiary mosses of Ellesmere Island.Rev Palaeobot Palynol, 79(1–2): 121–131
https://doi.org/10.1016/0034-6667(93)90042-S
37 D O, Övestedal I Aarseth (1975). Bryophytes from Late Weichselian sedimentsat Vinnes, western Norway.Lindbergia, 3: 61–68
38 A V, Reyes B J L, Jensen G D, Zazula T A, Ager S, Kuzmina Farge C L, La D G Froese (2010). A late-Middle Pleistocene (Marine Isotope Stage 6) vegetated surface buried by Old Crow tephra at the Palisades, interior Alaska.Quat Sci Rev, 29(5–6): 801–811
https://doi.org/10.1016/j.quascirev.2009.12.003
39 Z Richard (2017). Flora of North America, Vol. 28. London: Oxford University Press, 263–282
40 K, Satake A, Oyagi Y Iwao (1995). Natural acidification of lakes and rivers in Japan: the ecosystem of Lake Usoriko (pH 3.4–3.8).Water Air Soil Pollut, 85: 511–516
https://doi.org/10.1007/BF00476880
41 P Shang, J H Jin, D J Sun, J Mu (2001). Early Miocene flora from Pingzhuang Basin of Inner Mongolia and its paleoenvironment. J Sun Yat-sen U (Nat Mater Sci Ed), 40(5): 108–112 (in Chinese)
42 G W K, Shelton R A, Stockey G W, Rothwell A M F Tomescu (2015). Exploring the fossil history of pleurocarpous mosses: Tricostaceae fam. nov. from the Cretaceous of Vancouver Island, Canada.Am J Bot, 102(11): 1883–1900
https://doi.org/10.3732/ajb.1500360 pmid: 26542845
43 J R, Tao J J, Yang Y F Wang (1994). Miocene wood fossils and paleoclimate significance in Inner Mongolia.Acta Botanica Yunnanica, 16(2): 111–116
44 W B, Thompson C B, Griggs N G, Miller R E, Nelson T K, Weddle T M Kilian (2011). Associated terrestrial and marine fossils in the late-glacial Presumpscot Formation, southern Maine, USA, and the marine reservoir effect on radiocarbon ages.Quat Res, 75(3): 552–565
https://doi.org/10.1016/j.yqres.2011.02.002
45 D H Vitt (1984). Classification of the Bryopsida. In: Schuster R M, ed. New Manual of Bryology, 696–759
46 Y H Wu, C Gao, T Cao (2005). Family Amblystegiaceae. In: Hu R L, Wang Y F, eds. Flora Bryophytorum Sinicorum. Vol. 7. Hypnobryales. Beijing: Science Press, 1–81
47 J F Yan, Y L Wang, Q Y Tan, Q Yu (2008). Sequence stratigraphy and coal accumulation in Pingzhuang Basin, Inner Mongolia. Coal Geology & Exploration, 36(1): 9–13 (in Chinese)
48 R D, Yang J R, Mao W H, Zhang L J, Jiang H Gao (2004). Bryophyte-like fossil (Parafunaria sinensis) from Early-Middle Cambrian Kaili Formation in Guizhou Province, China.Acta Bot Sin, 46(2): 180–185
49 L L Yu, L Y Chen, Z F Guo and Y J Ma (2009). Coal-bearing property assessment and coal looking prediction in mine area periphery and deep part, Pingzhuang Coalfield. Coal Geology of China, 21(4): 20–22, 34 (in Chinese)
50 G D, Zazula D G, Froese S A, Elias S, Kuzmina Farge C L, La A V, Reyes R T, Sanborn C E, Schweger Smith C A, Scott R W Mathewes (2006). Vegetation buried under Dawson tephra (25300 14C years BP) and locally diverse late Pleistocene paleoenvironments of Goldbottom Creek, Yukon., Canada.Palaeogeogr Palaeoclimatol Palaeoecol, 242(3–4): 253–286
https://doi.org/10.1016/j.palaeo.2006.06.005
51 M L Zhang (2008). Studies on Taxonomy and Flora of Amblystegiaceae (Musci) in Inner Mongolia, China. Dissertation for Master’s Degree. Hohhot: Inner Mongolia University
52 Z C Zhang (1986). Tertiary fossil plants from Pingzhuang of Ju’ Ud league, Nei Mongol. Bulletin of Shenyang Institute Geology and Mineral Resources, Chinese Academy Geol Sci, 14: 117–124 (in Chinese)
[1] Jianwei LV, Songhang ZHANG, Ning YANG, Chunbo FU, Xinlu YAN, Yang LI. Paleoenvironment controls on organic matter accumulation in transitional shales from the eastern Ordos Basin, China[J]. Front. Earth Sci., 2021, 15(4): 737-753.
[2] LIU Zhanhong, LI Sitian, XIN Renchen, XU Changgui, CHENG Jianchun. The paleoclimatic records and the relevance with the formation of hydrocarbon source rocks: A case study of Huanghekou depression, Bohaiwan basin[J]. Front. Earth Sci., 2008, 2(1): 73-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed