Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (4) : 1037-1048    https://doi.org/10.1007/s11707-022-1075-1
Complementarity of lacustrine pollen and sedimentary DNA in representing vegetation on the central-eastern Tibetan Plateau
Fang TIAN1(), Meijiao CHEN1, Weihan JIA2,3, Ulrike HERZSCHUH2,3,4, Xianyong CAO5
1. College of Resource Environment and Tourism, Capital Normal University, Beijing 100048, China
2. Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems Research Group, Potsdam 14473, Germany
3. University of Potsdam, Institute of Environmental Science and Geography, Potsdam 14476, Germany
4. University of Potsdam, Institute of Biochemistry and Biology, Potsdam 14476, Germany
5. Group of Alpine Paleoecology and Human Adaptation (ALPHA), State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
 Download: PDF(16104 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Plant environmental DNA extracted from lacustrine sediments (sedimentary DNA, sedDNA) has been increasingly used to investigate past vegetation changes and human impacts at a high taxonomic resolution. However, the representation of vegetation communities surrounding the lake is still unclear. In this study, we compared plant sedDNA metabarcoding and pollen assemblages from 27 lake surface-sediment samples collected from alpine meadow on the central-eastern Tibetan Plateau to investigate the representation of sedDNA data. In general, the identified components of sedDNA are consistent with the counted pollen taxa and local plant communities. Relative to pollen identification, sedDNA data have higher taxonomic resolution, thus providing a potential approach for reconstructing past plant diversity. The sedDNA signal is strongly influenced by local plants while rarely affected by exogenous plants. Because of the overrepresentation of local plants and PCR bias, the abundance of sedDNA sequence types is very variable among sites, and should be treated with caution when investigating past vegetation cover and climate based on sedDNA data. Our finding suggests that sedDNA analysis can be a complementary approach for investigating the presence/absence of past plants and history of human land-use with higher taxonomic resolution.

Keywords Tibetan Plateau      plant DNA metabarcoding      pollen      lake sediment      plant diversity      vegetation history     
Corresponding Author(s): Fang TIAN   
Just Accepted Date: 22 September 2023   Online First Date: 10 January 2024    Issue Date: 06 February 2024
 Cite this article:   
Fang TIAN,Meijiao CHEN,Weihan JIA, et al. Complementarity of lacustrine pollen and sedimentary DNA in representing vegetation on the central-eastern Tibetan Plateau[J]. Front. Earth Sci., 2023, 17(4): 1037-1048.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-1075-1
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I4/1037
Fig.1  Location of the 27 sampled lakes (red dots) on the central-eastern Tibetan Plateau. Vegetation map is obtained from the “Atlas of Tibetan Plateau” (Institute of Geographic Sciences and Natural Resources Research, 1990).
Site No. Longitude/ °E Latitude/ °N Elevation/ (m a.s.l.) Vegetation
s101 99.6 33.0 4295 Subalpine broadleaf deciduous scrub
s105 99.8 33.6 3998 Kobresia spp., forb high-cold meadow
s123 98.9 33.7 4305 Kobresia spp., forb high-cold meadow
s133 98.0 32.7 4692 Kobresia spp., forb high-cold meadow
s143 98.9 32.8 3847 Kobresia spp., forb high-cold meadow
s16 97.8 34.5 4443 Kobresia spp., forb high-cold meadow
s169 98.4 33.3 4417 Kobresia spp., forb high-cold meadow
s200 97.6 33.4 4175 Kobresia spp., forb high-cold meadow
s213 96.7 34.2 4439 Kobresia spp., forb high-cold meadow
s229 96.2 34.9 4503 Kobresia spp., forb high-cold meadow
s237 95.3 33.9 4436 Kobresia spp., forb high-cold meadow
s244 95.1 34.4 4463 Kobresia spp., forb high-cold meadow
s259 96.5 33.2 4212 Kobresia spp., forb high-cold meadow
s263 97.0 32.9 3969 Kobresia spp., forb high-cold meadow
s310 97.8 31.7 4050 Kobresia spp., forb high-cold meadow
s344 95.2 31.6 3907 Subalpine needleleaf evergreen scrub
s350 94.5 31.7 4450 Kobresia spp., forb high-cold meadow
s358 94.5 32.4 4788 Kobresia spp., forb high-cold meadow
s374 93.2 32.4 4410 Kobresia spp., forb high-cold meadow
s379 92.3 32.1 4633 Kobresia spp., forb high-cold meadow
s414 91.9 32.9 5168 Kobresia spp., forb high-cold meadow
s417 92.2 33.8 4639 Kobresia spp., forb high-cold meadow
s420 92.7 34.3 4436 Kobresia spp., forb high-cold meadow
s434 92.9 34.9 4561 Grass, Carex spp. high-cold steppe
s439 93.8 35.5 4573 Grass, Carex spp. high-cold steppe
s440 94.3 35.0 4388 Kobresia spp., forb high-cold meadow
s62 99.0 34.4 4302 Kobresia spp., forb high-cold meadow
Tab.1  Location, elevation, and vegetation type of the 27 lake surface samples
Fig.2  Pollen percentages diagram for the 27 lake samples from the central-eastern Tibetan Plateau ordered by mean annual precipitation Pann. Pollen taxa presented here are included in the ordination analyses.
Fig.3  Plant sedDNA percentages of samples from 27 lakes on the central-eastern Tibetan Plateau. Plant sedDNA sequence types shown here are included in the ordination analyses.
Pollen sedDNA
Abies Atripliceae
Cedrus Berberis
Pinus Berberis japonica
Alnus Boraginaceae_st4
Betula Boraginaceae_st5
Carpinus/Ostrya Cynoglossoideae
Castanea Lepidium densiflorum
Corylus Braya
Juglans Draba
Oleaceae Pegaeophyton scapiflorum
Quercus Caprifoliaceae
Ulmus Lonicera_st2
Rhamnaceae Circaeaster agrestis
Ilex Rhodiola rosea
Nitraria Geranium
Echinops Geranium sylvaticum
Brassicaceae Juncus
Caryophyllaceae Larix
Balsaminaceae Populus
Liliaceae Deinbollia kilimandscharica
Polemoniaceae Solanoideae
Rumex Stellera chamaejasme
Koenigia fertilis Viola brevistipulata
Thalictrum
Tab.2  Exclusive plant types identified by pollen and sedDNA
Pollen sedDNA
Picea Picea
Salix Salix
Chenopodiaceae Amaranthaceae
Ephedra Ephedra_st1
Ericaceae Rhododendron lapponicum
Euphorbiaceae Euphorbia_st2
Fabaceae Astragalus variabilis, Astragalus_st1, Astragalus_st2, Caragana jubata, Hedysarum, Hedysarum tibeticum, Oxytropis, Oxytropis deflexa, Pisum
Hippophae Hippophae tibetana_st1, Hippophae tibetana_st2, Hippophae rhamnoides
Rosaceae Alchemilla, Aruncus dioicus, Colurieae, Comarum palustre, Fragariinae_st2, Maleae, Potentilla anserina, Potentilla_st2, Potentilla_st3, Spiraea
Tamaricaceae Myricaria, Myricaria germanica
Apiaceae Apiaceae_st2, Apioideae_st3, Apioideae_st4, Carum carvi, Selineae
Artemisia
Asterceae Anthemideae_st1, Asteraceae_st7, Asteraceae_st8, Asteroideae_st11, Carduinae, Gnaphalieae
Cyperaceae Blysmus compressus, Carex atrofusca, Carex maritima, Carex microglochin, Carex parva, Carex supina, Carex_st1, Carex_st2, Kobresia_st1, Kobresia_st2, Trichophorum pumilum
Urticaceae Urtica_st2
Gentianaceae Gentiana_st1, Gentiana_st2, Gentianeae, Gentianella arenaria, Halenia elliptica
Lamiaceae Dracocephalum ruyschiana, Elsholtzia, Elsholtzia densa, Lamiaceae_st3, Salvia, Thymus
Plantaginaceae Lagotis glauca, Plantago, Veronica, Veronica chamaedrys
Onagraceae Epilobium
Papaveraceae Corydalis, Meconopsis
Poaceae Agrostidinae, Festuca, Hordeum, Stipa breviflora, Poaceae, Poeae_st1, Poeae_st2, Pooideae_st1, Pooideae_st2, Puccinellia, Triticeae
Polygonum Aconogonon, Bistorta vivipara, Knorringia sibirica, Koenigia islandica, Rheum_st1, Rheum_st2
Primulaceae Androsace, Androsace chamaejasme, Primula, Primula nutans
Ranunculaceae Aconitum lycoctonum, Adonis, Anemone_st1, Caltha scaposa, Caltha sinogracilis, Caltha_st4, Caltha_st5, Delphinieae, Delphinium, Oxygraphis glacialis, Ranunculaceae_st2, Ranunculeae_st2, Ranunculus abortivus, Ranunculus arcticus, Ranunculus auricomus, Thalictrum_st2, Trollius
Saxifragaceae Ribes glandulosum, Saxifraga hirculus, Saxifraga_st2
Orobanchaceae Castilleja pallida var. hyparctica, Castilleja_st4, Castilleja_st5, Castilleja_st6, Euphrasia, Pedicularis elwesii, Pedicularis kansuensis, Pedicularis longiflora, Pedicularis oederi_st1, Pedicularis oederi_st2, Pedicularis tristis, Pedicularis verticillata_st1, Pedicularis verticillata_st2, Pedicularis verticillata_st3, Pedicularis_st4, Lancea tibetica
Tab.3  Common plant types identified by pollen and sedDNA
Fig.4  Comparison between pollen and sedDNA percentages for six major families in the 27 lake surface-sediment samples (horizontal axis: pollen percentages; vertical axis: sedDNA percentages).
Climatic variables VIF (without Tann) VIF (add Tann) λ1/λ2 Climatic variables as sole predictor Marginal contribution based on climatic variables
Explained variance/% Explained variance/% p-value
Pann 2.0 4.6 0.49 15.3 13.3 0.007
Mtwa 4.7 153.8 0.09 3.3 2.6 0.569
Mtco 6.5 303.0 0.14 5.4 3.3 0.421
Tann 848.7
Tab.4  Summary statistics of redundancy analysis (RDA) of 26 pollen taxa and climatic variables
Fig.5  Redundancy analysis of our 27 lake surface-sediment samples with climate variables (black arrows) based on pollen taxa (A) and plant sedDNA sequence at the family level (B) shown by black circles.
Climatic variables VIF (without Tann) VIF (add Tann) λ1/λ2 Climatic variables as sole predictor Marginal contribution based on climatic variables
Explained variance/% Explained variance/% p-value
Pann 2.0 4.6 0.32 7.9 5.1 0.188
Mtwa 4.7 153.8 0.18 4.9 5.9 0.101
Mtco 6.5 303.0 0.26 6.8 5.9 0.110
Tann 848.7
Tab.5  Summary statistics of redundancy analysis (RDA) of 22 families of sedDNA sequence and climatic variables
Climatic variables VIF (without Tann) VIF (add Tann) λ1/λ2 Climatic variables as sole predictor Marginal contribution based on climatic variables
Explained variance/% Explained variance/% p-value
Pann 2.0 4.6 0.51 7.3 4.4 0.215
Mtwa 4.7 153.8 0.30 5.0 5.4 0.071
Mtco 6.5 303.0 0.35 5.7 4.7 0.157
Tann 848.7
Tab.6  Summary statistics of redundancy analysis (RDA) of 69 sedDNA sequence types and climatic variables
1 C, Abel S, Horion T, Tagesson Keersmaecker W, De A W R, Seddon A M, Abdi R Fensholt (2021). The human-environment nexus and vegetation-rainfall sensitivity in tropical drylands.Nat Sustain, 4(1): 25–32
https://doi.org/10.1038/s41893-020-00597-z
2 I G, Alsos Y, Lammers N G, Yoccoz T, Jørgensen P, Sjögren L, Gielly M E Edwards (2018). Plant DNA metabarcoding of lake sediments: how does it represent the contemporary vegetation.PLoS One, 13(4): e0195403
https://doi.org/10.1371/journal.pone.0195403
3 I G, Alsos P, Sjögren M E, Edwards J Y, Landvik L, Gielly M, Forwick E, Coissac A G, Brown L V, Jakobsen M K, Føreid M W Pedersen (2016). Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change.Holocene, 26(4): 627–642
https://doi.org/10.1177/0959683615612563
4 L L, Anderson-Carpenter J S, McLachlan S T, Jackson M, Kuch C Y, Lumibao H N Poinar (2011). Ancient DNA from lake sediments: bridging the gap between paleoecology and genetic.BMC Evol Biol, 11: 30
https://doi.org/10.1186/1471-2148-11-30
5 M A A, Baamrane W, Shehzad A, Ouhammou A, Abbad M, Naimi E, Coissac P, Taberlet M Znari (2012). Assessment of the food habits of the Moroccan dorcas gazelle in M′ Sabih Talaa, west central Morocco, using the trnL approach.PLoS One, 7: e35643
https://doi.org/10.1371/journal.pone.0035643
6 H H Birks (2003). The importance of plant macrofossils in the reconstruction of Lateglacial vegetation and climate: examples from Scotland, Western Norway, and Minnesota, USA.Quat Sci Rev, 22: 453–473
https://doi.org/10.1016/S0277-3791(02)00248-2
7 H J B, Birks J M Line (1992). The use of rarefaction analysis for estimating palynological richness from Quaternary pollen-analytical data.Holocene, 2(1): 1–10
https://doi.org/10.1177/095968369200200101
8 H J B, Birks H H Birks (2016). How have studies of ancient DNA from sediments contributed to the reconstruction of Quaternary floras?.New Phytol, 209(2): 499–506
https://doi.org/10.1111/nph.13657
9 F, Boyer C, Mercier A, Bonin Bras Y, Le P, Taberlet E Coissac (2016). OBITools: a unix-inspired software package for DNA metabarcoding.Mol Ecol Resour, 16: 176–182
https://doi.org/10.1111/1755-0998.12428
10 X Cao, F Tian, K Li, J Ni (2020). Atlas of pollen and spores for common plants from the east Tibetan Plateau. National Tibetan Plateau Data Center10.11888/Paleoenv.tpdc.270735
11 X, Cao F, Tian K, Li J, Ni X, Yu L, Liu N Wang (2021). Lake surface sediment pollen dataset for the alpine meadow vegetation type from the eastern Tibetan Plateau and its potential in past climate reconstructions.Earth Syst Sci Data, 13: 3525–3537
https://doi.org/10.5194/essd-13-3525-2021
12 F, Chen L, Ding S, Piao T, Zhou B, Xu T, Yao X Li (2021). The Tibetan Plateau as the engine for Asian environmental change: the Tibetan Plateau Earth system research into a new era.Sci Bull (Beijing), 66: 1263–1266
https://doi.org/10.1016/j.scib.2021.04.017
13 K Fægri, J Iversen (1975). Textbook of pollen analysis. Copenhagen: Munksgaard
14 J, Han M, Cai Z, Shao F, Liu Q, Zhang S, Zhang J, Yu X, Li Z, Zhang D Zhu (2021). Vegetation and climate change since the late glacial period on the southern Tibetan Plateau.Palaeogeogr Palaeoclimatol Palaeoecol, 572: 110403
https://doi.org/10.1016/j.palaeo.2021.110403
15 J, He K, Yang W, Tang H, Lu J, Qin Y, Chen X Li (2020). The first high-resolution meteorological forcing dataset for land process studies over China.Sci Data, 7(1): 25
https://doi.org/10.1038/s41597-020-0369-y
16 U, Herzschuh H J B, Birks J, Ni Y, Zhao H, Liu X, Liu G Grosse (2010). Holocene land-cover changes on the Tibetan Plateau.Holocene, 20(1): 91–104
https://doi.org/10.1177/0959683609348882
17 U, Herzschuh H, Kürschner S Mischke (2006). Temperature variability and vertical vegetation belt shifts during the last ~50000 yr in the Qilian Mountains (NE margin of the Tibetan Plateau, China).Quat Res, 66(1): 133–146
https://doi.org/10.1016/j.yqres.2006.03.001
18 M O, Hill H G Jr Gauch (1980). Detrended correspondence analysis: an improved ordination technique.Vegetatio, 42(1–3): 47–58
https://doi.org/10.1007/BF00048870
19 S, Huang K R, Stoof-Leichsenring S, Liu J, Courtin A A, Andreev L A, Pestryakova U Herzschuh (2021). Plant sedimentary ancient DNA from Far East Russia covering the last 28000 years reveals different assembly rules in cold and warm climates.Front Ecol Evol, 9: 763747
https://doi.org/10.3389/fevo.2021.763747
20 Institute of Geographic Sciences and Natural Resources Research CAS (1990). Atlas of Qinghai-Tibet Plateau. Beijing: Science Press
21 S T Jackson (1990). Pollen source area and representation in small lakes of the northeast United States.Rev Palaeobot Palynol, 63(1–2): 53–76
https://doi.org/10.1016/0034-6667(90)90006-5
22 G L Jr, Jacobson R H W Bradshaw (1981). The selection of sites for paleovegetational studies.Quat Res, 16(1): 80–96
https://doi.org/10.1016/0033-5894(81)90129-0
23 W H Jia (2020). Modern-process studies of plant DNA in lake sediments, Qinghai-Tibetan Plateau and arid northwestern China. Dissertation for Master’s Degree. Beijing: Capital Normal University
24 W, Jia S, Anslan F, Chen X, Cao H, Dong K, Dulias Z, Gu L, Heinecke H, Jiang S, Kruse W, Kang K, Li S, Liu X, Liu Y, Liu J, Ni A, Schwalb K R, Stoof-Leichsenring W, Shen F, Tian J, Wang Y, Wang Y, Wang H, Xu X, Yang D, Zhang U Herzschuh (2022a). Sedimentary ancient DNA reveals past ecosystem and biodiversity changes on the Tibetan Plateau: overview and prospects.Quat Sci Rev, 293: 107703
https://doi.org/10.1016/j.quascirev.2022.107703
25 W, Jia X, Liu K R, Stoof-Leichsenring S, Liu K, Li U Herzschuh (2022b). Preservation of sedimentary plant DNA in related to lake water chemistry.Environ DNA, 4(2): 425–439
https://doi.org/10.1002/edn3.259
26 W Jia, K Stoof-Leichsenring, S Liu, K Li, S Huang, X Liu, J Ni, X Cao, L Pestryakova, S Mischke, U Herzschuh (2021). Metabarcoding of modern sedimentary DNA from the Tibetan Plateau and Siberia as a training dataset for vegetation reconstructions. EGU General Assembly, EGU21–14835
27 T, Jørgensen J, Haile P, Möller A, Andreev S, Boessenkool M, Rasmussen F, Kienast E, Coissac P, Taberlet C, Brochmann N H, Bigelow K, Andersen L, Orlando M T P, Gilbert E Willerslev (2012). A comparative study of ancient sedimentary DNA, pollen and macrofossils from permafrost sediments of northern Siberia reveals long-term vegetational stability.Mol Ecol, 21: 1989–2003
https://doi.org/10.1111/j.1365-294X.2011.05287.x
28 C, Kanz P, Aldebert N, Althorpe W, Baker A, Baldwin K, Bates P, Browne A V D, Broek M, Castro G, Cochrane K, Duggan R, Eberhardt N, Faruque J, Gamble F G, Diez N, Harte T, Kulikova Q, Lin V, Lombard R, Lopez R, Mancuso M, McHale F, Nardone V, Silventoinen S, Sobhany P, Stoehr M A, Tuli K, Tzouvara R, Vaughan D, Wu W M, Zhu R Apweileret (2005). The EMBL Nucleotide Sequence Database.Nucleic Acids Res, 33: D29–D33
29 L Liu, N Wang, Y Zhang, X Yu, X Cao (2023). Performance of pollen-based vegetation cover reconstruction using lake and soil samples on the Tibetan Plateau. Veget Hist Archaeobot, 10.1007/s00334-022-00891-0
30 S, Liu S, Kruse D, Scherler R H, Ree H H, Zimmermann K R, Stoof-Leichsenring L S, Epp S, Mischke U Herzschuh (2021). Sedimentary ancient DNA reveals a threat of warming-induced alpine habitat loss to Tibetan Plateau plant diversity.Nat Commun, 12(1): 2995
https://doi.org/10.1038/s41467-021-22986-4
31 Q, Ma L, Zhu X, Lü J, Wang J, Ju T, Kasper G, Daut T Haberzettl (2019). Late glacial and Holocene vegetation and climate variations at Lake Tangra Yumco, central Tibetan Plateau.Global Planet Change, 174: 16–25
https://doi.org/10.1016/j.gloplacha.2019.01.004
32 J, Madeja A, Wacnik A, Zyga E, Stankiewicz E, Wypasek W, Guminski K Harmata (2009). Bacterial ancient DNA as an indicator of human presence in the past: its correlation with palynological and archaeological data.J Quaternary Sci, 24(4): 317–321
https://doi.org/10.1002/jqs.1237
33 L J Maher (1981). Statistics for microfossil concentration measurements employing samples spiked with marker grains.Rev Palaeobot Palynol, 32: 153–191
https://doi.org/10.1016/0034-6667(81)90002-6
34 G, Miehe S, Miehe J, Böhner K, Kaiser I, Hensen D, Madsen J, Liu L Opgenoorth (2014). How old is the human footprint in the world’s largest alpine ecosystem?.A review of multiproxy records from the Tibetan Plateau from the ecologists’ viewpoint. Quat Sci Rev, 86: 190–209
https://doi.org/10.1016/j.quascirev.2013.12.004
35 G, Miehe P M, Schleuss E, Seeber W, Babel T, Biermann M, Braendle F, Chen H, Coners T, Foken T, Gerken H F, Graf G, Guggenberger S, Hafner M, Holzapfel J, Ingrisch Y, Kuzyakov Z, Lai L, Lehnert C, Leuschner X, Li J, Liu S, Liu Y, Ma S, Miehe V, Mosbrugger H J, Noltie J, Schmidt S, Spielvogel S, Unteregelsbacher Y, Wang S, Willinghöfer X, Xu Y, Yang S, Zhang L, Opgenoorth K Wesche (2019). The Kobresia pygmaea ecosystem of the Tibetan highlands – origin, functioning and degradation of the world’s largest pastoral alpine ecosystem: Kobresia pastures of Tibet.Sci Total Environ, 648: 754–771
https://doi.org/10.1016/j.scitotenv.2018.08.164
36 B, Niemeyer L S, Epp K R, Stoof-Leichsenring L A, Pestryakova U Herzschuh (2017). A comparison of sedimentary DNA and pollen from lake sediments in recording vegetation composition at the Siberian treeline.Mol Ecol Resour, 17(6): e46–e62
https://doi.org/10.1111/1755-0998.12689
37 D Nychka, R Furrer, J Paige, S Sain (2019). Fields: Tools for spatial data, version 9.6.1
38 J Oksanen, F G Blanchet, M Friendly, R Kindt, P Legendre, D McGlinn, P R Minchin, R B O’Hara, G L Simpson, P Solymos, M H H Stevens, E Szoecs, H Wagner (2019). vegan: Community Ecology Package, version 2.5–4
39 L, Parducci I G, Alsos P, Unneberg M W, Pedersen L, Han Y, Lammers J S, Salonen M M, Väliranta T, Slotte B Wohlfarth (2019). Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden.Front Ecol Evol, 7: 189
https://doi.org/10.3389/fevo.2019.00189
40 L, Parducci T, Jorgensen M M, Tollefsrud E, Elverland T, Alm S L, Fontana K D, Bennett J, Haile I, Matetovici Y, Suyama M E, Edwards K, Andersen M, Rasmussen S, Boessenkool E, Coissac C, Brochmann P, Taberlet M, Houmark-Nielsen N K, Larsen L, Orlando M T P, Gilbert K H, Kjaer I G, Alsos E Willerslev (2012). Glacial survival of boreal trees in northern Scandinavia.Science, 335: 1083–1086
https://doi.org/10.1126/science.1216043
41 S, Piao G, Yin J, Tan L, Cheng M, Huang Y, Li R, Liu J, Mao R B, Myneni S, Peng B, Poulter X, Shi Z, Xiao N, Zeng Z, Zeng Y Wang (2015). Detection and attribution of vegetation greening trend in China over the last 30 years.Glob Change Biol, 21(4): 1601–1609
https://doi.org/10.1111/gcb.12795
42 S Piao, X Zhang, T Wang, E Liang, S Wang, J Zhu, B Niu (2019). Responses and feedback of the Tibetan Plateau’s alpine ecosystem to climate change. Chin Sci Bull, 64(27): 2842–2855 (in Chinese) 10.1360/TB-2019-0074
43 I C Prentice (1980). Multidimensional scaling as a research tool in Quaternary palynology: a review of theory and methods.Rev Palaeobot Palynol, 31: 71–104
https://doi.org/10.1016/0034-6667(80)90023-8
44 R Core Team (2019). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna
45 J, Shen X, Liu M, Ryo S, Wang X Yang (2005). A high-resolution climatic change since the Late Glacial Age inferred from multi-proxy of sediments in Qinghai Lake.Sci China Earth Sci, 48(6): 742–751
https://doi.org/10.1360/03yd0148
46 E M, Soininen G, Gauthier F, Bilodeau D, Berteaux L, Gielly P, Taberlet G, Gussarova E, Bellemain K, Hassel H K, Stenøien L, Epp A, Schrøder-Nielsen C, Brochmann N G Yoccoz (2015). Highly overlapping winter diet in two sympatric lemming species revealed by DNA metabarcoding.PLoS One, 10(1): e0115335
https://doi.org/10.1371/journal.pone.0115335
47 J H, Sønstebø L, Gielly A K, Brysting R, Elven M, Edwards J, Haile E, Willerslev E, Coissac D, Rioux J, Sannier P, Taberlet C Brochmann (2010). Using next-generation sequencing for molecular reconstruction of past Arctic vegetation and climate.Mol Ecol Resour, 10(6): 1009–1018
https://doi.org/10.1111/j.1755-0998.2010.02855.x
48 K R, Stoof-Leichsenring S, Liu W, Jia K, Li L A, Pestryakova S, Mischke X, Cao X, Liu J, Ni S, Neuhaus U Herzschuh (2020). Plant diversity in sedimentary DNA obtained from high-latitude (Siberia) and high-elevation lakes (China).Biodivers Data J, 8: e57089
https://doi.org/10.3897/BDJ.8.e57089
49 P, Taberlet E, Coissac F, Pompanon L, Gielly C, Miquel A, Valentini T, Vermat G, Corthier C, Brochmann E Willerslev (2007). Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding.Nucleic Acids Res, 35(3): e14
https://doi.org/10.1093/nar/gkl938
50 L Y Tang, L Y Mao, J W Shu, C H Li, C M Shen, Z Z Zhou (2017). Atlas of Quaternary Pollen and Spores in China. Beijing: Science Press
51 Braak C J F, ter I C Prentice (1988). A theory of gradient analysis.Adv Ecol Res, 18: 271–317
https://doi.org/10.1016/S0065-2504(08)60183-X
52 Braak C J F, ter P F M Verdonschot (1995). Canonical correspondence analysis and related multivariate methods in aquatic ecology.Aquat Sci, 57(3): 255–289
https://doi.org/10.1007/BF00877430
53 F, Tian X, Cao R, Zhang Q, Xu W, Ding X, Liu B, Pan J Chen (2020). Spatial homogenization of soil-surface pollen assemblages improves the reliability of pollen-climate calibration-set.Sci China Earth Sci, 63(11): 1758–1766
https://doi.org/10.1007/s11430-019-9643-0
54 B Wang (2006). The Asian Monsoon. Berlin, Heidelberg: Springer
55 F X Wang, N F Qian, Y L Zhang, H Q Yang (1995). Pollen Flora of China. Beijing: Science Press
56 N, Wang L, Liu Y, Zhang X Cao (2022). A modern pollen data set for the forest–meadow–steppe ecotone from the Tibetan Plateau and its potential use in past vegetation reconstruction.Boreas, 51(4): 847–858
https://doi.org/10.1111/bor.12589
57 Y, Wang U Herzschuh (2011). Reassessment of Holocene vegetation change on the upper Tibetan Plateau using the pollen–based REVEALS model.Rev Palaeobot Palynol, 168(1): 31–40
https://doi.org/10.1016/j.revpalbo.2011.09.004
58 Y, Wang M W, Pedersen I G, Alsos Sanctis B, De F, Racimo A, Prohaska E, Coissac H L, Owens M K F, Merkel A, Fernandez-Guerra A, Rouillard Y, Lammers A, Alberti F, Denoeud D, Money A H, Ruter H, McColl N K, Larsen A A, Cherezova M E, Edwards G B, Fedorov J, Haile L, Orlando L, Vinner T S, Korneliussen D W, Beilman A A, Bjørk J, Cao C, Dockter J, Esdale G, Gusarova K K, Kjeldsen J, Mangerud J T, Rasic B, Skadhauge J I, Svendsen A, Tikhonov P, Wincker Y, Xing Y, Zhang D G, Froese C, Rahbek D N, Bravo P B, Holden N R, Edwards R, Durbin D J, Meltzer K H, Kjær P, Möller E Willerslev (2021). Late Quaternary dynamics of Arctic biota from ancient environmental genomics.Nature, 600(7887): 86–92
https://doi.org/10.1038/s41586-021-04016-x
59 E, Willerslev J, Davison M, Moora M, Zobel E, Coissac M E, Edwards E D, Lorenzen M, Vestergård G, Gussarova J, Haile J, Craine L, Gielly S, Boessenkool L S, Epp P B, Pearman R, Cheddadi D, Murray K A, Bråthen N, Yoccoz H, Binney C, Cruaud P, Wincker T, Goslar I G, Alsos E, Bellemain A K, Brysting R, Elven J H, Sønstebø J, Murton A, Sher M, Rasmussen R, Rønn T, Mourier A, Cooper J, Austin P, Möller D, Froese G, Zazula F, Pompanon D, Rioux V, Niderkorn A, Tikhonov G, Savvinov R G, Roberts R D E, MacPhee M T P, Gilbert K H, Kjær L, Orlando C, Brochmann P Taberlet (2014). Fifty thousand years of Arctic vegetation and megafaunal diet.Nature, 506(7486): 47–51
https://doi.org/10.1038/nature12921
60 Z Y Wu (1995). The Vegetation of China. Beijing: Science Press (in Chinese)
61 N G, Yoccoz K A, Bråthen L, Gielly J, Haile M E, Edwards T, Goslar Stedingk H, Von A K, Brysting E, Coissac F, Pompanon J H, Sønstebø C, Miquel A, Valentini Bello F, De J, Chave W, Thuiller P, Wincker C, Cruaud F, Gavory M, Rasmussen M T, Gilbert L, Orlando C, Brochmann E, Willerslev P Taberlet (2012). DNA from soil mirrors plant taxonomic and growth form diversity.Mol Ecol, 21(15): 3647–3655
https://doi.org/10.1111/j.1365-294X.2012.05545.x
62 X, Zhou J, Yu R N, Spengler H, Shen K, Zhao J, Ge Y, Bao J, Liu Q, Yang G, Chen P, Jia X Li (2020). 5200-year-old cereal grains from the eastern Altai Mountains redate the trans-Eurasian crop exchange.Nat Plants, 6: 78–87
https://doi.org/10.1038/s41477-019-0581-y
63 L, Zhu X, Lü J, Wang P, Peng T, Kasper G, Daut T, Haberzettl P, Frenzel Q, Li R, Yang A, Schwalb R Mäusbacher (2015). Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM.Sci Rep, 5: 13318
https://doi.org/10.1038/srep13318
[1] Xiumei LI, Sutao LIU, Juzhi HOU, Zhe SUN, Mingda WANG, Xiaohuan HOU, Minghua LIU, Junhui YAN, Lifang ZHANG. Late Holocene brGDGTs-based quantitative paleotemperature reconstruction from lacustrine sediments on the western Tibetan Plateau[J]. Front. Earth Sci., 2023, 17(4): 997-1011.
[2] Zeyu ZHENG, Liya JIN, Jinjian LI, Xiaojian ZHANG, Jie CHEN. Detecting the spatial-temporal pattern of moisture evolution on the Tibetan Plateau during the Holocene by model-proxy comparison[J]. Front. Earth Sci., 2023, 17(4): 981-996.
[3] Hongliang ZHANG, Hucai ZHANG, Yanbin LEI. Lacustrine record of 800 yr hydrological variations on the central Tibetan Plateau[J]. Front. Earth Sci., 2023, 17(4): 945-955.
[4] Mingda WANG, Qin LI, Jaime TONEY, David HENDERSON, Juzhi HOU. A re-evaluation of the average chain length of lacustrine sedimentary n-alkanes as a paleoproxy on the Qinghai-Tibet Plateau[J]. Front. Earth Sci., 2023, 17(4): 905-919.
[5] Cai LIU, Haiyan ZHANG, Fuping GAN, Yunge LU, Hao WANG, Jiahong ZHANG, Xing JU. Identifying the spatio-temporal variability of human activity intensity and associated drivers: a case study on the Tibetan Plateau[J]. Front. Earth Sci., 2022, 16(3): 744-756.
[6] Dongliang ZHANG, Yunpeng YANG, Min RAN, Bo LAN, Hongyan ZHAO, Qi LIU. Vegetation dynamics and its response to climate change during the past 2000 years in the Altai Mountains, northwestern China[J]. Front. Earth Sci., 2022, 16(2): 513-522.
[7] Tao CHEN, Jinliang ZHANG, Yang LI, Yongfu ZHAO. Quantitative reconstruction of the palaeoclimate of the Shahejie Formation in the Chezhen Depression, Bohai Bay Basin, eastern China[J]. Front. Earth Sci., 2021, 15(4): 909-921.
[8] Xiaoqing LUO, Jianjun XU, Yu ZHANG, Kai LI. Relationship between the Tibetan Plateau–tropical Indian Ocean thermal contrast and the South Asian summer monsoon[J]. Front. Earth Sci., 2021, 15(1): 151-166.
[9] Kaixiu ZHANG, Wen QIN, Fang TIAN, Xianyong CAO, Yuecong LI, Jule XIAO, Wei DING, Ulrike HERZSCHUH, Qinghai XU. Influence of plant coverage and environmental variables on pollen productivities: evidence from northern China[J]. Front. Earth Sci., 2020, 14(4): 789-802.
[10] Weihe REN, Yan ZHAO, Quan LI, Jianhui CHEN. Changes in vegetation and moisture in the northern Tianshan of China over the past 450 years[J]. Front. Earth Sci., 2020, 14(2): 479-491.
[11] Zhengjia LIU,Mei HUANG. Assessing spatio-temporal variations of precipitation-use efficiency over Tibetan grasslands using MODIS and in-situ observations[J]. Front. Earth Sci., 2016, 10(4): 784-793.
[12] Xuhui DONG,Carl D. SAYER,Helen BENNION,Stephen C. MABERLY,Handong YANG,Richard W. BATTARBEE. Identifying sediment discontinuities and solving dating puzzles using monitoring and palaeolimnological records[J]. Front. Earth Sci., 2016, 10(4): 621-633.
[13] Tongtiegang ZHAO, Jianshi ZHAO, Hongchang Hll, Guangheng NI. Source of atmospheric moisture and precipitation over China’s major river basins[J]. Front. Earth Sci., 2016, 10(1): 159-170.
[14] Hongxia LIU, Ying HU, Shihua QI, Xinli XING, Yuan ZHANG, Dan YANG, Chengkai QU. Organochlorine pesticide residues in surface water from Sichuan Basin to Aba Prefecture profile, east of the Tibetan Plateau[J]. Front. Earth Sci., 2015, 9(2): 248-258.
[15] Yu LI, Nai’ang WANG, Zhuolun LI, Xuehua ZHOU, Chengqi ZHANG, Yue WANG. Carbonate formation and water level changes in a paleo-lake and its implication for carbon cycle and climate change, arid China[J]. Front Earth Sci, 2013, 7(4): 487-500.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed