Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2024, Vol. 18 Issue (1) : 227-241    https://doi.org/10.1007/s11707-022-1062-6
Deformation characteristics and analog modeling of transtensional structures in the Dongying Sag, Bohai Bay Basin
Dawei DONG1, Li ZHAO2(), Weizhong ZHANG3, Jiyan LI4, Ruixiang ZHANG1, Jianlei YANG1, Guangzeng WANG5
1. Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, China
2. College of Resources and Environment, Shandong Agriculture University, Tai᾽an 271018, China
3. Geophysical Research Institute of Shengli Oilfield Branch Company, SINOPEC, Dongying 257022, China
4. Research Institute of Petroleum Exploration & Development, Shengli Oilfield Company, SINOPEC, Dongying 257000, China
5. College of Marine Geosciences, Ocean University of China, Qingdao 266100, China
 Download: PDF(10223 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Hydrocarbon exploration in the Dongying Sag is constrained by the development of many Cenozoic transtensional structures with complex patterns and dynamic mechanisms. This study uses seismic interpretation and analog modeling to investigate these transtensional structures. Significant results include dividing these transtensional structures into boundary fault, oblique rifting, and deep strike-slip fault controlled structures, according to the relationships between main and secondary faults. They developed in the steep slope zone, the central sag zone, and the slope zone, respectively. In profile, the transtensional structures formed appear to be semi-flower-like, step-like, or negative-flower-like. In plan-view, they appear to be broom-like, soft-linked, or en-echelon structures. Further, these transtensional structures are controlled by the oblique normal slip of boundary faults, by the oblique extension of sub-sags, and by the later extension of deep strike-slip faults. The geometric deformation of these transtensional structures is controlled by the angles between the regional extension direction and the strike of boundary faults, deep faults, or sub-sags, where a larger angle corresponds to less developed transtensional structures. Further, the transtensional structures in the Dongying Sag were created by multi-phase and multi-directional extensions in the Cenozoic— which is also controlled by pre-existing structures. The strike of newborn secondary faults was determined by the regional extension direction and pre-existing structures.

Keywords transtensional structure      seismic interpretation      analogue modeling      dynamic mechanism      Dongying Sag     
Corresponding Author(s): Li ZHAO   
Online First Date: 27 December 2023    Issue Date: 15 July 2024
 Cite this article:   
Dawei DONG,Li ZHAO,Weizhong ZHANG, et al. Deformation characteristics and analog modeling of transtensional structures in the Dongying Sag, Bohai Bay Basin[J]. Front. Earth Sci., 2024, 18(1): 227-241.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1062-6
https://academic.hep.com.cn/fesci/EN/Y2024/V18/I1/227
Fig.1  Planimetric distribution of transtensional structures in seismic reflection of T2 (a), the stratigraphic column (b) and the structural profile of the Dongying Sag (c). Fault abbreviations used are F1–Chennan, F2–Shicun, F3–Gaoqing–Pingnan, F4–Bamianhe, F5–Wangjiagang, F6–Shengbei.
Fig.2  Deformation characteristics of the Binnan–Lijin (a), Gaoqing–Pingnan (b), and Qingxi (c) transtensional structures. All faults appear in seismic reflection layer T6. Fault labels, seismic reflection interfaces, and location are the same as in Fig. 1.
Fig.3  Deformation characteristics of the Haoxian (a), He-7 (b) and Fan-148 (c) transtensional structures. All faults appear in the seismic reflection layer T6. Seismic reflection interfaces and location are the same as in Fig. 1.
Fig.4  Deformation characteristics of the Shicun (a), Wangjiagang (b) and Jinjia (c) transtensional structures. The faults are distributed in seismic reflection layers T6, T7, and T2. Seismic reflection interfaces and location are the same as in Fig. 1.
TypesGeological modelsExperiments
ModelsAnglesTimeSpeed
Boundary fault controlledGaoqing-Pingnan in E2s3-E3dM122.5°45 minvs = 0.02 mm/s
Lijin in E1-2k-E2s4M245°
Qingxi in E1-2k-E2s4M367.5°
Oblique rifting controlledFan-148 in E2s3-E3dM430°42 minvs = 0.008 mm/s vn = 0.005 mm/s
Haoxian in E2s3-E3dM545°42 min
He-7 in E2s3-E3dM660°42 min
Deep strike-slip fault controlledJinjia in E2s3-E3dM722.5°43 minvs = 0.012 mm/s vn = 0.008 mm/s
Bamianhe, Wangjiagang in E1-2k-E2s4M845°43 min
Shicun in E1-2k-E2s4M967.5°43 min
Tab.1  Experimental design of transtensional structures
Fig.5  Experimental models designed for boundary fault (a), oblique rifting (b), and deep strike-slip (c) controlled transtensional structures. Figure sub-parts are in plan-view and profile view (d) of the experimental models.
Fig.6  Experimental results and their interpretations for models M1 (a), M2 (b), M3 (c), M4 (d), M5 (e), M6 (f), M7 (g), M8 (h), M9 (i).
Fig.7  The tectonic settings of transtensional structures in the Jiyang Depression with an inset map showing the position of the Jiyang Depression within the Bohai Bay Basin, and the regional stress direction during the (a) Indosinian, (b) Late Jurassic – Early Cretaceous, (c) E1-2k–E2s4 and (d) E2s3–E3d tectonic periods. Fault abbreviations used are F7–Ningwu, F8–Chengnan, F9–Yinan, F10–Zizhen, F11–Luoxi, F12–Guxi, F13–Baiqiao, F14–Cicun, F15–Linyi, F16–Xiakou, F17–Kendong, F18–Gudong, F19–Changdi.
1 M B, Allen D I M, Macdonald Z, Xun S J, Vincent C Brouet-Menzies (1997). Early Cenozoic two-phase extension and late Cenozoic thermal subsidence and inversion of the Bohai Basin, northern China.Mar Pet Geol, 14(7–8): 951–972
https://doi.org/10.1016/S0264-8172(97)00027-5
2 L Basilone (2022). Jurassic-Cretaceous intraplatform basins from NW Sicily fold and thrust belt: implications for oblique rifting of the Southern Tethyan margin.Sediment Geol, 440: 106255
https://doi.org/10.1016/j.sedgeo.2022.106255
3 R E, Bell C A L, Jackson P S, Whipp B Clements (2014). Strain migration during multiphase extension: observations from the northern North Sea.Tectonics, 33(10): 1936–1963
https://doi.org/10.1002/2014TC003551
4 M, Bonini T, Souriot M, Boccaletti J P Brun (1997). Successive orthogonal and oblique extension episodes in a rift zone: laboratory experiments with application to the Ethiopian Rift.Tectonics, 16(2): 347–362
https://doi.org/10.1029/96TC03935
5 S, Brune S E, Williams R D Müller (2018). Oblique rifting: the rule, not the exception.Solid Earth, 9(5): 1187–1206
https://doi.org/10.5194/se-9-1187-2018
6 A E, Clifton R W, Schlische M O, Withjack R V Ackermann (2000). Influence of rift obliquity on fault-population systematics: results of experimental clay models.J Struct Geol, 22(10): 1491–1509
https://doi.org/10.1016/S0191-8141(00)00043-2
7 G, Corti Wijk J, van S, Cloetingh C K Morley (2007). Tectonic inheritance and continental rift architecture: numerical and analogue models of the East African Rift system.Tectonics, 26(6): TC6006
https://doi.org/10.1029/2006TC002086
8 J F Dewey, R E Holdsworth, R A Strachan (1998). Transpression and transtension zones. In: Holdsworth R E, Strachan R A, Dewey J F, eds. Continental Transpressional and Transtensional Tectonics, Geological Society, London, Special Publication, 135: 1–14
9 O B, Duffy R B, Bell C A L, Jackson R, Gawthorpe P S Whipp (2015). Fault growth and interactions in a multiphase rift fault network: Horda Platform, Norwegian North Sea.J Struct Geol, 80: 99–119
https://doi.org/10.1016/j.jsg.2015.08.015
10 T J Fitch (1972). Plate convergence, transcurrent faults, and internal deformation adjacent to southeast Asia and the western Pacific.J Geophys Res, 77(23): 4432–4460
https://doi.org/10.1029/JB077i023p04432
11 H, Fossen B Tikoff (1998). Extended models of transpression and transtension, and application to tectonic settings.Spec Publ Geol Soc Lond, 135(1): 15–33
https://doi.org/10.1144/GSL.SP.1998.135.01.02
12 T P Harding (1990). Identification of wrench faults using subsurface structural data: criteria and pitfalls.AAPG Bull, 74(10): 1590–1609
13 W B Harland (1971). Tectonic transpression in caledonian spitsbergen.Geol Mag, 108(1): 27–41
https://doi.org/10.1017/S0016756800050937
14 G A, Henstra Kristensen T, Berg A, Rotevatn R L Gawthorpe (2019). How do preexisting normal faults influence rift geometry? A comparison of adjacent basins with contrasting underlying structure on the Lofoten Margin, Norway.Basin Res, 31(6): 1083–1097
https://doi.org/10.1111/bre.12358
15 G T, Hou X L, Qian D S Cai (2001). The tectonic evolution of Bohai basin in Mesozoic and Cenozoic time.Acta Scientiarum Naturalium Universitatis Pekinensis, 37(6): 845–851 (in Chinese)
16 P P, Hu F L, Yang R C, Zhang W, Wang R W Dong (2022). Cenozoic extension to strike-slip transition in the Liaodong Bay Subbasin along the Tan-Lu Fault Zone, Bohai Bay Basin: new insights from stress field modeling.Tectonophysics, 822: 229163
https://doi.org/10.1016/j.tecto.2021.229163
17 M, Keep K R McClay (1997). Analogue modelling of multiphase rift systems.Tectonophysics, 273: 239–270
https://doi.org/10.1016/S0040-1951(96)00272-7
18 S Z, Li Y H, Suo M, Santosh L M, Dai X, Liu S, Yu S J, Zhao C Jin (2013). Mesozoic to Cenozoic intracontinental deformation and dynamics of the North China Craton.Geol J, 48(5): 543–560
https://doi.org/10.1002/gj.2500
19 S Z, Li G C, Zhao L M, Dai X, Liu L H, Zhou M, Santosh Y H Suo (2012). Mesozoic basins in eastern China and their bearing on the deconstruction of the North China Craton.J Asian Earth Sci, 47(30): 64–79
https://doi.org/10.1016/j.jseaes.2011.06.008
20 S Z, Li Q L, Zheng X Y, Li S J, Zhao Y H, Suo L L, Guo Y M, Wang Z Z, Zhou X G, Liu H Y, Lan J, Zhang R H, Guo S J Li (2017). Triassic subduction polarity and orogenic process of the Sulu orogen, east China.Ma Geo Quat Geo, 37(04): 18–32 (in Chinese)
21 J T, Liang H L, Wang Y, Bai X Y, Ji X M Duo (2016). Cenozoic tectonic evolution of the Bohai Bay Basin and its coupling relationship with Pacific Plate subduction.J Asian Earth Sci, 127: 257–266
https://doi.org/10.1016/j.jseaes.2016.06.012
22 M, Liu X J, Cui F T Liu (2004). Cenozoic rifting and volcanism in eastern China: a mantle dynamic link to the Indo-Asian collision?.Tectonophysics, 393(1–4): 29–42
https://doi.org/10.1016/j.tecto.2004.07.029
23 P, Mann M R, Hempton D C, Bradley K Burke (1983). Development of pull-apart basins.J Geol, 91(5): 529–554
https://doi.org/10.1086/628803
24 S, Maruyama Y, Isozaki G, Kimura M Terabayashi (1997). Paleogeographic maps of the Japanese Islands: plate tectonic synthesis from 750 Ma to the present.Isl Arc, 6(1): 121–142
https://doi.org/10.1111/j.1440-1738.1997.tb00043.x
25 K R, McClay M J White (1995). Analogue modelling of orthogonal and oblique rifting.Mar Pet Geol, 12(2): 137–151
https://doi.org/10.1016/0264-8172(95)92835-K
26 A M McCoss (1986). Simple constructions for deformation in transpression/transtension zones.J Struct Geol, 8(6): 715–718
https://doi.org/10.1016/0191-8141(86)90077-5
27 C K Morley (2007). Variations in Late CenozoiceRecent strike-slip and oblique-extensional geometries, within Indochina: the influence of pre-existing fabrics.J Struct Geol, 29(1): 36–58
https://doi.org/10.1016/j.jsg.2006.07.003
28 C K, Morley C, Haranya W, Phoosongsee S, Pongwapee A, Kornsawan N Wonganan (2004). Activation of rift oblique and rift parallel pre-existing fabrics during extension and their effect on deformation style: examples from the rifts of Thailand.J Struct Geol, 26(10): 1803–1829
https://doi.org/10.1016/j.jsg.2004.02.014
29 E, Mortimer D A, Paton C A, Scholz M R, Strecker P Blisniuk (2007). Orthogonal to oblique rifting: effect of rift basin orientation in the evolution of the North basin, Malawi Rift, East Africa.Basin Res, 19(3): 393–407
https://doi.org/10.1111/j.1365-2117.2007.00332.x
30 E E, Osagiede A, Rotevatn R, Gawthorpe T B, Kristensen A L, Jackson N Marsh (2020). Pre-existing intra-basement shear zones influence growth and geometry of non-colinear normal faults, western Utsira high-heimdal terrace, North Sea.J Struct Geol, 130: 103908
https://doi.org/10.1016/j.jsg.2019.103908
31 T B, Phillips H, Fazlikhani R L, Gawthorpe H, Fossen C A L, Jackson R E, Bell J I, Faleide A Rotevatn (2019). The influence of structural inheritance and multiphase extension on rift development, the Northern North Sea.Tectonics, 38(12): 4099–4126
https://doi.org/10.1029/2019TC005756
32 S, Pongwapee C K, Morley K Won-in (2019). Impact of pre-existing fabrics and multi-phase oblique extension on Cenozoic fault patterns, Wichianburi sub-basin of the Phetchabun rift, Thailand.J Struct Geol, 118: 340–361
https://doi.org/10.1016/j.jsg.2018.11.012
33 J F, Qi Q Yang (2010). Cenozoic structural deformation and dynamic processes of the Bohai Bay Basin province, China.Mar Pet Geol, 27(4): 757–771
https://doi.org/10.1016/j.marpetgeo.2009.08.012
34 J F, Qi F S, Yu K Z, Lu J X, Zhou Z Y, Wang Q Yang (2003). Conspectus on Mesozoic basins in Bohai bay province.Earth Sci Front, 10(S1): 199–206 (in Chinese)
35 J Y, Ren J G, Yu J X Zhang (2009). Structures of deep bed in Jiyang Sag and their control over the development of Mesozoic and Cenozoic basins.Earth Sci Front, 16(4): 117–137 (in Chinese)
36 W P Schellart (2000). Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling.Tectonophysics, 324(1–2): 1–16
https://doi.org/10.1016/S0040-1951(00)00111-6
37 R W, Schlische M O, Withjack G Eisenstadt (2002). An experimental study of the secondary deformation produced by oblique-slip normal faulting.AAPG Bull, 86(5): 885–906
38 Z, Sun D, Zhou L T, Sun C M, Chen X, Pang J Q, Jiang H Fan (2010). Dynamic analysis on rifting stage of Pearl River Mouth Basin through analogue modeling.J Earth Sci, 21(4): 439–454
https://doi.org/10.1007/s12583-010-0106-0
39 Y H Suo, S Z Li, G R Peng, X D Du, J Zhou, P C Wang, G Z Wang, I Somerville, Y X Diao, Z Q Liu, X J Fu, B Liu, X Z Cao (2022). Cenozoic basement-involved rifting of the northern South China Sea margin. Gondwana Res, 120: 20-30
40 Y H, Suo S Z, Li S, Yu I D, Somerville X, Liu S J, Zhao L M Dai (2014). Genozoie tectonic jumping and implications for hydrocarbon accumulation in basins in the East Asia continental margin.J Asian Earth Sci, 88(1): 28–40
https://doi.org/10.1016/j.jseaes.2014.02.019
41 D Thorkelson (1996). Subduction of diverging plates and the principles of slap window formation.Tectonophysics, 255(1–2): 47–63
https://doi.org/10.1016/0040-1951(95)00106-9
42 H M, Tong D S, Cai Y P, Wu X G, Li X S, Li L J Meng (2010). Activity criterion of pre-existing fabrics in non-homogeneous deformation domain.Sci China Earth Sci, 53(8): 1115–1125
https://doi.org/10.1007/s11430-010-3080-6
43 V, Tron J P Brun (1991). Experiments on oblique rifting in brittle-ductile systems.Tectonophysics, 188(1–2): 71–84
https://doi.org/10.1016/0040-1951(91)90315-J
44 F W, Wang D X, Chen Q C, Wang X, Shi G, Xie Z, Wang J, Li W Liao (2020). Evolution characteristics of transtensional faults and their impacts on hydrocarbon migration and accumulation: a case study from the Huimin Depression, Bohai Bay Basin, eastern China.Mar Pet Geol, 120: 104507
https://doi.org/10.1016/j.marpetgeo.2020.104507
45 G Z, Wang S Z, Li Y H, Suo X Q, Zhang Z, Zhang D Y, Wang Z, Liu Y J, Liu J, Zhou P C, Wang L L Guo (2022). Deep-shallow coupling response of the Cenozoic Bohai Bay Basin to plate interactions around the Eurasian Plate.Gondwana Res, 102: 180–199
https://doi.org/10.1016/j.gr.2020.09.002
46 L, Wang D, Maestrelli G, Corti Y Y, Zou C B Shen (2021). Normal fault reactivation during multiphase extension: analogue models and application to the Turkana depression, East Africa.Tectonophysics, 811: 228870
https://doi.org/10.1016/j.tecto.2021.228870
47 R, Weijermars H Schmeling (1986). Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of Theological similarity).Phys Earth Planet Inter, 43(4): 316–330
https://doi.org/10.1016/0031-9201(86)90021-X
48 T J, Wu J Wu (2019). Izanagi-Pacific ridge subduction revealed by a 56 to 46 Ma magmatic gap along the northeast Asian margin.Geology, 47(10): 953–957
https://doi.org/10.1130/G46778.1
49 Z P, Wu X B, Hou W Li (2007). Disscussion on Mesozoic basin patterns and evolution in the eastern North China block.Geotectonica et Metallogenia, 31(4): 385–399 (in Chinese)
50 Z P, Wu Y, Hu Z H Zhong (2015). Cenozoic faults characteristics and regional dynamic background of Panyu 4 subsag, Zhu I depression.J China U Petrol (Nat Sci Ed), 39(4): 1–9
51 Z P, Wu W, Li Y J, Ren C S Lin (2003). Basin evolution in the Mesozoic and superposition of Cenozoic basin in the area of the Jiyang depression.Acta Geol Sin, 77(2): 280–286 (in Chinese)
52 J J, Yan X P Wang (1996). On identification of wrench structure.Oil Gas Geol, 17(1): 8–11 (in Chinese)
53 H, Ye K M, Shedlock S J, Hellinger J G Sclater (1985). The North China basin: an example of a Cenozoic rifted intraplate basin.Tectonics, 4(2): 153–169
https://doi.org/10.1029/TC004i002p00153
54 X L, Yi G T Hou (2002). A study of intensity of the faults activity in Jiyang depression in Mesozoic and Cenozoic.Acta Scientiarum Naturalium Universitatis Pekinensis, 38(4): 504–509 (in Chinese)
55 R, Zhan G L, Yang S, Zhang G Zhu (2012). Analysis on the origin of the composite flower structures in the Qingdong Sag.Geotectonica et Metallogenia, 36(4): 473–482 (in Chinese)
56 P, Zhang L S, Wang Z Y, Ding K Zhong (2006). Characteristics and formation mechanism of the faults in Mesozoic-Cenozoic in Jiyang Depression.Oil Gas Geol, 27(4): 467–474 (in Chinese)
57 W Z, Zhang Y Y, Zhang M, Zha Z P,Yu J Q, Qu L, Zhang C He (2019). Genetic model of transtensional faults in Dongying Depression, Bohai Bay Basin, and its controls over hydrocarbon accumulation.Oil Gas Geol, 40(2): 262–270 (in Chinese)
58 L, Zhao L Li (2016). The extensional pattern and dynamics of Bohai Bay basin in Late Mesozoic-Cenozoic.Geol China, 43(2): 470–485 (in Chinese)
59 L, Zhao L Li (2017). The relationships between normal fault and strike-slip fault in Jiyang depression.Geol Rev, 63(1): 50–60 (in Chinese)
60 Y J Zhao (2007).The research of basin structure and filling characteristics of Palaeogene in Dongying depression. Guangzhou, China: Guangzhou Institute of Geochemistry of the Chinese Academy of Sciences, 34–73 (in Chinese)
61 D S, Zheng Z P, Wu W, Li Y Q Zhou (2005). Basin evolution in the Mesozoic and superposition of Cenozoic basin in the area of the Jiyang depression.Acta Geol Sin, 79(3): 386–394 (in Chinese)
62 D L, Zhong L, Ding J Q, Ji J J, Zhang F T, Liu J H, Liu X W Yan (2001). Coupling of the lithospheric convergence of west China and dispersion of east China in Cenozoic: link with paleoenvironmental changes.Quat Sci, 21(4): 303–312 (in Chinese)
63 G, Zhu C, Liu C C, Gu S, Zhang Y J, Li N, Su S Y Xiao (2018). Oceanic plate subduction history in the western Pacific Ocean: constraint from late Mesozoic evolution of the Tan-Lu Fault Zone.Sci China Earth Sci, 61(4): 386–405
https://doi.org/10.1007/s11430-017-9136-4
64 G, Zhu G S, Liu M L, Niu C Z, Song D X Wang (2003). Transcurrent movement and genesis of the Tan-Lu fault zone.Geol Bull China, 22(3): 200–207 (in Chinese)
65 G H, Zong H Q, Xiao C B, Li Y S, Shi L S Wang (1999). Evolution of Jiyang depression and its tectonic implications.Geol J China U, 5(3): 275–282 (in Chinese)
[1] Yuanpei ZHANG, Chuanhua LI, Xuecai ZHANG, Xuqing FANG, Yong WANG, Jinliang ZHANG, Jun XIE, Jinkai WANG. Sedimentary characteristics of lacustrine deep-water gravity flow in the third member of Paleogene Shahejie Formation in Dongying Sag, Bohai Bay Basin, China[J]. Front. Earth Sci., 2023, 17(2): 487-504.
[2] Umair KHAN, Baoyi ZHANG, Jiangfeng DU, Zhengwen JIANG. 3D structural modeling integrated with seismic attribute and petrophysical evaluation for hydrocarbon prospecting at the Dhulian Oilfield, Pakistan[J]. Front. Earth Sci., 2021, 15(3): 649-675.
[3] WEI Chuigao, ZHANG Shiqi, JIANG Zaixing, LIU Jinhua. Characteristics and significance of seismite of Silurian in member III at Shahejie Formation[J]. Front. Earth Sci., 2007, 1(4): 505-513.
[4] CHEN Yong, ZHOU Yaoqi, REN Yongjun, WANG Qiang, YAN Shiyong, LIU Chaoying, XIAO Huanqin, SUN Xinian. Immiscibility of high salinity fluids in volcanic rocks and the mechanism of magma degassing in the Dongying sag, eastern China[J]. Front. Earth Sci., 2007, 1(2): 206-211.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed