Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2024, Vol. 18 Issue (1) : 98-111    https://doi.org/10.1007/s11707-022-1048-4
Large eddy simulation of flow over a three-dimensional hill with different slope angles
Liang LI1, Deqian ZHENG1,2,3(), Guixiang CHEN1,2,3, Pingzhi FANG4, Wenyong MA5, Shengming TANG4
1. School of Civil Engineering, Henan University of Technology, Zhengzhou 450001, China
2. Henan International Joint Laboratory of Modern Green Ecological Storage System, Zhengzhou 450001, China
3. Henan Key Laboratory of Grain Storage Facility and Safety, Zhengzhou 450001, China
4. Shanghai Typhoon Institute of China Meteorological Administration, Shanghai 200030, China
5. Wind Engineering Research Center, Shijiazhuang Tiedao University, Shijiazhuang 050043, China
 Download: PDF(8076 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Slope variation will significantly affect the characteristics of the wind field around a hill. This paper conducts a large-eddy simulation (LES) on an ideal 3D hill to study the impact of slope on wind field properties. Eight slopes ranging from 10° to 45° at 5° intervals are considered, which covers most conventional hill slopes. The inflow turbulence for the LES is generated by adopting a modified generation method that combines the equilibrium boundary conditions with the Fluent inherent vortex method to improve the simulation accuracy. The time-averaged flow field and the instantaneous vortex structure under the eight slopes are comparatively analyzed. The accuracy of the present method is verified by comparison with experimental data. The slope can affect both the mean and fluctuating wind flow fields around the 3D hill, especially on the hilltop and the leeward side, where a critical slope of 25° can be observed. The fluctuating wind speeds at the tops of steep hills (with slope angles beyond 25°) decrease with increasing slope, while the opposite phenomenon occurs on gentle hills. With increasing slope, the energy of the high-speed descending airflow is enhanced and pushes the separated flow closer to the hill surface, resulting in increased wind speed near the wall boundary on the leeward side and inhibiting the development of turbulence. The vortex shedding trajectory in the wake region becomes wider and longer, suppressing the growth of the mean wind near the wall boundary and enhancing the turbulence intensity.

Keywords large eddy simulation      inflow turbulence      topographic wind field      critical slope      flow mechanism     
Corresponding Author(s): Deqian ZHENG   
Online First Date: 10 August 2023    Issue Date: 15 July 2024
 Cite this article:   
Liang LI,Deqian ZHENG,Guixiang CHEN, et al. Large eddy simulation of flow over a three-dimensional hill with different slope angles[J]. Front. Earth Sci., 2024, 18(1): 98-111.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1048-4
https://academic.hep.com.cn/fesci/EN/Y2024/V18/I1/98
Parameters u*/(m?s−1) z0/m C1 C2
Fitted values 0.511 0.000225 −0.41889 0.42874
Tab.1  Fitting values of wind farm parameters
Fig.1  Schematic diagram of the mountain shape.
Fig.2  Computational domain of the numerical model.
Fig.3  Mesh distributions of the numerical model: (a) vertical plane grid and (b) horizontal plane grid.
Case Computational domain Total number of grids Minimum mesh size
kfit_Mesh-1 23L(x) × 6L(y) × 6L(z) 976500 0.0003L
kfit_Mesh-2 23L(x) × 6L(y) × 6L(z) 1904000 0.0001L
Iufit_Mesh-1 23L(x) × 6L(y) × 6L(z) 976500 0.0003L
Tab.2  Grid resolution
Fig.4  Comparisons of (a) normalized mean velocity and turbulence intensity profiles and (b) fluctuating wind speed spectrum.
Fig.5  Comparisons of the mean wind profiles (a) and turbulence intensity profiles (b) between results of large eddy simulation and wind tunnel test.
Fig.6  Time-averaged streamline of three-dimensional hills with different slopes. (a) 10°, (b) 15°, (c) 21.8°, (d) 25°, (e) 30°, (f) 35°, (g) 40°, and (h) 45° on the longitudinal section of y = 0.
Fig.7  Schematic diagram of the measurement point locations.
Fig.8  Profiles of the normalized mean velocities for the flow over 3D hill at different slopes. (a) x/L = −1.0, (b) x/L = −0.5, (c) x/L = 0, (d) x/L = 0.5, (e) x/L = 1.0, (f) x/L = −1.5, (g) x/L = 2.0, and (h) x/L = 2.5.
Fig.9  Profiles of the normalized fluctuating wind velocities for the flow over 3D hill at different slopes. (a) x/L = −1.0, (b) x/L = −0.5, (c) x/L = 0, (d) x/L = 0.5, (e) x/L = 1.0, (f) x/L = −1.5, (g) x/L = 2.0, and (h) x/L = 2.5.
Fig.10  Instantaneous vortex structure with Q = 1000 for different slopes. (a) 10°, (b) 15°, (c) 21.8°, (d) 25°, (e) 30°, (f) 35°, (g) 40°, and (h) 45°.
Model x/L z/L
10° 0.54 0.19
15° 0.44 0.2
21.8° 0.49 0.32
25° 0.5 0.38
30° 0.55 0.45
35° 0.58 0.5
40° 0.65 0.55
45° 0.75 0.6
Tab.3  Vortex core coordinates
1 H, Aboshosha A, Elshaer G T, Bitsuamlak Damatty A El (2015). Consistent inflow turbulence generator for les evaluation of wind-induced responses for tall buildings.J Wind Eng Ind Aerodyn, 142: 198–216
https://doi.org/10.1016/j.jweia.2015.04.004
2 S Cao, W Tong, Y Ge, Y Tamura (2012). Numerical study on turbulent boundary layers over two-dimensional hills-effects of surface roughness and slope. J Wind Eng Ind Aerodyn, (104–106): 342–349
3 H G, Castro R R Paz (2013). A time and space correlated turbulence synthesis method for large eddy simulations.J Comput Phys, 235: 742–763
https://doi.org/10.1016/j.jcp.2012.10.035
4 Mello P E B, de J I. Yanagihara (2010). Numerical prediction of gas concentrations and fluctuations above a triangular hill within a turbulent boundary layer.J Wind Eng Ind Aerodyn, 98(2): 113–119
https://doi.org/10.1016/j.jweia.2009.10.002
5 B G Debray (1973). Atmospheric shear flows over ramps and escarpments.Industrial Aerodynamics Abstracts, 9: 1–4
6 P Z, Fang D Q, Zheng L, Li W Y, Ma S M Tang (2019). Numerical and experimental study of the aerodynamic characteristics around two-dimensional terrain with different slope angles.Front Earth Sci, 13(4): 705–720
https://doi.org/10.1007/s11707-019-0790-8
7 A D, Ferreira A, Lopes D X, Viegas A Sousa (1995). Experimental and numerical simulation of flow around two-dimensional hills.J Wind Eng Ind Aerodyn, 54(94): 173–181
https://doi.org/10.1016/0167-6105(94)00040-K
8 J J, Finnigan S E Belcher (2004). Flow over a hill covered with a plant canopy.Q J R Meteorol Soc, 130(596): 1–29
https://doi.org/10.1256/qj.02.177
9 R G J, Flay A B, King M, Revell P, Carpenter R, Turner P, Cenek Pirooz A A Safaei (2019). Wind speed measurements and predictions over belmont hill, wellington, new zealand.J Wind Eng Ind Aerodyn, 195: 104018
https://doi.org/10.1016/j.jweia.2019.104018
10 A P Garcia Sagrado, van Beeck J, P Rambaud, D Olivari (2002). Numerical and experimental modelling of pollutant dispersion in a street canyon. J Wind Eng Ind Aerodyn, 90(4–5): 321–339
https://doi.org/10.1016/S0167-6105(01)00215-X
11 5009-2012 GB (2012). Load code for the design of building structures. Ministry of Construction, China (in Chinese)
12 M, Germano U, Piomelli P, Moin W H Cabot (1991). A dynamic subgrid scale eddy viscosity model.Phys Fluids A Fluid Dyn, 3(7): 1760–1765
https://doi.org/10.1063/1.857955
13 W Gong, A Ibbetson (1989). A wind tunnel study of turbulent flow over model hills. Boundary-Layer Meteorol, 49(1–2): 113–148
https://doi.org/10.1007/BF00116408
14 Y C, He J Y, He W C, Chen P W, Chan J Y, Fu Q S Li (2020). Insights from Super Typhoon Mangkhut (1822) for wind engineering practices.J Wind Eng Ind Aerodyn, 203: 104238
https://doi.org/10.1016/j.jweia.2020.104238
15 F E Hewer (1998). Non-linear numerical model predictions of flow over an isolated hill of moderate slope.Boundary-Layer Meteorol, 87(3): 381–408
https://doi.org/10.1023/A:1000944817965
16 P, Hu Y, Li Y, Han S C S, Cai X Xu (2016). Numerical simulations of the mean wind speeds and turbulence intensities over simplified gorges using the sst k-ω turbulence model.Eng Appl Comput Fluid Mech, 10(1): 359–372
https://doi.org/10.1080/19942060.2016.1169947
17 G Q, Huang Y, Jiang LL, Peng G, Solari H L, Liao M S Li (2019). Characteristics of intense winds in mountain area based on field measurement: focusing on thunderstorm winds.J Wind Eng Ind Aerodyn, 190: 166–182
https://doi.org/10.1016/j.jweia.2019.04.020
18 J C R, Hunt S, Leibovich K J Richards (1988). Turbulent shear flows over low hills.Q J R Meteorol Soc, 114(484): 1435–1470
https://doi.org/10.1002/qj.49711448405
19 S, Iizuka H Kondo (2004). Performance of various sub-grid scale models in large-eddy simulations of turbulent flow over complex terrain.Atmos Environ, 38(40): 7083–7091
https://doi.org/10.1016/j.atmosenv.2003.12.050
20 T, Ishihara Y, Fujino K Hibi (2001). A wind tunnel study of separated flow over a two-dimensional ridge and a circular hill.J Wind Eng Ind Aerodyn, 89: 573–576
21 T, Ishihara K Hibi (2002). Numerical study of turbulent wake flow behind a three-dimensional steep hill.Wind Struct, 5: 317–328
https://doi.org/10.12989/was.2002.5.2_3_4.317
22 T, Ishihara K, Hibi S Oikawa (1999). Wind tunnel study of turbulent flow over a three-dimensional steep hill.J Wind Eng Ind Aerodyn, 83: 95–107
https://doi.org/10.1016/S0167-6105(99)00064-1
23 P S, Jackson J Hunt (1975). Turbulent wind flow over a low hill.Q J R Meteorol Soc, 101(430): 929–955
https://doi.org/10.1002/qj.49710143015
24 H G, Kim C M, Lee H C, Lim N H Kyong (1997). An experimental and numerical study on the flow over two-dimensional hills.J Wind Eng Ind Aerodyn, 66(1): 17–33
https://doi.org/10.1016/S0167-6105(97)00007-X
25 J J, Kim J J, Baik H Y Chun (2001). Two-dimensional numerical modeling of flow and dispersion in the presence of hill and buildings.J Wind Eng Ind Aerodyn, 89(10): 947–966
https://doi.org/10.1016/S0167-6105(01)00092-7
26 K Kondo, M Tsuchiya, S Sanada (2002). Evaluation of effect of micro-topography on design wind velocity. J Wind Eng Ind Aerodyn, 90(12–15): 1707–1718
https://doi.org/10.1016/S0167-6105(02)00281-7
27 D K Lilly (1992). A proposed modification of the Germano subgrid-scale closure method.Phys Fluids A Fluid Dyn, 4(3): 633–635
https://doi.org/10.1063/1.858280
28 Z, Liu T, Ishihara T, Tanaka X He (2016). LES study of turbulent flow fields over a smooth 3-d hill and a smooth 2-d ridge.J Wind Eng Ind Aerodyn, 153: 1–12
https://doi.org/10.1016/j.jweia.2016.03.001
29 J B R, Loureiro A T P, Alho Freire A P Silva (2008). The numerical computation of near-wall turbulent flow over a steep hill.J Wind Eng Ind Aerodyn, 96(5): 540–561
https://doi.org/10.1016/j.jweia.2008.01.011
30 F Cokljat D, Mathey J P, Bertoglio E Sergent (2006). Assessment of the vortex method for large eddy simulation inlet conditions.Prog Comput Fluid Dy, 6(1–3): 58–67
31 J R, Pearse D, Lindley D C Stevenson (1981). Wind flow over ridges in simulated atmospheric boundary layers.Boundary-Layer Meteorol, 21(1): 77–92
https://doi.org/10.1007/BF00119369
32 J Smagorinsky (1963). General circulation experiments with the primitive equations.Mon Weather Rev, 91: 99–164
https://doi.org/10.1175/1520-0493(1963)0912.3.CO;2
33 R I Sykes (1980). An asymptotic theory of incompressible turbulent boundary layer flow over a small hump.J Fluid Mech, 101(3): 647–670
https://doi.org/10.1017/S002211208000184X
34 T, Takahashi T, Ohtsu M F, Yassin S, Kato S Murakami (2002). Turbulence characteristics of wind over a hill with a rough surface.J Wind Eng Ind Aerodyn, 90(12–15): 1697–1706
35 T Tamura (2008). Towards practical use of LES in wind engineering. J Wind Eng Ind Aerodyn, 96(10–11): 1451–1471
https://doi.org/10.1016/j.jweia.2008.02.034
36 T, Tamura A, Okuno Y Sugio (2007). LES analysis of turbulent boundary layer over 3D steep hill covered with vegetation.J Wind Eng Ind Aerodyn, 95: 1463–1475
https://doi.org/10.1016/j.jweia.2007.02.014
37 T Uchida (2018). Large-eddy simulation and wind tunnel experiment of airflow over bolund hill.Open J Fluid Dyn, 8(1): 30–43
https://doi.org/10.4236/ojfd.2018.81003
38 N Wood (2000). Wind flow over complex terrain: a historical perspective and the prospect for large-eddy modelling. Boundary-Layer Meteorol, 96(1–2): 11–32
https://doi.org/10.1023/A:1002017732694
39 N, Wood P Mason (1993). The pressure force induced by neutral, turbulent flow over hills.Q J R Meteorol Soc, 119(514): 1233–1267
https://doi.org/10.1002/qj.49711951402
40 M G, Wurtele R D, Sharman A Datta (1996). Atmospheric Lee Waves.Annu Rev Fluid Mech, 28(1): 429–476
https://doi.org/10.1146/annurev.fl.28.010196.002241
41 D Xu, P A Taylor (1992). A non-linear extension of the mixed spectral finite difference model for neutrally stratified turbulent flow over topography. Boundary-Layer Meteorol, 59(1–2): 177–186
https://doi.org/10.1007/BF00120693
42 Q S, Yang T, Zhou B W, Yan M, Liu Phuc P, Van Z R Shu (2021). LES study of topographical effects of simplified 3D hills with different slopes on abl flows considering terrain exposure conditions.J Wind Eng Ind Aerodyn, 210: 104513
https://doi.org/10.1016/j.jweia.2020.104513
43 Q S, Yang T, Zhou B W, Yan Phuc P, Van W C Hu (2020). LES study of turbulent flow fields over hilly terrains – comparisons of inflow turbulence generation methods and sgs models.J Wind Eng Ind Aerodyn, 204: 104230
https://doi.org/10.1016/j.jweia.2020.104230
44 Y, Yang M, Gu S Q, Chen X Y Jin (2009). New inflow boundary conditions for modelling the neutral equilibrium atmospheric boundary layer in computational wind engineering.J Wind Eng Ind Aerodyn, 97(2): 88–95
https://doi.org/10.1016/j.jweia.2008.12.001
45 Y, Yu Y, Yang Z Xie (2018). A new inflow turbulence generator for large eddy simulation evaluation of wind effects on a standard high-rise building.Build Environ, 138: 300–313
https://doi.org/10.1016/j.buildenv.2018.03.059
46 D Q, Zheng A S, Zhang M Gu (2012). Improvement of inflow boundary condition in large eddy simulation of flow around tall building.Eng Appl Comput Fluid Mech, 6(4): 633–647
https://doi.org/10.1080/19942060.2012.11015448
[1] Pingzhi FANG, Deqian ZHENG, Liang LI, Wenyong MA, Shengming TANG. Numerical and experimental study of the aerodynamic characteristics around two-dimensional terrain with different slope angles[J]. Front. Earth Sci., 2019, 13(4): 705-720.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed