Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2024, Vol. 18 Issue (1) : 112-126    https://doi.org/10.1007/s11707-022-1047-5
Global precipitation change during the Holocene: a combination of records and simulations
Wangting YE, Yu LI()
Key Laboratory of Western China᾽s Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Center for Hydrologic Cycle and Water Resources in Arid Region, Lanzhou University, Lanzhou 730000, China
 Download: PDF(6891 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Precipitation can shape our climate both in the present and the future. Even though we have made significant advances in studying the mechanisms of millennial-scale climate changes through high-resolution records, we still cannot quantitatively characterize the global spatiotemporal precipitation variations within the Holocene. Therefore, we developed a new approach to integrating data from 349 globally distributed records and climate models to reconstruct regional and global precipitation patterns over the last 12000 years. Our results reveal that precipitation reconstructions can be divided into monsoon-driven and westerly driven patterns. The results suggest that an arid climate was experienced in the late glacial and early Holocene epoch (~12−7.4 cal ka BP), attaining a middle Holocene optimum (~7.4−3.5 cal ka BP), and drier after the middle Holocene. According to our reconstructions, the global precipitation reconstruction increased from the early Holocene until 3.8 cal ka BP and then subsequently decreased. In addition, our reconstructions better reproduce the low-frequency events and extreme precipitation at the millennial scale in the hemispheres, but the performance of the reconstructions in the equatorial Pacific and the Southern Hemisphere of Africa and the Americas is controversial. The resolution of the record and the simulation capability of the climate model remain important means to improve our understanding of past climate change.

Corresponding Author(s): Yu LI   
Online First Date: 08 September 2023    Issue Date: 15 July 2024
 Cite this article:   
Wangting YE,Yu LI. Global precipitation change during the Holocene: a combination of records and simulations[J]. Front. Earth Sci., 2024, 18(1): 112-126.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1047-5
https://academic.hep.com.cn/fesci/EN/Y2024/V18/I1/112
Site name Core name Proxy Latitude/(° ) Longitude/(° ) Resolution/yr Reference
Cave of the Bells COB-01-02 δ18O 31.75 −110.75 50 Wagner et al. (2010)
Botuver Cave BT2 δ18O −27.22 −49.16 100 Cruz et al. (2005); Wang et al. (2007)
Buca della Renella RL4 δ18O 44.00 0.00 56 Drysdale et al. (2006)
Buckeye Creek Cave BCC-002/BCC-004/BCC-006 δ18O 37.97 −80.4 15 Hardt et al. (2010); Springer et al. (2008)
Cold Air Cave T7/T8 δ18O −24.02 29.11 13 Holmgren et al. (2003); Repinski et al. (1999)
Cold Water Cave CWC-1s/CWC-2ss/CWC-3L δ18O 43.47 −91.97 17 Denniston et al. (1999a)
Dongge Cave D4/DA δ18O 25.28 108.08 5 Dykoski et al. (2005); Wang et al. (2005); Yuan et al. (2004)
Fort Stanton Fort Stanton δ18O 33.30 −105.30 33 Asmerom et al. (2010)
Gunung Buda National Park BA04/SCH02/SSC01 δ18O 4.030 114.80 20 Partin et al. (2007)
Heshang Cave HS-4 δ18O 30.45 110.416 8 Hu et al. (2008)
Hoti Cave H5 δ18O 23.08 57.35 5 Neff et al. (2001)
Hulu Cave H82/MSD/PD/YT δ18O 32.50 119.16 2 Wang et al. (2001)
Jerusalem West Cave AF12 δ18O 31.78 35.15 517 Frumkin et al. (1999)
Jiuxian Cave C996-1/C996-2 δ18O 33.56 109.10 19 Cai et al. (2010)
Katerloch Cave K1/K3 δ18O 47.08 15.55 2 Boch et al. (2009)
Liang Luar Cave LR06-B1/LR06-B3 δ18O −8.53 120.43 10 Griffiths et al. (2009)
Lianhua Cave A1 δ18O 29.48 109.53 8 Cosford et al. (2009)
Lynds Cave Lynds Cave Core 001 δ18O −41.58 146.25 73 Xia et al. (2001)
Ma'ale Efrayim Cave Ma'ale Efrayim Cave Core 001 δ18O 32.08 35.37 371 Vaks et al. (2003)
Moomi Cave M1-5 δ18O 12.50 54.00 22 Shakun et al. (2007)
Mystery Cave MC-28 δ18O 43.62 −92.30 70 Denniston et al. (1999b)
NWSI north-west of the South Island nz-comp-001 δ18O −42.00 172.00 36 Williams et al. (2010)
Peqiin Cave Peqiin Cave Core 001 δ18O 32.58 35.19 469 Bar-Matthews et al. (2003)
Pink Panther Cave PP-1 δ18O 32.083 −105.17 18 Asmerom et al. (2007)
Poleva Cave PP10 δ18O 44.72 21.75 77 Constantin et al. (2007)
Qunf Cave Q5 δ18O 17.17 54.30 7 Fleitmann et al. (2007)
Sanbao Cave SB10/SB26/SB27/SB3/SB43/SB44/SB49 δ18O 31.67 110.43 13 Dong et al. (2010); Wang et al. (2008)
Sofular Cave So-1 δ18O 41.42 31.93 7 Fleitmann et al. (2009)
Soreq Cave Soreq Cave Core 001 δ18O 31.45 35.03 75 Kaufman et al. (2003)
Spring Valley Caverns SVC-1/2 δ18O 43.75 −92.41 27 Denniston et al. (1999b)
Terciopelo Cave CT-7 δ18O 10.17 −85.33 4 Lachniet et al. (2009)
Cueva del Tigre Perdido NC-A/B δ18O −5.94 −77.30 23 van Breukelen et al. (2008)
Venado Cave Venado Cave Core 001 δ18O 10.60 −84.80 15 Lachniet et al. (2004)
Xiangshui Cave X3 δ18O 25.25 110.92 69 Cosford et al. (2008)
Yamen Cave Y1 δ18O 25.48 107.90 9 Yang et al. (2010)
Yaoba Don Cave YB1 δ18O 28.80 109.83 128 Cosford et al. (2008)
Aral sea δ18O 59.70 44.98 Filippov and Riedel (2009)
Bear lake δ13C, δ18O, TC, TIC, OC, CaCO3, Ca, Mg, B, Ba, Fe, K, Li, Mn, Na, P, Sr, Ti −111.33 42.00 Dean et al. (2006)
Chad Lake δ18O 14.19 13.47 Bouchette et al. (2010)
Eyre Lake δ18O 137.70 −29.07 Magee et al. (2004)
Great Salt Lake USGS 96,95 Bulk organics, Humic acid from organic materials, Charcoal −112.52 41.20 200 Oviatt et al. (2015)
Huguangyan Maar lake Ti, Fe, Mn, MS., S, TOC, bio.-SiO2 110.28 21.15 Yancheva et al. (2007)
Laguna Yanacocha Si, S, K, Ca, Ti, Mn, Fe, Zn, Rb, Sr, Zr −75.93 −10.56 4 Stansell et al, (2015)
Lake Chichancanab δ13C, δ18O, CaCO3,S −88.82 19.87 22 Hodell et al. (1995)
Lake Issyk-Kul IK97 δ13C, δ18O, Sr/Ca 77.25 42.46 194 Ricketts et al. (2001)
Lake Malawi M98-1P/M98-1P BSi, LSR, MAR, BSi MAR 33.83 −13.52 19 Johnson et al. (2002)
Lake Qinghai brightness, redness 100.30 37.06 32 Ji et al. (2005)
Lake Tanganyika dD, δ13C, TEX86 29.83 −6.08 185 Tierney et al. (2008)
Lake Titicaca Titicaca2014dD-LT01-2B dD −69.16 −15.94 266 Fornace et al. (2014)
Lake Towuti TOW9 Al, Mg, K, Ti,Fe, Cr, Co, V, U 121.52 −2.73 624 Costa et al. (2015)
Makgadikgadi Basin Kal98 U,Th, K 24.70 −20.51 Shaw et al. (2003)
Victoria lake LV95-1P TEX86, Leaf Wax, dD , δ13C 33.20 −1.23 209 Berke et al. (2012)
Tab.1  List of data sets used in reconstruction
Fig.1  Location map of proxy precipitation data sets. Map of precipitation data sets from this study with precipitation proxies indentified by color coding.
Latitude1) Area2) Code3)
0°–30°N Eurasia4) 0030NEA
0°–30°N North America 0030NNAm
0°–30°N North Africa 0030NNAf
0°–30°S Eurasia 0030SEA
0°–30°S South America 0030SSAm
0°–30°S South Africa 0030SSAf
30°N–60°N Eurasia 3060NEA
30°N–60°N North America 3060NNAm
60°N–90°N Eurasia 6090NEA
60°N–90°N North America 6090NNAm
60°S–90°S South America and South Africa 6090SSAA
90°S–90°N Global land GLP
Tab.2  Codes of 12 precipitation reconstructions
Fig.2  The Holocene precipitation reconstructions in (a) 0030NEA, (b) 0030NNAm, (c) 0030NNAf, (d) 0030SEA, (e) 0030SSAm, (f) 0030SSAf, (g) 3060NEA, (h) 3060NNAm, (i) 6090NEA, (j) 6090NNAm, (k) 6090SSAA, and (l) GLP (normalization), and the horizontal axis representing the calendar year against the annual precipitation.
Code Maximum/(mm·yr−1) Minimum/(mm·yr−1) Mean value of different period/(mm·yr−1) Cycle/yr
Calender year Value Calender year Value Total Early-Holocene Mid-Holocene Late-Holocene
0030N EA 7859 1234.81 2245 1014.07 1133.57 1150.26 1157.08 1089.38 215
0030N NAm 6017 1022.5 11642 888.75 976.25 971.79 989.75 969.86 258
0030N NAf 10352 720.833 2847 565.833 662.24 685.94 665.38 616.46 289
0030S EA 1811 807.407 8611 666.667 740.45 721.36 744.81 755.19 408
0030S SAm 11835 1556.72 94 1404.26 1453.64 1471.85 1444.57 1443.10 330
0030S SAf 1833 1387.71 7976 1285.63 1331.14 1307.05 1331.51 1347.39 255
3060N EA 3473 501.646 11017 446.203 476.86 465.55 483.04 483.59 380
3060N NAm 3473 501.646 11017 446.203 476.86 465.55 483.04 484.25 380
6090N EA 3482 394.568 11952 340 372.13 364.98 379.19 385.09 440
6090N NAm 3011 324.063 11176 259.063 291.75 278.57 311.25 310.71 455
6090S SAA 2023 522.667 11788 417.333 480.17 467.29 487.63 497.04 346
Tab.3  Statistical description of data
Fig.3  Comparison of Holocene precipitation reconstructions and paleoclimate records. (a) to (d) Zonal mean precipitation reconstructions for monsoon latitude bands from this study are compared to the speleothem (Dykoski et al., 2005; Partin et al., 2007; Duan et al., 2014). Terrigenous (deMenocal et al., 2000) and Ti data (Haug et al., 2001), which are proxies for precipitation and local temperature; EASM, East Asian Summer Monsoon; AISM, Australian-Indonesian Summer Monsoon. ASM, African Summer Monsoon. (e) to (g) Zonal mean precipitation reconstructions for middle- and high-latitude bands from this study are compared to ice cores (Grootes and Stuiver, 1997), interpreted from pollen data moisture scales (Chen et al., 2008), sediment isotopes (Heikkilä et al., 2010) and sea ice cover (Stein et al., 2017a; Stein et al., 2017b). (h) to (i) Zonal mean precipitation reconstructions for Southern Hemisphere latitude bands from this study are compared to speleothem (Hardy et al., 2003; Holmgren et al., 2003) and lake CaCO3 contents (Fritz et al., 2006).
Fig.4  Global precipitation reconstruction stack and δ18O at GISDP2 plotted against calendar year.
1 N J, Abram H V, Mcgregor J E, Tierney M N, Evans N P, Mckay D S, Kaufman K, Thirumalai B, Martrat H, Goosse S J, Phipps E J, Steig K H, Kilbourne C P, Saenger J, Zinke G, Leduc J A, Addison P G, Mortyn M, Seidenkrantz M, Sicre K, Selvaraj H L, Filipsson R, Neukom J, Gergis M A J, Curran L V Gunten (2016). Early onset of industrial-era warming across the oceans and continents.Nature, 536(7617): 411–418
https://doi.org/10.1038/nature19082
2 O, Adam T, Schneider Y, Enzel J Quade (2019). Both differential and equatorial heating contributed to African monsoon variations during the mid-Holocene.Earth Planet Sci Lett, 522: 20–29
https://doi.org/10.1016/j.epsl.2019.06.019
3 C B, An F H, Chen L Barton (2008). Holocene environmental changes in Mongolia: a review.Global Planet Change, 63(4): 283–289
https://doi.org/10.1016/j.gloplacha.2008.03.007
4 Y, Asmerom V J, Polyak S J Burns (2010). Variable winter moisture in the southwestern United States linked to rapid glacial climate shifts.Nat Geosci, 3(2): 114–117
https://doi.org/10.1038/ngeo754
5 T R, Ault J E, Cole J T, Overpeck G T, Pederson D M Meko (2014). Assessing the risk of persistent drought using climate model simulations and paleoclimate data.J Clim, 27(20): 7529–7549
https://doi.org/10.1175/JCLI-D-12-00282.1
6 M, Bar-Matthews A, Ayalon M, Gilmour A, Matthews CJ Hawkesworth (2003). Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim Cosmochim Acta, 67(17): 3181–3199
7 M A, Berke T C, Johnson J P, Werne K, Grice S, Schouten J Damste (2012). Molecular records of climate variability and vegetation response since the Late Pleistocene in the Lake Victoria basin, East Africa.Quat Sci Rev, 55: 59–74
https://doi.org/10.1016/j.quascirev.2012.08.014
8 R, Boch C, Spötl J Kramers (2009). High-resolution isotope records of early Holocene rapid climate change from two coeval stalagmites of Katerloch Cave, Austria. Quat Sci Rev, 28(23):2527–2538
9 R Bonnefille, F Chalie (2000). Pollen-inferred precipitation time-series from equatorial mountains, Africa, the last 40 kyr BP. Global Planet Change, 26(1–3): 25–50
https://doi.org/10.1016/S0921-8181(00)00032-1
10 F, Bouchette M, Schuster J F, Ghienne C, Denamiel C, Roquin A, Moussa P, Marsaleix P Duringer (2010). Hydrodynamics in Holocene Lake Mega-Chad.Quat Res, 73(2): 226–236
https://doi.org/10.1016/j.yqres.2009.10.010
11 Y, Cai L, Tan H, Cheng Z, An R L, Edwards M J, Kelly X, Kong X Wang (2010). The variation of summer monsoon precipitation in central China since the last deglaciation.Earth Planet Sci Lett, 291(1–4): 21–31
https://doi.org/10.1016/j.epsl.2009.12.039
12 F H Chen, J H Chen, J Holmes, I Boomer, P Austin, J B Gates, N L Wang, S J Brooks, J W Zhang (2010). Moisture changes over the last millennium in arid central Asia: a review, synthesis and comparison with monsoon region. Quat Sci Rev, 29(7–8): 1055–1068
https://doi.org/10.1016/j.quascirev.2010.01.005
13 F H, Chen B, Cheng Y, Zhao Y, Zhu D B Madsen (2006). Holocene environmental change inferred from a high-resolution pollen record, Lake Zhuyeze, arid China.Holocene, 16(5): 675–684
https://doi.org/10.1191/0959683606hl951rp
14 F H Chen, Z C Yu, M L Yang, E Ito, S M Wang, D B Madsen, X Z Huang, Y Zhao, T Sato, H J B Birks, I Boomer, J H Chen, C B An, B Wünnemann (2008). Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat Sci Rev, 27(3–4): 351–364
https://doi.org/10.1016/j.quascirev.2007.10.017
15 F, Chen J, Chen W, Huang S, Chen X, Huang L, Jin J, Jia X, Zhang C, An J, Zhang Y, Zhao Z, Yu R, Zhang J, Liu A, Zhou S Feng (2019). Westerlies Asia and monsoonal Asia: spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales.Earth Sci Rev, 192: 337–354
https://doi.org/10.1016/j.earscirev.2019.03.005
16 S, Constantin A, Bojar S, Lauritzen J Lundberg (2007). Holocene and Late Pleistocene climate in the sub-Mediterranean continental environment: a speleothem record from Poleva Cave (Southern Carpathians, Romania). Palaeogeogr, Palaeoclimatol, Palaeoecol, 243(3): 322–338
17 J, Cosford H, Qing D, Mattey B, Eglington M Zhang (2009). Climatic and local effects on stalagmite δ13C values at Lianhua Cave, China. Palaeogeogr, Palaeoclimatol, Palaeoecol, 280(1): 235–244
18 J, Cosford H, Qing D, Yuan M, Zhang C, Holmden W, Patterson C Hai (2008). Millennial-scale variability in the Asian monsoon: evidence from oxygen isotope records from stalagmites in southeastern China. Palaeogeogr, Palaeoclimatol, Palaeoecol, 266(1): 3–12
19 K M, Costa J M, Russell H, Vogel S Bijaksana (2015). Hydrological connectivity and mixing of Lake Towuti, Indonesia in response to paleoclimatic changes over the last 60,000 years.Palaeogeogr Palaeoclimatol Palaeoecol, 417: 467–475
https://doi.org/10.1016/j.palaeo.2014.10.009
20 F W, Cruz S J, Burns I, Karmann W D, Sharp M, Vuille A O, Cardoso J A, Ferrari Dias P L, Silva O Viana (2005). Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil.Nature, 434(7029): 63–66
https://doi.org/10.1038/nature03365
21 W, Dean J, Rosenbaum G, Skipp S, Colman R, Forester A, Liu K, Simmons J Bischoff (2006). Unusual Holocene and late Pleistocene carbonate sedimentation in Bear Lake, Utah and Idaho, USA.Sediment Geol, 185: 93–112
https://doi.org/10.1016/j.sedgeo.2005.11.016
22 P deMenocal, J Ortiz, T Guilderson, J Adkins, M Sarnthein, L Baker, M Yarusinsky (2000). Abrupt onset and termination of the African Humid Period: rapid climate responses to gradual insolation forcing. Quat Sci Rev, 19(1–5): 347–361
https://doi.org/10.1016/S0277-3791(99)00081-5
23 R F, Denniston L A, González Y, Asmerom RG, Baker MK, Reagan EAI Bettis (1999a). Evidence for increased cool season moisture during the middle Holocene.Geology, 27(9): 815–818
https://doi.org/10.1130/0091-7613(1999)027<0815:EFICSM>2.3.CO;2
24 R F, Denniston L A, González R G, Baker Y, Asmerom M K, Reagan R L, Edwards E C Alexander (1999b). Speleothem evidence for Holocene fluctuations of the prairie-forest ecotone, north-central USA.The Holocene, 9(6): 671–676
https://doi.org/10.1191/095968399674716399
25 J G, Dong Y J, Wang H, Cheng B, Hardt R L, Edwards X G, Kong J Y, Wu S T, Chen D B, Liu X Y, Jiang K Zhao (2010). A high-resolution stalagmite record of the Holocene East Asian monsoon from Mt Shennongjia, central China.Holocene, 20(2): 257–264
https://doi.org/10.1177/0959683609350393
26 R, Drysdale G, Zanchetta J, Hellstrom R, Maas A E, Fallick M, Pickett I, Cartwright L Piccini (2006). Late Holocene drought responsible for the collapse of Old World civilizations is recorded in an Italian flowstone.Geology, 34: 101–104
https://doi.org/10.1130/G22103.1
27 F, Duan Y, Wang C C, Shen Y, Wang H, Cheng C C, Wu H M, Hu X, Kong D, Liu K Zhao (2014). Evidence for solar cycles in a late Holocene speleothem record from Dongge Cave, China.Sci Rep, 4(1): 5159
https://doi.org/10.1038/srep05159
28 C A Dykoski, R L Edwards, H Cheng, D X Yuan, Y J Cai, M L Zhang, Y S Lin, J M Qing, Z S An, J Revenaugh (2005). A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet Sci Lett, 233(1–2): 71–86
https://doi.org/10.1016/j.epsl.2005.01.036
29 A, Filippov F Riedel (2009). The late Holocene mollusc fauna of the Aral Sea and its biogeographical and ecological interpretation. Limnologica, 39(1): 67–85
30 D, Fleitmann SJ, Burns A, Mangini M, Mudelsee J, Kramers I, Villa U, Neff AA, Al-Subbary A, Buettner D, Hippler A Matter (2007). Holocene ITCZ and Indian monsoon dynamics recorded in stalagmites from Oman and Yemen (Socotra). Quat Sci Rev, 26(1): 170–188
31 D, Fleitmann H, Cheng S, Braun-Badertscher R, Edwards M, Mudelsee OM, Göktürk A, Fankhauser R, Pickering C, Raible A, Matter J, Kramers O Tuysuz (2009). Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophys Res Lett, 36
32 K L, Fornace K A, Hughen T M, Shanahan S C, Fritz P A, Baker S P Sylva (2014). A 60,000-year record of hydrologic variability in the Central Andes from the hydrogen isotopic composition of leaf waxes in Lake Titicaca sediments.Earth Planet Sci Lett, 408: 263–271
https://doi.org/10.1016/j.epsl.2014.10.024
33 S C, Fritz P A, Baker P, Tapia J Garland (2006). Spatial and temporal variation in cores from Lake Titicaca, Bolivia/Peru during the last 13,000yrs.Quat Int, 158(1): 23–29
https://doi.org/10.1016/j.quaint.2006.05.014
34 A, Frumkin DC, Ford HP (1999) Schwarcz . Continental oxygen isotopic record of the last 170,000 years in Jerusalem. Quat Res, 51(3): 317–372
35 M H, Gagen E, Zorita D, McCarroll M, Zahn G H F, Young I Robertson (2016). North Atlantic summer storm tracks over Europe dominated by internal variability over the past millennium.Nat Geosci, 9: 630–625
https://doi.org/10.1038/ngeo2752
36 A, Găinuşă-Bogdan D, Swingedouw P, Yiou J, Cattiaux F, Codron S Michel (2020). AMOC and summer sea ice as key drivers of the spread in mid-holocene winter temperature patterns over Europe in PMIP3 models.Global Planet Change, 184: 103055
https://doi.org/10.1016/j.gloplacha.2019.103055
37 F Gasse (2000). Hydrological changes in the African tropics since the Last Glacial Maximum.Quat Sci Rev, 19(1–5): 189–211
https://doi.org/10.1016/S0277-3791(99)00061-X
38 R B, Govindan D, Vyushin A, Bunde S, Brenner S, Havlin H J Schellnhuber (2002). Global climate models violate scaling of the observed atmospheric variability.Phys Rev Lett, 89(2): 028501
https://doi.org/10.1103/PhysRevLett.89.028501
39 M L, Griffiths R N, Drysdale M K, Gagan J X, Zhao L K, Ayliffe J C, Hellstrom W S, Hantoro S, Frisia Y X, Feng I, Cartwright E S, Pierre M J, Fischer B W Suwargadi (2009). Increasing Australian-Indonesian monsoon rainfall linked to early Holocene sea-level rise.Nat Geosci, 2(9): 636–639
https://doi.org/10.1038/ngeo605
40 P M, Grootes M Stuiver (1997). Oxygen 18/16 variability in Greenland snow and ice with 10−3- to 105-year time resolution.J Geophys Res, 102(C12): 26455–26470
https://doi.org/10.1029/97JC00880
41 B, Hardt H D, Rowe G S, Springer H, Cheng R L Edwards (2010). The seasonality of east central North American precipitation based on three coeval Holocene speleothems from southern West Virginia.Earth Planet Sci Lett, 295(3–4): 342–348
https://doi.org/10.1016/j.epsl.2010.04.002
42 D R, Hardy M, Vuille R S Bradley (2003). Variability of snow accumulation and isotopic composition on Nevado Sajama, Bolivia.J Geophys Res-Atmosph, 108(D22): 2003JD003623
https://doi.org/10.1029/2003jd003623
43 G H, Haug K A, Hughen D M, Sigman L C, Peterson U Röhl (2001). Southward migration of the intertropical convergence zone through the Holocene.Science, 293(5533): 1304–1308
https://doi.org/10.1126/science.1059725
44 M Heikkilä, T Edwards W D, H Seppä, E Sonninen (2010). Sediment isotope tracers from Lake Saarikko, Finland, and implications for Holocene hydroclimatology. Quat Sci Rev, 29(17–18): 2146–2160
45 D, Hodell J, Curtis M Brenner (1995). Possible Role of Climate in the Collapse of Classic Maya Civilization.Nature, 375: 391–394
https://doi.org/10.1038/375391a0
46 K Holmgren, J A Lee-Thorp, G R J Cooper, K Lundblad, T C Partridge, L Scott, R Sithaldeen, A S Talma, P D Tyson (2003). Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quat Sci Rev, 22(21–22): 2311–2326
https://doi.org/10.1016/S0277-3791(03)00204-X
47 P O, Hopcroft P J, Valdes A B, Harper D J Beerling (2017). Multi vegetation model evaluation of the Green Sahara climate regime.Geophys Res Lett, 44(13): 6804–6813
https://doi.org/10.1002/2017GL073740
48 C, Hu G, Henderson J, Huang C, Zhenghong J Kathleen (2008). Report of a three-year monitoring programme at Heshang Cave, Central China. Int J Speleol, 37
49 J, Ji J, Shen W, Balsam J, Chen L, Liu X Liu (2005). Asian monsoon oscillations in the northeastern Qinghai–Tibet Plateau since the late glacial as interpreted from visible reflectance of Qinghai Lake sediments. Earth Planet Sci Lett, 233(1): 61–70
50 Y H, Jia D W, Li M, Yu X C, Zhao R, Xiang G X, Li H L, Zhang M X Zhao (2019). High- and low-latitude forcing on the south Yellow Sea surface water temperature variations during the Holocene.Global Planet Change, 182: 103025
https://doi.org/10.1016/j.gloplacha.2019.103025
51 T C, Johnson E T, Brown J, McManus S, Barry P, Barker F Gasse (2002). A high-resolution paleoclimate record spanning the past 25000 Years in southern East Africa.Science, 296(5565): 113–132
https://doi.org/10.1126/science.1070057
52 A, Kaufman M, Bar-Matthews A, Ayalon I Carmi (2003). The vadose flow above Soreq Cave, Israel: a tritium study of the cave waters. J Hydrol (Amst), 273(1): 155–163
53 M S, Lachniet Y, Asmerom S J, Burns W P, Patterson V J, Polyak G O Seltzer (2004). Tropical response to the 8200 yr B.P. cold event?.Speleothem isotopes indicate a weakened early Holocene monsoon in Costa Rica. Geology, 32(11): 957–960
https://doi.org/10.1130/G20797.1
54 MS, Lachniet L, Johnson Y, Asmerom SJ, Burns V, Polyak WP, Patterson L, Burt A Azouz (2009). Late Quaternary moisture export across Central America and to Greenland: evidence for tropical rainfall variability from Costa Rican stalagmites. Quat Sci Rev, 28(27): 3348–3360
55 T, Laepple P Huybers (2014). Ocean surface temperature variability: large model-data differences at decadal and longer periods.Proc Natl Acad Sci USA, 111(47): 16682–16687
https://doi.org/10.1073/pnas.1412077111
56 D W, Lea D K, Pak H J Spero (2000). Climate impact of late Quaternary equatorial pacific sea surface temperature variations.Science, 289(5485): 1719–1724
https://doi.org/10.1126/science.289.5485.1719
57 A N, LeGrande G A Schmidt (2009). Sources of Holocene variability of oxygen isotopes in paleoclimate archives.Clim Past, 5(3): 441–455
https://doi.org/10.5194/cp-5-441-2009
58 Y, Li N, Wang H, Cheng H, Long Q Zhao (2009). Holocene environmental change in the marginal area of the Asian monsoon: a record from Zhuye Lake, NW China.Boreas, 38(2): 349–361
https://doi.org/10.1111/j.1502-3885.2008.00063.x
59 Y, Li N, Wang X, Zhou C, Zhang Y Wang (2014). Synchronous or asynchronous Holocene Indian and East Asian summer monsoon evolution: a synthesis on Holocene Asian summer monsoon simulations, records and modern monsoon indices.Global Planet Change, 116(5): 30–40
https://doi.org/10.1016/j.gloplacha.2014.02.005
60 Y, Li L M Xu (2016). Asynchronous Holocene Asian monsoon vapor transport and precipitation.Palaeogeogr Palaeoclimatol Palaeoecol, 461: 195–200
https://doi.org/10.1016/j.palaeo.2016.08.024
61 Y, Li L, Xu C, Zhang Y, Liu G, Zhu X Zhou (2018). Temporal and spatial evolution of Holocene vegetation and lake hydrological status, China.Holocene, 28(5): 706–720
https://doi.org/10.1177/0959683617744260
62 J W, Magee G H, Miller N A, Spooner D Questiaux (2004). Continuous 150 k.y. monsoon record from Lake Eyre, Australia: Insolation-forcing implications and unexpected Holocene failure.Geology, 32(10): 885–888
https://doi.org/10.1130/G20672.1
63 J M, Majewski A D, Switzer A J, Meltzner P R, Parham B P, Horton S L, Bradley J, Pile H W, Chiang X F, Wang C T, Ng J, Tanzil M, Muller A Mujahid (2018). Holocene relative sea-level records from coral microatolls in Western Borneo, South China Sea.Holocene, 28(9): 1431–1442
https://doi.org/10.1177/0959683618777061
64 D McGee (2020). Glacial-interglacial precipitation changes.Annu Rev Mar Sci, 12(1): 525–557
https://doi.org/10.1146/annurev-marine-010419-010859
65 U, Neff SJ, Burns A, Mangini M, Mudelsee D, Fleitmann A Matter (2001). Strong coherence between solar variability and the monsoon in Oman between 9 and 6 kyr ago.Nature, 411(6835): 290–293
https://doi.org/10.1038/35077048
66 CG, Oviatt DB, Madsen DM, Miller RS, Thompson JP McGeehin (2015). Early Holocene Great Salt Lake, USA.Quat Res, 84(1): 57–68
https://doi.org/10.1016/j.yqres.2015.05.001
67 L A, Parsons G R, Loope J T, Overpeck T R, Ault R, Stouffer J E Cole (2017). Temperature and precipitation variance in CMIP5 simulations and paleoclimate records of the Last Millennium.J Clim, 30(22): 8885–8912
https://doi.org/10.1175/JCLI-D-16-0863.1
68 J W, Partin K M, Cobb J F, Adkins B, Clark D P Fernandez (2007). Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum.Nature, 449(7161): 452–455
https://doi.org/10.1038/nature06164
69 F S R, Pausata Q, Zhang F, Muschitiello Z, Lu L, Chafik E M, Niedermeyer J C, Stager K M, Cobb Z Liu (2017). Greening of the Sahara suppressed ENSO activity during the mid-Holocene.Nat Commun, 8(1): 16020
https://doi.org/10.1038/ncomms16020
70 P, Repinski K, Holmgren S E, Lauritzen J A Lee-Thorp (1999). A late Holocene climate record from a stalagmite, Cold Air Cave, Northern Province, South Africa. Palaeogeogr, Palaeoclimatol, Palaeoecol, 150(3): 269–277
71 R D, Ricketts T C, Johnson E T, Brown K A, Rasmussen V V Romanovsky (2001). The Holocene paleolimnology of Lake Issyk-Kul, Kyrgyzstan: trace element and stable isotope composition of ostracodes. Palaeogeogr, Palaeoclimatol, Palaeoecol, 176(1): 207–227
72 J, Schewe A Levermann (2017). Non-linear intensification of Sahel rainfall as a possible dynamic response to future warming.Earth Syst Dyn, 8(3): 495–505
https://doi.org/10.5194/esd-8-495-2017
73 L Scott (1999). Vegetation history and climate in the Savanna biome South Africa since 190,000 ka: a comparison of pollen data from the Tswaing Crater (the Pretoria Saltpan) and Wonderkrater. Quat Int, 57–58: 215–223
https://doi.org/10.1016/S1040-6182(98)00062-7
74 JD, Shakun SJ, Burns D, Fleitmann J, Kramers A, Matter A (2007) Al-Subary . A high-resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen. Earth Planet Sci Lett, 259(3): 442–456
75 P A, Shaw M D, Bateman D S G, Thomas F Davies (2003). Holocene fluctuations of Lake Ngami, Middle Kalahari: chronology and responses to climatic change. Quat Int, 111(1):23–35
76 J, Shi Q Yan (2019). Evolution of the Asian-African monsoonal precipitation over the last 21 kyr and the associated dynamic mechanisms.J Clim, 32(19): 6551–6569
https://doi.org/10.1175/JCLI-D-19-0074.1
77 J Smagorinsky (1963). General circulation experiments with the primitive equations.Mon Weather Rev, 91(3): 99–164
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
78 G, Springer H, Rowe B, Hardt R, Edwards H Cheng (2008). Solar forcing of Holocene droughts in a stalagmite record from West Virginia in east-central North America. Geophys Res Lett, 35
79 N D, Stansell D T, Rodbell J M, Licciardi C M, Sedlak A D, Schweinsberg E G, Huss G M, Delgado S H, Zimmerman RC Finkel (2015). Late Glacial and Holocene glacier fluctuations at Nevado Huaguruncho in the Eastern Cordillera of the Peruvian Andes.Geology, 43(8): 747–750
https://doi.org/10.1130/G36735.1
80 R, Stein K, Fahl P, Gierz F, Niessen G Lohmann (2017a). Arctic Ocean sea ice cover during the penultimate glacial and the Last Interglacial.Nat Commun, 8(1): 373
https://doi.org/10.1038/s41467-017-00552-1
81 R, Stein K, Fahl I, Schade A, Manerung S, Wassmuth F, Niessen S I Nam (2017b). Holocene variability in sea ice cover, primary production, and Pacific-water inflow and climate change in the Chukchi and East Siberian Seas (Arctic Ocean).J Quaternary Sci, 32(3): 362–379
https://doi.org/10.1002/jqs.2929
82 T F, Stocker S J Johnsen (2003). A minimum thermodynamic model for the bipolar seesaw.Paleoceanography, 18(4): 1087
https://doi.org/10.1029/2003PA000920
83 J E, Tierney C C, Ummenhofer P B deMenocal (2015). Past and future rainfall in the Horn of Africa.Sci Adv, 1(9): e1500682
https://doi.org/10.1126/sciadv.1500682
84 JE, Tierney JM, Russell Y, Huang JSS, Damsté EC, Hopmans AS Cohen (2008). Northern Hemisphere Controls on Tropical Southeast African Climate During the Past 60,000 Years.Science, 322(5899): 252–255
https://doi.org/10.1126/science.1160485
85 A, Vaks M, Bar-Matthews A, Ayalon B, Schilman M, Gilmour CJ, Hawkesworth A, Frumkin A, Kaufman A Matthews (2003). Paleoclimate reconstruction based on the timing of speleothem growth and oxygen and carbon isotope composition in a cave located in the rain shadow in Israel. Quat Res, 59(2): 182–193
86 Breukelen MR, van HB, Vonhof JC, Hellstrom WCG, Wester D Kroon (2008). Fossil dripwater in stalagmites reveals Holocene temperature and rainfall variation in Amazonia. Earth Planet Sci Lett, 275(1): 54–60
87 C J, Vörösmarty P, Green J, Salisbury R B Lammers (2000). Global water resources: vulnerability from climate change and population growth.Science, 289(5477): 284–288
https://doi.org/10.1126/science.289.5477.284
88 J D M, Wagner J E, Cole J W, Beck P J, Patchett G M, Henderson H R Barnett (2010). Moisture variability in the southwestern United States linked to abrupt glacial climate change.Nat Geosci, 3(2): 110–113
https://doi.org/10.1038/ngeo707
89 X F, Wang A S, Auler R L, Edwards H, Cheng E, Ito Y J, Wang X G, Kong M Solheid (2007). Millennial-scale precipitation changes in southern Brazil over the past 90,000 years.Geophys Res Lett, 34: L23701
https://doi.org/10.1029/2007GL031149
90 Y J, Wang H, Cheng R L, Edwards Z S, An J Y, Wu C C, Shen J A Dorale (2001). A high - resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China.Science, 294(5550): 2345–2348
https://doi.org/10.1126/science.1064618
91 Y, Wang H, Cheng R L, Edwards Y, He X, Kong Z, An J, Wu M J, Kelly C A, Dykoski X Li (2005). The Holocene Asian monsoon: links to solar changes and North Atlantic Climate.Science, 308(5723): 854–857
https://doi.org/10.1126/science.1106296
92 Y, Wang H, Cheng R L, Edwards X, Kong X, Shao S, Chen J, Wu X, Jiang X, Wang Z An (2008). Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000 years.Nature, 451(7182): 1090–1093
https://doi.org/10.1038/nature06692
93 J P, Werne D J, Hollander T W, Lyons L C Peterson (2000). Climate-induced variations in productivity and planktonic ecosystem structure from the Younger Dryas to Holocene in the Cariaco Basin, Venezuela.Paleoceanography, 15(1): 19–29
https://doi.org/10.1029/1998PA000354
94 P W, Williams H L, Neil J X Zhao (2010). Age frequency distribution and revised stable isotope curves for New Zealand speleothems: palaeoclimatic implications.Int J Speleol, 39(2): 99–112
https://doi.org/10.5038/1827-806X.39.2.5
95 Q, Xia J, Zhao KD Collerson (2001). Early-Mid Holocene climatic variations in Tasmania, Australia: multi-proxy records in a stalagmite from Lynds Cave. Earth Planet Sci Lett, 194(1): 177–187
96 D, Xu H, Lu N, Wu Z, Liu T, Li C, Shen L Wang (2013). Asynchronous marine-terrestrial signals of the last deglacial warming in East Asia associated with low- and high-latitude climate changes.Proc Natl Acad Sci USA, 110(24): 9657–9662
https://doi.org/10.1073/pnas.1300025110
97 G, Yancheva N R, Nowaczyk J, Mingram P, Dulski G, Schettler J F W, Negendank J, Liu D M, Sigman L C, Peterson GH Haug (2007). Influence of the intertropical convergence zone on the East Asian monsoon.Nature, 445(7123): 74–77
https://doi.org/10.1038/nature05431
98 H, Yang K R, Johnson M L, Griffiths K Yoshimura (2016). Interannual controls on oxygen isotope variability in Asian monsoon precipitation and implications for paleoclimate reconstructions.J Geophys Res Atmos, 121(14): 8410–8428
https://doi.org/10.1002/2015JD024683
99 W, Yang R, Seager M A, Cane B. Lyon (2014). The East African long rains in observations and models.J Clim, 27(19): 7185–7202
https://doi.org/10.1175/JCLI-D-13-00447.1
100 Y, Yang D X, Yuan H, Cheng M L, Zhang J M, Qin Y S, Lin X Y, Zhu R L Edwards (2010). Precise dating of abrupt shifts in the Asian Monsoon during the last deglaciation based on stalagmite data from Yamen Cave, Guizhou Province, China.Sci China Earth Sci, 53(5): 633–641
https://doi.org/10.1007/s11430-010-0025-z
101 D, Yuan H, Cheng R L, Edwards C A, Dykoski M J, Kelly M, Zhang J, Qing Y, Lin Y, Wang J, Wu J A, Dorale Z, An Y Cai (2004). Timing, Duration, and Transitions of the Last Interglacial Asian Monsoon.Science, 304(5670): 575–578
https://doi.org/10.1126/science.1091220
102 F, Zhu J, Emile-Geay N P, McKay G J, Hakim D, Khider T R, Ault E J, Steig S, Dee J W Kirchner (2019). Climate models can correctly simulate the continuum of global-average temperature variability.Proc Natl Acad Sci USA, 116(18): 8728–8733
https://doi.org/10.1073/pnas.1809959116
103 J A, Zwart S D, Sebestyen C T, Solomon S E Jones (2017). The influence of hydrologic residence time on lake carbon cycling dynamics following extreme precipitation events.Ecosystems, 20(5): 1000–1014
https://doi.org/10.1007/s10021-016-0088-6
[1] FES-22047-OF-LY_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed