Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2024, Vol. 18 Issue (2) : 296-311    https://doi.org/10.1007/s11707-022-1057-3
Geochemical characteristics, generation, and evolution mechanism of coalbed methane in the south-western Ordos Basin, China
Yabing LIN1,2,3(), Yong QIN2, Dongmin MA1,3, Shengquan WANG1,3
1. College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China
2. Key Laboratory of Coalbed Methane Resource and Reservoir Formation Process (the Ministry of Education), China University of Mining and Technology, Xuzhou 221008, China
3. Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi’an 710054, China
 Download: PDF(7424 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The south-western Ordos Basin is rich in low-middle rank coalbed methane (CBM) resources; while the geochemical characteristics and genetic mechanism of CBM are not clear. Herein, according to geological and geochemical test data from gas and coal seam water from CBM wells in Bingchang, Jiaoxun, Huangling, Yonglong, and Longdong minging areas, we systematically studied the geochemical characteristics, generation, and evolution mechanism of CBM in Jurassic Yan’an Formation in the south-western Ordos Basin. The results show that the CH4 content of whole gas is in the range of 42.01%–94.72%. The distribution ranges of the δ13C-CH4 value is −87.2‰ to −32.5‰, indicating diverse sources of thermogenic gas and biogenic gas. The microbial methane is mainly generated by a CO2 reduction pathway, with certain methyl-type fermentation spots. The δ13C-CH4 has a positive correlation with burial depth, indicating the obvious fractionation of CBM. The relationship between the genetic types and burial depth of the CBM reservoir indicates that the favorable depth of secondary biogenic gas is less than 660 m. The Late Cretaceous Yanshanian Movement led to the uplift of the Ordos Basin, and a large amount of thermogenic gas escaped from the edge of the basin. Since the Paleogene Period, the coal reservoir in the basin margin has received recharge from atmospheric precipitation, which is favorable for the formation of secondary biogenic methane. The deep area, generally under 1000 m, mainly contains residual thermogenic gas. The intermediate transition zone is mixed gas. Constrained by the tectonic background, the genetic types of CBM in different mining areas are controlled by the coupling of burial depth, coal rank, and hydrogeological conditions. The Binchang mining area contains biogenic gas, and the development of CBM has achieved initial success, indicating that similar blocks with biogenic gas formation conditions is key to the efficient development of CBM. The research results provide a scientific basis for searching for favorable exploration areas of CBM in the south-western Ordos Basin.

Keywords coalbed methane      stable isotopes      geochemistry      generation and evolution mechanism      Ordos Basin     
Corresponding Author(s): Yabing LIN   
About author:

Chunqi Yang contributed equally to this work.

Online First Date: 08 March 2024    Issue Date: 19 July 2024
 Cite this article:   
Yabing LIN,Yong QIN,Dongmin MA, et al. Geochemical characteristics, generation, and evolution mechanism of coalbed methane in the south-western Ordos Basin, China[J]. Front. Earth Sci., 2024, 18(2): 296-311.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1057-3
https://academic.hep.com.cn/fesci/EN/Y2024/V18/I2/296
Fig.1  Burial depth and vitrinite reflectance contour of coal seam in the southwestern Ordos Basin; AA′ is the cross section from west to east; BB′ is the cross section from south to north.
Fig.2  A geologic cross section of the Yan’an Formation along the A-A′ line (the section line can be found in Fig. 1).
Mining areaWellCoal seamBurial depth/mGas component/%Dryness indexGas content/(m3·t?1)
CH4CO2N2C2+
YonglongYC1YC1273770.721.0721.476.740.911.28
376372.890.6123.213.300.961.73
YC2259275.420.5424.010.231.002.04
YC3257475.150.4624.030.301.001.77
ZC01ZC01230776.850.5620.861.740.980.15
333575.200.6623.161.000.990.64
ZC02360868.961.0328.681.330.980.41
BinchangDFS-14up477nnnnn0.72
451355.313.3041.3901.001.19
DFS-24up57588.330.3211.340.011.002.66
459689.800.409.790.011.003.65
DFS-34up53986.390.5813.020.011.002.83
456886.600.8212.5801.002.45
DFS-44up48668.524.5426.9401.001.79
449969.604.6525.7501.001.97
DFS-1524up50652.761.8345.0001.000.47
452267.411.0631.5201.000.73
DFS-1324up45974.060.9225.0601.000.86
447772.491.5426.0001.001.34
JiaoxunCJS-01350964.24nnnn6.88
4?257644.39nnnn3.83
TC-01350791.641.476.8901.004.09
4?254185.643.3410.310.710.992.93
TC-02350489.960.789.2701.002.98
4?254184.452.8012.7101.002.61
Huangling/2350?85584.62?90.130.62?1.658.53?13.250.13?1.100.99?1.000.01?6.00
Longdong/4950?130042.01?94.721.26?14.444.00?43.520.02?3.290.96?1.000.41?6.31
Max33594.7214.4445.006.741.006.31
Min130044.390.326.8900.910.01
Tab.1  Development coal seam, gas content, and gas components of CBM in the southwestern Ordos Basin
Fig.3  Gas content and gas concentration in the southwestern Ordos Basin.
Mining areaWellH/mRo/%Hydrocarbon indexIsotope values/‰CDMI/%Source
C1/(C2+C3)δ13C (CO2)δ13C1 (PDB)δD (SMOW)
YonglongGJH-015530.51265?23.2?56.5?205.80.13This work
QJP-016240.5110000?18.8
YZG2-16640.58–0.631361?55.1?236.30.03
YZG2672562.25?34.0?48.0?238.30.07
YZG36903457?14.70.01
BinchangDFS015070.60–0.65nn?72.2?235nJin and Zhang (2014)
DFS02511nn?72.7?236n
DFS03570nn?71.9?235n
DFS04579nn?80.0?235n
DC015130.60–0.657468?23.1?80.7?242.60.02This work
DM-684987856?5.0?70.1?244.10.01
DM-1434857816?13.4?75.5?246.00.01
DM-684980.60–0.657788?13.2?68.9?239.90.83Bao et al. (2020)
DM-694907788?20.3?82.3?241.40.99
DM-055047788?14.8?76.5?240.71.65
DM-1485927788?32.9?86.5?243.71.87
DM-1335667788?36.6?87.2?245.52.67
DM-1285827788?22.7?83.7?242.32.33
DM-0958410000?73.7?236.60.31
DM-1315837734?77.6?243.50.40
DM-455847033?76.1?243.10.62
XZ01400–4700.60–0.63nn?80.6nnZhang et al. (2020)
XZ02nn?70.1nn
XZ03nn?69.1nn
XZ04nn?73.1nn
XZ05nn?75.3nn
XZ06nn?69.6nn
XZ07nn?71.1nn
XZ08nn?73.1nn
JiaoxunJP015070.569000n?57.6?250.0nJin and Zhang (2014)
JP025430.60183n?56.9?250.0n
CJG-015180.5552?20.40?55.4?218.90.04This work
HuanglingHL018550.8996n?54.5?250.0nJin and Zhang (2014)
HL023500.7810000n?68.8?244.0n
HL034510.7999n?59.9?248.0n
HL043500.7810000n?69.0?251.0n
HL053500.7810000n?68.9?250.0n
HL-Z450–5500.78n?26.91 ? ?11.50?70.3 ? ?56.2?268.0 ? ?223.9nZhao et al. (2018)
HL2-15000.75491?55.2?206.90.01This work
LongdongQY0110680.7922n?46.5?243.00.10Jin and Zhang (2014)
QY0211100.7915n?47.9?264.0
QY0311400.7921n?48.5?263.0
QY0411360.7982n?33.1?268.0
HN-T>10000.79nn?32.5 ? ?49.0n0.10Tian et al. (2015)
Tab.2  Stable isotopic values of CBM samples in the southwestern Ordos Basin
Fig.4  Statistical charts of stable isotopic values of CBM samples in the southwestern Ordos Basin.
Mining areaWellIon content/(mg·L?1)TDS/(mg·L?1)PHWater typesPermeability/(mD)
Ca2+Mg2+Na+K+HCO3?SO42?Cl?CO32?
Yong longk4-426.0518.91474.76230.26690.45190.0001631.008.00Na–SO40.01–0.660.16
k3-917.6011.67400.14197.8683.97515.4601232.108.40Na?Cl
Z9-536.3317.53190.00306.37303.3525.000879.988.20Na?SO4
Z10-443.8518.00143.82282.40223.5021.170734.498.15Na?SO4
Bin changC01-165.8046.804659.0001683.0031.006539.00013020.007.9Na?Cl0.09–5.732.07
C01-258.7237.054580.00111.001492.005.246291.001312588.507.86Na?Cl
M6875.3931.762940.0026.00975.6020.904072.0008142.007.77Na?Cl
M143331.70130.43800.0040.801019.0017.425946.00011285.007.26Na?Cl
B1361.1089.683820.0021.50383.806969.001527.00013179.907.72Na?SO4
B2369.1090.414280.0020.89390.907504.001598.00014278.907.76Na?SO4
XZ1101.4821.203840.7218.25692.525163.582293.4313.3412144.86nNa?SO4
GJB-1447.38124.504233.6726.30310.538155.331539.151.1314850.67nNa?SO4
Jiao xunJP121.2418.931728.91173.941936.4346.131630.1305560.867.90Na?Cl0.01–3.001.21
JP219.5016.321533.003.061631.2733.751479.1204769.008.46Na?Cl
JP328.8216.171508.003.831727.6323.461424.5204734.008.41Na?Cl
JP425.7415.191620.004.511466.0831.691687.5904890.008.41Na?Cl
Huang lingHK1258.6171.542921.63266.826329.38349.54010199.98nNa?SO41.03–3.652.43
HK2132.4851.60825.07602.041647.6389.1203351.98nNa?SO4
Long dongN2557.00451.0017554.0001967.001336.0026579.00048440.006.00Na?Cl0.04–1.190.32
N28805.00451.0013299.0001117.00594.0022149.00038420.006.00Na?Cl
XS1495.00376.0016973.0001339.001187.0026478.00046850.006.00Na?Cl
XF1403.5231.5075000.00137.21350.50251.00271.10076646.006.35Na?Cl
XF 2337.58203.3258300.00195.82627.40150.60260.30060077.006.57Na?HCO3
XF 4574.32235.2349700.00227.85761.40116.00293.70051910.006.96Na?HCO3
XF 5405.20233.2156300.00144.60405.20243.50104.00057836.006.51Na?HCO3
XF 6371.58196.3792300.00183.67258.96294.20291.80093898.006.31Na?Cl
Tab.3  Hydrochemical characteristics of coalbed water in the southwestern Ordos Basin
Fig.5  TDS statistical chart of hydrochemical characteristics in the southwestern Ordos Basin.
Fig.6  Piper diagram of the major ions of coalbed water in the southwestern Ordos Basin.
Fig.7  Diagram showing the combined methane δ13C-CH4 and CH4/(C2H4 + C3H6). Modified from Whiticar (1999).
Fig.8  Genetic judgment of CH4 by δD-CH4 and δ13C-CH4. Modified from Whiticar (1999).
Fig.9  Diagram showing combined methane δ13C-CH4 and δ13C-CO2 to identify the origin of gas. Modified from Whiticar (1999).
Fig.10  Diagram showing combined δ13C-CO2 and [CO2/(CH4 + CO2)] × 100% (CDMI). Modified from Kotarba and Rice (2001).
Fig.11  Hydrocarbon generation and evolution history of coal measure strata of Yan’an formation in the southwestern Ordos Basin (Modified from Lin, 2021a).
Fig.12  Diagram showing combined δ13C-CH4 versus burial depth.
Fig.13  Different distributions of δ13C-CH4 value of conventional natural gas and CBM. Modified from Dai (1986) and Moore (2012).
Fig.14  The contour map of the TDS values of the Yan’an Formation groundwater in the southwestern Ordos Basin.
Fig.15  Cross section (BB′) of the CBM genetic type under hydrodynamic and tectonic conditions (the section line can be found in Fig. 1).
1 Y, Bao W, Wang D, Ma Q, Shi A, Ali D, Lv C Zhang (2020). Gas origin and constraint of δ13C(CH4) distribution in the Dafosi mine field in the southern margin of the Ordos Basin, China.Energy Fuels, 34(11): 14065–14073
https://doi.org/10.1021/acs.energyfuels.0c02926
2 Y, Chen Y, Qin M, Ji H, Duan C, Wu Q, Shi X, Zhang Z Wang (2020). Influence of lamprophyre sills on coal metamorphism, coalbed gas composition and coalbed gas occurrence in the Tongxin Minefield, Datong Coalfield, China.Int J Coal Geol, 217: 103286
https://doi.org/10.1016/j.coal.2019.103286
3 R Conrad (2005). Quantification of methanogenic pathways using stable carbon isotopic signatures: a review and a proposal.Organic Geochem, 36(5): 739–752
https://doi.org/10.1016/j.orggeochem.2004.09.006
4 J Dai, H Qi, Y Song, D Guan (1986). The components and carbon isotopes of coal bed gases in China and origin. Sci China Series B-Chem, Bio, Agri, Med Earth Sci, 16(12): 1317–1326 10.1360/zb1986-16-12-1317 (in Chinese)
5 J Dong (2010). The rule of the coal accumulation and coal-bed methane accumulation in Jurassic Yan’an Formation of Ordos Basin. Dissertation for Master’s Degree. Qingdao: China University of Petroleum
6 H, Fu D, Tang Z, Pan D, Yan S, Yang X, Zhuang G, Li X, Chen G Wang (2019). A study of hydrogeology and its effect on coalbed methane enrichment in the southern Junggar Basin, China.AAPG Bull, 103(1): 189–213
https://doi.org/10.1306/06071817190
7 H, Fu D, Yan X, Su J, Wang Q, Li X, Li W, Zhao L, Zhang X, Wang Y Li (2022). Biodegradation of early thermogenic gas and generation of secondary microbial gas in the Tieliekedong region of the northern Tarim Basin, NW China.Int J Coal Geol, 261: 104075
https://doi.org/10.1016/j.coal.2022.104075
8 H, Fu D, Yan S, Yang X, Wang G, Wang X, Zhuang L, Zhang G, Li X, Chen Z Pan (2021). A study of the gas-water characteristics and their implications for the coalbed methane accumulation modes in the southern Junggar Basin, China.AAPG Bull, 105(1): 189–221
https://doi.org/10.1306/02282018273
9 M S, Green K C, Flanegan P C Gilcrease (2008). Characterisation of a methanogenic consortium enriched from a coalbed methane well in the Powder River Basin, USA.Int J Coal Geol, 76(1–2): 34–45
https://doi.org/10.1016/j.coal.2008.05.001
10 L K Gutsalo (2008). Isotope fractionation in the systems CH4−H2O and CH4−CO2 during microbial methane genesis in the Earth’s crust.Russ Geol Geophys, 49(6): 397–407
https://doi.org/10.1016/j.rgg.2007.09.016
11 X, Jin H Zhang (2014). Evolution of Jurassic low rank coal CBM system in Ordos basin.Coal Geol Explor, 42: 17–24
https://doi.org/10.3969/j.issn.1001-1986.2014.05.005
12 W, Ju Z, Yang Y, Shen H, Yang G, Wang X, Zhang S Wang (2021). Mechanism of pore pressure variation in multiple coal reservoirs, western Guizhou region.Front Earth Sci, 15(4): 770–789
https://doi.org/10.1007/s11707-021-0888-7
13 M J, Kotarba D D Rice (2001). Composition and origin of coalbed gases in the Lower Silesian Basin, southwest Poland.Appl Geochem, 16(7): 895–910
https://doi.org/10.1016/S0883-2927(00)00058-5
14 F, Lan Y, Qin A, Wang M, Li G Wang (2020). The origin of high and variable concentrations of heavy hydrocarbon gases in coal from the Enhong syncline of Yunnan, China.J Nat Gas Sci Eng, 76: 103217
https://doi.org/10.1016/j.jngse.2020.103217
15 G, Li Y, Qin J, Shen M, Wu C, Li K, Wei C Zhu (2019). Geochemical characteristics of tight sandstone gas and hydrocarbon charging history of Linxing area in Ordos Basin, China.J Petrol Sci Eng, 177: 198–207
https://doi.org/10.1016/j.petrol.2019.02.023
16 Q, Li Y, Ju Y, Bao X, Li Y Sun (2015). Composition, origin, and distribution of coalbed methane in the Huaibei Coalfield, China.Energy Fuels, 29(2): 546–555
https://doi.org/10.1021/ef502132u
17 Q, Li Y, Ju Y, Bao Z, Yan X, Li Y Sun (2014). Origin types of CBM and their geochemical research progress.J China Coal Soc, 39(5): 806–815
https://doi.org/10.13225/j.cnki.jccs.2013.0086
18 Y, Li H, Fu D, Yan X, Su X, Wang W, Zhao H, Wang G Wang (2022b). Effects of simulated surface freshwater environment on in situ microorganisms and their methanogenesis after tectonic uplift of a deep coal seam.Int J Coal Geol, 257: 104014
https://doi.org/10.1016/j.coal.2022.104014
19 Y, Li S, Pan S, Ning L, Shao Z, Jing Z Wang (2022a). Coal measure metallogeny: metallogenic system and implication for resource and environment.Sci China Earth Sci, 65(7): 1211–1228
https://doi.org/10.1007/s11430-021-9920-4
20 Y, Li D, Tang Y, Fang H, Xu Y J Meng (2014). Distribution of stable carbon isotope in coalbed methane from the east margin of Ordos Basin.Sci China Earth Sci, 57(8): 1741–1748
https://doi.org/10.1007/s11430-014-4900-x
21 Y, Li C, Zhang D, Tang Q, Gan X, Niu K, Wang R Shen (2017). Coal pore size distributions controlled by the coalification process: an experimental study of coals from the Junggar, Ordos, and Qinshui basins in China.Fuel, 206: 352–363
https://doi.org/10.1016/j.fuel.2017.06.028
22 Y Lin (2021). Geological controls and high productivity model of low-rank coalbed methane reservoir in the Huanglong Coalfied, Shaanxi, China. Dissertation for Doctoral Degree. Xuzhou: China University of Mining and Technology
23 Y, Lin Y, Qin Z, Duan D, Ma L Chen (2021b). In-situ stress and permeability causality model of a low-rank coalbed methane reservoir in southwestern Ordos Basin, China.Petrol Sci Technol, 39(7–8): 196–215
https://doi.org/10.1080/10916466.2021.1898422
24 Y, Lin Y, Qin D, Ma Z Duan (2021a). Pore structure, adsorptivity and influencing factors of high-volatile bituminous coal rich in inertinite.Fuel, 293: 120418
https://doi.org/10.1016/j.fuel.2021.120418
25 Y, Lin Y, Qin D, Ma J Zhao (2020). Experimental research on dynamic variation of permeability and porosity of low-rank inert-rich coal under stresses.ACS Omega, 5(43): 28124–28135
https://doi.org/10.1021/acsomega.0c03774
26 Z, Meng J, Yan G Li (2017). Controls on gas content, carbon isotopic abundance of methane in Qinnan-east coalbed methane block, Qinshui Basin, China.Energy Fuels, 31(2): 1502–1511
https://doi.org/10.1021/acs.energyfuels.6b03172
27 A V, Milkov G Etiope (2018). Revised genetic diagrams for natural gases based on a global dataset of >20000 samples.Organ Geochem, 125: 109–120
https://doi.org/10.1016/j.orggeochem.2018.09.002
28 A V, Milkov M, Faiz G Etiope (2020). Geochemistry of shale gases from around the world: composition, origins, isotope reversals and rollovers, and implications for the exploration of shale plays.Organ Geochem, 143: 103997
https://doi.org/10.1016/j.orggeochem.2020.103997
29 T A Moore (2012). Coalbed methane: a review.Int J Coal Geol, 101(1): 36–81
https://doi.org/10.1016/j.coal.2012.05.011
30 Y, Ni J, Dai C, Zou F, Liao Y, Shuai Y Zhang (2013). Geochemical characteristics of biogenic gases in China.Int J Coal Geol, 113: 76–87
https://doi.org/10.1016/j.coal.2012.07.003
31 S, Qin X, Tang Y, Song H Wang (2006). Distribution and fractionation mechanism of stable carbon isotope of coalbed methane.Sci China Earth Sci, 49(12): 1252–1258
https://doi.org/10.1007/s11430-006-2036-3
32 Y, Qin T A, Moore J, Shen Z, Yang Y, Shen G Wang (2018). Resources and geology of coalbed methane in China: a review.Int Geol Rev, 60(5–6): 777–812
https://doi.org/10.1080/00206814.2017.1408034
33 Y, Qin X, Tang J, Ye S Jiao (2000). Distribution and genesis of stable carbon isotope of coalbed methane in China.J China Univ Min Technol, 29: 113–119
https://doi.org/10.3321/j.issn:1000-1964.2000.02.001
34 D D Rice (1993). Composition and origins of coalbed gas. In: Law B E, Rice D D, eds. Hydrocarbons from Coal.AAPG Studies in Geology, 38: 159–184
35 D D, Rice G E Claypool (1981). Generation, accumulation and resource potential of biogenic gas.AAPG Bull, 65: 5–25
https://doi.org/10.1306/2F919765-16CE-11D7-8645000102C1865D
36 M Schoell (1980). The hydrogen and carbon isotopic composition of methane from natural gases of various origins.Geochim Cosmochim Acta, 44(5): 649–661
https://doi.org/10.1016/0016-7037(80)90155-6
37 A R, Scott W R, Kaiser J W B Ayers (1994). Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico–implications for coalbed gas producibility.AAPG Bull, 78: 1186–1209
https://doi.org/10.1306/A25FEAA9-171B-11D7-8645000102C1865D
38 J W, Smith R J Pallasser (1996). Microbial origin of Australian coalbed methane.AAPG Bull, 80(6): 891–897
https://doi.org/10.1306/64ED88FE-1724-11D7-8645000102C1865D
39 D, Strąpoć A, Schimmelmann M Mastalerz (2006). Carbon isotopic fractionation of CH4 and CO2 during canister desorption of coal.Organ Geochem, 37(2): 152–164
https://doi.org/10.1016/j.orggeochem.2005.10.002
40 Y, Tang F, Gu X, Wu H, Ye Y, Yu M Zhong (2018). Coalbed methane accumulation conditions and enrichment models of Walloon Coal measure in the Surat Basin, Australia.Nat Gas Indus, 5(3): 235–244
https://doi.org/10.1016/j.ngib.2017.11.007
41 M, Tao X, Chen Z, Li Y, Ma G, Xie Y, Wang L, Wei Z, Wang X Tang (2021). Variation characteristic and mechanism of carbon isotope composition of coalbed methane under different conditions and its tracing significance.Fuel, 302: 121039
https://doi.org/10.1016/j.fuel.2021.121039
42 S, Tao S, Chen Z Pan (2019). Current status, challenges, and policy suggestions for coalbed methane industry development in China: a review.Energy Sci Eng, 7(4): 1059–1074
https://doi.org/10.1002/ese3.358
43 W, Tian L, Shao J, Zhang S, Zhao W Huo (2015). Analysis of genetic types of the coal bed methane of Jurassic formation, southern Ordos Basin.China Min Mag, 24: 81–85
https://doi.org/10.3969/j.issn.1004-4051.2015.05.017
44 D S, Vinson N E, Blair A M, Martini S, Larter W H, Orem J C Mcintosh (2017). Microbial methane from in situ biodegradation of coal and shale: a review and reevaluation of hydrogen and carbon isotope signatures.Chem Geol, 453: 128–145
https://doi.org/10.1016/j.chemgeo.2017.01.027
45 Q, Wang H, Xu D, Tang S, Yang G, Wang P, Ren W, Dong J Guo (2022). Indication of origin and distribution of coalbed gas from stable isotopes of gas and coproduced water in Fukang area of Junggar Basin, China.AAPG Bull, 106(2): 387–407
https://doi.org/10.1306/09152120028
46 M J Whiticar (1996). Stable isotope geochemistry of coals, humic kerogens and related natural gas.Int J Coal Geol, 32(1–4): 191–215
https://doi.org/10.1016/S0166-5162(96)00042-0
47 M J Whiticar (1999). Carbon and hydrogen isotope systematic of bacterial formation and oxidation of methane.Chem Geol, 161(1–3): 291–314
https://doi.org/10.1016/S0009-2541(99)00092-3
48 M J, Whiticar E, Faber M Schoell (1986). Biogenic methane formation in marine and fresh water environment: CO2 reduction vs. acetate fermentation-isotopic evidence.Geochim Cosmochim Acta, 50(5): 693–709
https://doi.org/10.1016/0016-7037(86)90346-7
49 F, Xin H, Xu D, Tang C Cao (2022). Differences in accumulation patterns of low-rank coalbed methane in China under the control of the first coalification jump.Fuel, 324: 124657
https://doi.org/10.1016/j.fuel.2022.124657
50 L T, Xing Z P, Li L, Xu L W, Li Y Liu (2022). Application of chromium catalysis technology to compound-specific hydrogen isotope analysis of natural gas samples.Talanta, 239: 123133
https://doi.org/10.1016/j.talanta.2021.123133
51 H, Xu D, Tang D, Liu S, Tang F, Yang X, Chen W, He C Deng (2012). Study on coalbed methane accumulation characteristics and favorable areas in the Binchang area, southwestern Ordos Basin, China.Int J Coal Geol, 95: 1–11
https://doi.org/10.1016/j.coal.2012.02.001
52 J, Zhang J, Zhao D, Chen S, Li H Lin (2020). Sedimentary environment characteristics and genesis of H2S-bearing coal seam in Binchang Mining Area, Ordos Basin.Nat Gas Geosci, 31(1): 100–109
https://doi.org/10.11764/j.issn.1672-1926.2019.08.003
53 K, Zhang Z, Meng X Wang (2019a). Distribution of methane carbon isotope and its significance on CBM accumulation of No. 2 coal seam in Yanchuannan CBM block, Ordos Basin, China.J Petrol Sci Eng, 174: 92–105
https://doi.org/10.1016/j.petrol.2018.11.013
54 S, Zhang X, Zhang G, Li X, Liu P Zhang (2019b). Distribution characteristics and geochemistry mechanisms of carbon isotope of coalbed methane in central-southern Qinshui Basin, China.Fuel, 244: 1–12
https://doi.org/10.1016/j.fuel.2019.01.129
55 J, Zhao Q, Zhang K, Zheng C, Li D Chen (2018). Disaster-causing mechanism of surrounding rock gas flowing underground in the Huangling coal mine and prevention measures.J Nat Gas Indust, 38(11): 114–121
https://doi.org/10.3787/j.issn.1000-0976.2018.11.015
56 B, Zhou Y, Qin Z Yang (2020). Ion composition of produced water from coalbed methane wells in western Guizhou, China, and associated productivity response.Fuel, 265: 116939
https://doi.org/10.1016/j.fuel.2019.116939
[1] Hongliang ZHANG, Hucai ZHANG, Yanbin LEI. Lacustrine record of 800 yr hydrological variations on the central Tibetan Plateau[J]. Front. Earth Sci., 2023, 17(4): 945-955.
[2] Chaojun FAN, Lei YANG, Bin XIAO, Lijun ZHOU, Haiou WEN, Hao SUN. Reasonable start time of carbon dioxide injection in enhanced coalbed methane recovery involving thermal-hydraulic-mechanical couplings[J]. Front. Earth Sci., 2023, 17(3): 832-843.
[3] Xin BAI, Zhuoli ZHOU, Guicheng HE, Dongming ZHANG, Han YANG, Zenrui FAN, Dengke WANG. Research on the pressure variation law and enhancing CBM extraction application effect of CO2 phase transition jet coal seam fracturing technology[J]. Front. Earth Sci., 2023, 17(3): 867-883.
[4] Qian ZHANG, Shuheng TANG, Songhang ZHANG, Xinlu YAN, Kaifeng WANG, Tengfei JIA, Zhizhen WANG. Evaluation of infill well pattern based on the dynamic change of reservoirs during coalbed methane development[J]. Front. Earth Sci., 2023, 17(3): 646-660.
[5] Qun ZHAO, Ze DENG, Meng ZHAO, Dexun LIU. CO2 geological sequestration potential of the low-rank coals in the southern margin of the Junggar Basin[J]. Front. Earth Sci., 2023, 17(3): 727-738.
[6] Chen GUO, Jiang GOU, Dongmin MA, Yuan BAO, Qingmin SHI, Jiahao MENG, Junzhe GAO, Lingling LU. Adsorption and desorption behavior under coal–water–gas coupling conditions of high- and low-rank coal samples[J]. Front. Earth Sci., 2023, 17(1): 145-157.
[7] Huimin JIA, Yidong CAI, Qiujia HU, Cong ZHANG, Feng QIU, Bin FAN, Chonghao MAO. Stress sensitivity of coal reservoir and its impact on coalbed methane production in the southern Qinshui Basin, north China[J]. Front. Earth Sci., 2023, 17(1): 4-17.
[8] Geng LI, Yong QIN, Xuejuan SONG, Boyang WANG, Haipeng YAO, Yabing LIN. Origin and geological control of desorbed gas in multi-thin coal seam in the Wujiu depression, Hailar Basin, China[J]. Front. Earth Sci., 2023, 17(1): 58-70.
[9] Taotao YAN, Shan HE, Shuai ZHENG, Yadong BAI, Wei CHEN, Yanjun MENG, Shangwen JIN, Huifang YAO, Xiaobao JIA. Critical tectonic events and their geological controls on deep buried coalbed methane accumulation in Daning-Jixian Block, eastern Ordos Basin[J]. Front. Earth Sci., 2023, 17(1): 197-217.
[10] Xianglong FANG, Dameng LIU, Yingfang ZHOU, Xiaobo LIU, Yidong CAI. Factors influencing methane diffusion behaviors in micro-nano coal pores: a comprehensive study[J]. Front. Earth Sci., 2023, 17(1): 71-86.
[11] Hui WANG, Yanbin YAO, Zhentao LI, Yanhui YANG, Junjie YI, Yongkai QIU, Shengqiang ZHOU. Multi-stage gas diffusion and its implications for the productivity of coalbed methane in the southern Qinshui Basin, north China[J]. Front. Earth Sci., 2023, 17(1): 109-120.
[12] Yuan BAO, Yiliang HU, Wenbo WANG, Chen GUO, Guochang WANG. Accumulation model and geochemistry characteristics of oil occurring from Jurassic coal measures in the Huangling mining area of the Ordos Basin, China[J]. Front. Earth Sci., 2023, 17(1): 158-169.
[13] Mostafa REDWAN. Geochemical and mineralogical characteristics of some gold mine tailings in the Eastern Desert of Egypt[J]. Front. Earth Sci., 2022, 16(4): 906-915.
[14] Guangyuan MU, Haihai HOU, Jiaqiang ZHANG, Yue TANG, Ya-nan LI, Bin SUN, Yong LI, Tim JONES, Yuan YUAN, Longyi SHAO. Fractal characterization of pore structure and its influence on CH4 adsorption and seepage capacity of low-rank coals[J]. Front. Earth Sci., 2022, 16(4): 916-933.
[15] Wei JU, Zhaobiao YANG, Yulin SHEN, Hui YANG, Geoff WANG, Xiaoli ZHANG, Shengyu WANG. Mechanism of pore pressure variation in multiple coal reservoirs, western Guizhou region, South China[J]. Front. Earth Sci., 2021, 15(4): 770-789.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed