Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2024, Vol. 18 Issue (3) : 579-597    https://doi.org/10.1007/s11707-023-1089-3
Empirical prediction of hydraulic aperture of 2D rough fractures: a systematic numerical study
Xiaolin WANG, Shuchen LI(), Richeng LIU(), Xinjie ZHU, Minghui HU
State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China
 Download: PDF(21818 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This study aims to propose an empirical prediction model of hydraulic aperture of 2D rough fractures through numerical simulations by considering the influences of fracture length, average mechanical aperture, minimum mechanical aperture, joint roughness coefficient (JRC) and hydraulic gradient. We generate 600 numerical models using successive random additions (SRA) algorithm and for each model, seven hydraulic gradients spanning from 2.5 × 10−7 to 1 are considered to fully cover both linear and nonlinear flow regimes. As a result, a total of 4200 fluid flow cases are simulated, which can provide sufficient data for the prediction of hydraulic aperture. The results show that as the ratio of average mechanical aperture to fracture length increases from 0.01 to 0.2, the hydraulic aperture increases following logarithm functions. As the hydraulic gradient increases from 2.5 × 10−7 to 1, the hydraulic aperture decreases following logarithm functions. When a relatively low hydraulic gradient (i.e., 5 × 10−7) is applied between the inlet and the outlet boundaries, the streamlines are of parallel distribution within the fractures. However, when a relatively large hydraulic gradient (i.e., 0.5) is applied between the inlet and the outlet boundaries, the streamlines are disturbed and a number of eddies are formed. The hydraulic aperture predicted using the proposed empirical functions agree well with the calculated results and is more reliable than those available in the preceding literature. In practice, the hydraulic aperture can be calculated as a first-order estimation using the proposed prediction model when the associated parameters are given.

Keywords fluid flow      rough fracture surface      mechanical aperture      hydraulic aperture      predictive model     
Corresponding Author(s): Shuchen LI,Richeng LIU   
Online First Date: 03 July 2024    Issue Date: 29 September 2024
 Cite this article:   
Xiaolin WANG,Shuchen LI,Richeng LIU, et al. Empirical prediction of hydraulic aperture of 2D rough fractures: a systematic numerical study[J]. Front. Earth Sci., 2024, 18(3): 579-597.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-023-1089-3
https://academic.hep.com.cn/fesci/EN/Y2024/V18/I3/579
Fig.1  Schematic view of contacts in a rough fracture. (a) Rough fracture with contacts; (b) equivalent model without contact.
Authors and year Expression Description of symbols
Lomize (1951) eh= em[1.0+6.0 (ξ/em)1.5] eh denotes the hydraulic aperture. em denotes the average mechanical aperture.ξ denotes the absolute asperity height.ξa denotes the average asperity height. Dh denotes the hydraulic radius.Cv denotes the variation coefficient of mechanical aperture.Δem denotes the mechanical aperture increment.h denotes the empirical constant.JRC denotes the joint roughness coefficient.JR Cmob denotes the mobilized value of JRC. C denotes constant.σb denotes the mechanical aperture standard deviation. σapert denotes the standard deviation of the mean mechanical aperture.k denotes the contact area ratio of the fracture surface.σbs denotes the standard deviation of mechanical aperture during shear.DT denotes fractal dimension. α? denotes an empirical constant.DΔ denotes the relative fracture dimension of the fracture.B and b denote the coefficients depending on the geometrical properties of the fracture. θ q denotes the angle between the shear direction and flow direction.so denotes the standard deviation of the initial fracture.α and β denote the fitting coefficients related to the surface damage and the formation of gouge materials.
Louis and Maini (1969) eh= em[1.0+8.8 ( ξa/D h)1.5]
Patir and Cheng (1978) eh= em(10.9 ξ 0.56 /Cv)1 /3
Witherspoon et al. (1980) eh= em+fΔe m
Walsh (1981) eh= bm[(1+η? )/(1?) ] 1 /3
Cruz et al. (1982) eh 2 = e m2m3,m3= 1+20.5(y 2em)1.5
Barton et al. (1985) eh=em2 J RC2.5
Hakami (1995) eh= emC0.5
Amadei and Illangasekare (1992) bh= bm[1+0.6 (σb/e m)]1/3
Renshaw (1995) eh= eme xp (σb2/2 )
Zimmerman and Bodvarsson (1996) eh= em[(11.5 σb2/b m)(12κ)]1 /3
Waite et al. (1999) bh= bm? τ 1/ 3
Yeo et al. (1998) eh=em(1 1.5σapertem) 1/3(12.4C ) 1/ 3
Olsson and Barton (2001) eh= em2JRC2.5(us< 0.75usp) eh=em 1/ 2JRCmob( us usp )
Liu (2005) eh= em[1+( σb 2/em2 )]1/2
Scesi and Gattinoni (2007) eh=em2 /3 [1+8.8( 0.5em/2 J RC2.5)] 1/ 2
Matsuki et al. (2010) eh=emB +1Bcos(2 θq)1+b(e m/s o)1.5
Rasouli and Hosseinian (2011) { eh= em[1 2.25( σ b/em)]1 /3 e h=e m(1 0.03em in0.565) JR C/3
Li and Jiang (2013) eh=em1+Z22.25(Re<1) eh= e m1+ Z22.25+(0.00006+ 0.004Z22.25)( Re1)(Re 1)
Xie et al. (2015) eh= em(0.945 ( σb s2/e m))1 /3
Liu et al. (2015) eh= (4/πα') 42D TLDT1
Chen et al. (2017) eh= em(11.1C ) 4 (1+2 DΔ)3/5
Cao et al. (2019) eh=α+βem(us< usp) eh=αex p( β em)(us> usp )
Tab.1  Correlations between mechanical aperture and hydraulic aperture in previous studies
Parameters Range of values
l (mm) 100−400
em (mm) 4−20
JRC 1.822−11.438
J 2.5×10−7−100
emin (mm) 0−20
Tab.2  Ranges of l, em, JRC, J, and emin used in the simulation
Fig.2  The void spaces of a rough-walled three-dimensional fracture. The color of the upper surface represents the height of the asperities. The two-dimensional models are generated using cutting planes that are perpendicular to the xy plane along z-direction.
Fig.3  Geometry of fractures, boundary conditions, and an example of meshing. The local aperture is denoted as E and the smallest local aperture is represented by emin.
Fig.4  Comparison of flow rate between theoretical and simulated results.
Fig.5  Variations in Q for em = 4 mm with varying l from 100 mm to 400 mm. (a) l = 100 mm; (b) l = 200 mm; (c) l = 300 mm; (d) l =400 mm.
Fig.6  Variations in Q for em = 20 mm with varying l from 100 mm to 400 mm. (a) l = 100 mm; (b) l = 200 mm; (c) l = 300 mm; (d) l =400 mm.
Fig.7  Variations in Q for em = 16 mm with varying l from 100 mm to 400 mm. (a) l = 100 mm; (b) l = 200 mm; (c) l = 300 mm; (d) l =400 mm.
Fig.8  Variations in Q for em = 8 mm with varying l from 100 mm to 400 mm. (a) l = 100 mm; (b) l = 200 mm; (c) l = 300 mm; (d) l =400 mm.
Fig.9  Variations in Q for em = 12 mm with varying l from 100 mm to 400 mm. (a) l = 100 mm; (b) l = 200 mm; (c) l = 300 mm; (d) l =400 mm.
Fig.10  Streamline distributions for l = 200 mm and em = 4 mm. (a) JRC = 5.42 and J = 5×10−7; (b) JRC = 5.42 and J = 0.5; (c) JRC = 8.13 and J = 5×10−7; (d) JRC = 8.13 and J = 0.5; (e) JRC = 10.74 and J = 5×10−7; (f) JRC = 10.74 and J = 0.5.
Fig.11  Velocity distributions for l = 200 mm and em = 4 mm. (a) JRC = 5.42 and J = 5×10−7; (b) JRC = 5.42 and J = 0.5; (c) JRC = 8.13 and J = 5×10−7; (d) JRC = 8.13 and J = 0.5; (e) JRC = 10.74 and J = 5×10−7; (f) JRC = 10.74 and J = 0.5.
Fig.12  Variations in hydraulic aperture for fluid flow with em/l = 0.01−0.2 and −?P= 10−3 Pa−103 Pa. (a) −?P= 10−3 Pa; (b) −?P= 10−2 Pa; (c) −?P= 10−1 Pa; (d) −?P= 100 Pa; (e) −?P= 101 Pa; (f) −?P= 102 Pa; (g) −?P= 103 Pa.
Fig.13  Variations in hydraulic aperture with l = 100−400 mm. (a) l = 100 mm; (b) l = 200 mm; (c) l = 300 mm; (d) l = 400 mm.
Fig.14  Structure of the BP-NN.
Authors and year Expression
Barton et al. (1985) eh=em2 JRC 2.5
Scesi and Gattinoni (2007) eh=em2 /3 [1+8.8( 0.5em/2 J RC2.5)] 1/ 2
Rasouli and Hosseinian (2011) { eh= em[1 2.25( σ b/em)]1 /3 e h=e m(1 0.03em in0.565) JR C/3
Tab.3  Expressions of hydraulic aperture used in Fig.15
Fig.15  Comparison of predicted hydraulic aperture using the proposed expression in this study and those in previous works.
No. em/mm emin/mm JRC J l/mm eh1/mm eh2/mm eh3/mm eh4/mm eh5/mm
1 2.6775 0.15 27.4593 1.40E-03 100 0.4404 0.9132 0.0018 0.8300 1.1566
2 2.9272 0.20 26.9736 1.73E-03 100 0.4109 1.3575 0.0023 0.8809 1.4596
3 2.8534 0.33 21.5721 1.17E-04 100 1.0071 1.3336 0.0038 0.8662 1.8836
4 2.0316 0.46 17.9522 9.06E-05 100 1.0984 1.2339 0.0030 0.6907 1.5277
5 2.0706 0.55 16.5963 5.50E-05 100 1.2973 1.002 0.0038 0.6996 1.6326
6 2.1129 0.55 15.7702 6.75E-05 100 1.2116 0.7343 0.0045 0.7092 1.6857
7 2.5924 0.69 21.1757 2.53E-05 100 1.6792 1.3031 0.0033 0.8125 1.9867
8 2.5317 0.81 24.1429 2.43E-05 100 1.7028 1.1953 0.0022 0.7997 1.9198
9 3.5838 0.97 27.7310 1.25E-05 100 2.1235 2.2875 0.0032 1.0081 2.6910
10 3.8143 1.13 26.3201 1.46E-05 100 2.0196 2.7051 0.0041 1.0510 2.9731
11 1.4507 0.15 9.5438 1.93E-03 100 0.3959 1.0477 0.0075 0.5526 1.0836
12 1.6681 0.20 16.3958 2.50E-04 100 0.7831 1.0738 0.0026 0.6057 1.0927
13 1.6475 0.33 14.7853 1.15E-04 100 1.0155 1.1989 0.0032 0.6008 1.2393
14 1.6053 0.46 14.5289 9.54E-05 100 1.0795 0.6224 0.0032 0.5905 1.2746
15 2.5983 0.55 18.8358 3.92E-05 100 1.4520 1.8551 0.0044 0.8139 1.9840
16 2.7007 0.55 18.5559 5.05E-05 100 1.3341 1.862 0.0049 0.8352 2.0704
17 2.1245 0.69 11.0438 3.76E-05 100 1.4717 1.5635 0.0111 0.7127 1.8492
18 2.1446 0.81 7.0202 2.91E-05 100 1.6028 1.1713 0.0352 0.7205 1.9788
19 2.3192 0.97 11.5800 2.00E-05 100 1.8175 2.0136 0.0118 0.7555 2.0577
20 2.3551 1.13 12.2733 1.94E-05 100 1.8344 1.2293 0.0105 0.7631 2.0968
Tab.4  Parameter settings of the fractures and prediction results from different models
Fig.16  Comparison of eh calculated using the same set of parameters for different models.
1 B, Amadei T Illangasekare (1992). Analytical solutions for steady and transient flow in non-homogeneous and anisotropic rock joints.Int J Rock Mech Min Sci Geomech Abstr, 29(6): 561–572
https://doi.org/10.1016/0148-9062(92)91614-B
2 M R, Awual T, Yaita T, Kobayashi H, Shiwaku S Suzuki (2020). Improving cesium removal to clean-up the contaminated water using modified conjugate material.J Environ Chem Eng, 8(2): 103684
https://doi.org/10.1016/j.jece.2020.103684
3 T, Babadagli X, Ren K Develi (2015). Effects of fractal surface roughness and lithology on single and multiphase flow in a single fracture: an experimental investigation.Int J Multiph Flow, 68: 40–58
https://doi.org/10.1016/j.ijmultiphaseflow.2014.10.004
4 N Barton (1974). Review of a new shear strength criterion for rock joints.Eng Geol, 11(11): 287–332
5 N, Barton S, Bandis K Bakhtar (1985). Strength, deformation and conductivity coupling of rock joints.Int J Rock Mech Min Sci Geomech Abstr, 22(3): 121–140
https://doi.org/10.1016/0148-9062(85)93227-9
6 N, Barton V Choubey (1977). The shear strength of rock joints in theory and practice.Rock Mech, 10(1–2): 1–54
https://doi.org/10.1007/BF01261801
7 K, Bisdom G, Bertotti H M Nick (2016). The impact of in-situ stress and outcrop-based fracture geometry on hydraulic aperture and upscaled permeability in fractured reservoirs.Tectonophysics, 690: 63–75
https://doi.org/10.1016/j.tecto.2016.04.006
8 E Brown (1981). Rock characterization, testing & monitoring: ISRM suggested methods.Biospectroscopy, 18(6): 109
9 S R, Brown C H Scholz (1985). Broad bandwidth study of the topography of natural rock surfaces.J Geophys Res, 90(B14): 12575–12582
https://doi.org/10.1029/JB090iB14p12575
10 C, Cao Z, Xu J, Chai Y Li (2019). Radial fluid flow regime in a single fracture under high hydraulic pressure during shear process.J Hydrol (Amst), 579: 124142
https://doi.org/10.1016/j.jhydrol.2019.124142
11 A, Cardona T, Finkbeiner J C Santamarina (2021). Natural rock fractures: from aperture to fluid flow.Rock Mech Rock Eng, 54(11): 5827–5844
https://doi.org/10.1007/s00603-021-02565-1
12 Y D, Chen W G, Liang H J, Lian J F, Yang V P Nguyen (2017). Experimental study on the effect of fracture geometric characteristics on the permeability in deformable rough-walled fractures.Int J Rock Mech Min Sci, 98: 121–140
https://doi.org/10.1016/j.ijrmms.2017.07.003
13 Y F, Chen J Q, Zhou S H, Hu R, Hu C B Zhou (2015). Evaluation of forchheimer equation coefficients for non-darcy flow in deformable rough-walled fractures.J Hydrol (Amst), 529: 993–1006
https://doi.org/10.1016/j.jhydrol.2015.09.021
14 P, Cruz E, Quadros D, Fo A Marrano (1982). Evaluation of opening and hydraulic conductivity of rock discontinuities. The 23rd U.S Symposium on Rock Mechanics (USRMS), Berkeley: California
15 W, Dang W H K, Wu H, Konietzky J Qian (2019). Effect of shear-induced aperture evolution on fluid flow in rock fractures.Comput Geotech, 114: 103152
https://doi.org/10.1016/j.compgeo.2019.103152
16 C, Foias O, Manley R, Rosa R Temam (2002). Navier-Stokes equations and turbulence.Phys Today, 55(10): 54–56
https://doi.org/10.1063/1.1522171
17 Y, Ge P H S W, Kulatilake H, Tang C Xiong (2014). Investigation of natural rock joint roughness.Comput Geotech, 55: 290–305
https://doi.org/10.1016/j.compgeo.2013.09.015
18 Z, Ge T, Yuan Y (2019) Li . Numerical study on the mechanism of fluid flow through single rough fractures with different JRC. Physica, Mechanica & Astronomica, 49(1): 1–10
19 F C, Gong T K, Guo W, Sun Z M, Li B, Yang Y M, Chen Z Q Qu (2020). Evaluation of geothermal energy extraction in Enhanced Geothermal System (EGS) with multiple fracturing horizontal wells (MFHW).Renew Energy, 151: 1339–1351
https://doi.org/10.1016/j.renene.2019.11.134
20 T K, Guo Y L, Zhang J Y, He F C, Gong M, Chen X Q Liu (2021). Research on geothermal development model of abandoned high temperature oil reservoir in north China oilfield.Renew Energy, 177: 1–12
https://doi.org/10.1016/j.renene.2021.05.128
21 E (1995) Hakami . Aperture distribution of rock fractures. Dissertation for Doctoral Degree. Stockholm: Royal Institute of Technology
22 J C, Hou M C, Cao P K Liu (2018). Development and utilization of geothermal energy in China: current practices and future strategies.Renew Energy, 125: 401–412
https://doi.org/10.1016/j.renene.2018.02.115
23 N, Huang R C, Liu Y J Jiang (2017). Numerical study of the geometrical and hydraulic characteristics of 3D self-affine rough fractures during shear.J Nat Gas Sci Eng, 45: 127–142
https://doi.org/10.1016/j.jngse.2017.05.018
24 N, Huang R C, Liu Y J, Jiang Y, Cheng B Li (2019). Shear-flow coupling characteristics of a three-dimensional discrete fracture network-fault model considering stress-induced aperture variations.J Hydrol (Amst), 571: 416–424
https://doi.org/10.1016/j.jhydrol.2019.01.068
25 M, Javadi M, Sharifzadeh K, Shahriar Y Mitani (2014). Critical Reynolds number for nonlinear flow through rough-walled fractures: the role of shear processes.Water Resour Res, 50(2): 1789–1804
https://doi.org/10.1002/2013WR014610
26 Y, Ju J B, Dong F, Gao J G Wang (2019). Evaluation of water permeability of rough fractures based on a self-affine fractal model and optimized segmentation algorithm.Adv Water Resour, 129: 99–111
https://doi.org/10.1016/j.advwatres.2019.05.007
27 J, Kim W, Cho I M, Chung J H Heo (2007). On the stochastic simulation procedure of estimating critical hydraulic gradient for gas storage in unlined rock caverns.Geosci J, 11(3): 249–258
https://doi.org/10.1007/BF02913938
28 P H S W, Kulatilake P, Balasingam J, Park R Morgan (2006). Natural rock joint roughness quantification through fractal techniques.Geotech Geol Eng, 24(5): 1181–1202
https://doi.org/10.1007/s10706-005-1219-6
29 W G P, Kumari P G Ranjith (2019). Sustainable development of enhanced geothermal systems based on geotechnical research – a review.Earth Sci Rev, 199: 102955
https://doi.org/10.1016/j.earscirev.2019.102955
30 J Lawrence (1993). Introduction to Neural Networks. California Scientific Software
31 B, Li Y (2013) Jiang . Quantitative estimation of fluid flow mechanism in rock fracture taking into account the influences of JRC and Reynolds number. J Min Mater Process Inst Jpn, 129 (7): 479–484 (in Japanese)
32 B, Li Y, Li Z, Zhao R Liu (2019). A mechanical-hydraulic-solute transport model for rough-walled rock fractures subjected to shear under constant normal stiffness conditions.J Hydrol (Amst), 579: 124153
https://doi.org/10.1016/j.jhydrol.2019.124153
33 B, Li R, Liu Y Jiang (2016a). Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections.J Hydrol (Amst), 538: 440–453
https://doi.org/10.1016/j.jhydrol.2016.04.053
34 J L, Li X H, Li B, Zhang B, Sui P C, Wang M Zhang (2021). Effect of lower surface roughness on nonlinear hydraulic properties of fractures.Geofluids, 2021: 6612378
https://doi.org/10.1155/2021/6612378
35 X, Li Z J, Feng G, Han D, Elsworth C, Marone D, Saffer D S Cheon (2016b). Breakdown pressure and fracture surface morphology of hydraulic fracturing in shale with H2O, CO2 and N2.Geomechanics Geophys Geo-Energy Geo-Resour, 2(2): 63–76
https://doi.org/10.1007/s40948-016-0022-6
36 E Liu (2005). Effects of fracture aperture and roughness on hydraulic and mechanical properties of rocks: implication of seismic characterization of fractured reservoirs.J Geophys Eng, 2(1): 38–47
https://doi.org/10.1088/1742-2132/2/1/006
37 H H, Liu G S, Bodvarsson S L, Lu F J Molz (2004). A corrected and generalized successive random additions algorithm for simulating fractional levy motions.Math Geol, 36(3): 361–378
https://doi.org/10.1023/B:MATG.0000028442.71929.26
38 H H, Liu F J Molz (1996). Discrimination of fractional Brownian movement and fractional Gaussian noise structures in permeability and related property distributions with range analyses.Water Resour Res, 32(8): 2601–2605
https://doi.org/10.1029/96WR01394
39 J W, Liu K H, Wei S W, Xu J, Cui J, Ma X L, Xiao B D, Xi X S He (2021a). Surfactant-enhanced remediation of oil-contaminated soil and groundwater: a review.Sci Total Environ, 756: 144142
https://doi.org/10.1016/j.scitotenv.2020.144142
40 R C, Liu M, He N, Huang Y J, Jiang L Y Yu (2020). Three-dimensional double-rough-walled modeling of fluid flow through self-affine shear fractures.J Rock Mech Geotech Eng, 12(1): 41–49
https://doi.org/10.1016/j.jrmge.2019.09.002
41 R C, Liu Y J, Jiang B Li (2016c). Effects of intersection and dead-end of fractures on nonlinear flow and particle transport in rock fracture networks.Geosci J, 20(3): 415–426
https://doi.org/10.1007/s12303-015-0057-7
42 R C, Liu H W, Jing X Z, Li Q, Yin Z G, Xu M, He T Taylor (2021b). An experimental study on fractal pore size distribution and hydro-mechanical properties of granites after high temperature treatment.Fractals, 29(4): 1–13
43 R C, Liu B, Li Y J Jiang (2016a). Critical hydraulic gradient for nonlinear flow through rock fracture networks: the roles of aperture, surface roughness, and number of intersections.Adv Water Resour, 88: 53–65
https://doi.org/10.1016/j.advwatres.2015.12.002
44 R C, Liu Y S, Wang B, Li H W, Jing S C, Li H Q Yang (2022). Linear and nonlinear fluid flow responses of connected fractures subject to shearing under constant normal load and constant normal stiffness boundary conditions.Comput Geotech, 141: 104517
https://doi.org/10.1016/j.compgeo.2021.104517
45 R, Liu Y, Jiang B, Li X Wang (2015). A fractal model for characterizing fluid flow in fractured rock masses based on randomly distributed rock fracture networks.Comput Geotech, 65: 45–55
https://doi.org/10.1016/j.compgeo.2014.11.004
46 R, Liu B, Li Y Jiang (2016b). Critical hydraulic gradient for nonlinear flow through rock fracture networks: the roles of aperture, surface roughness, and number of intersections.Adv Water Resour, 88(Feb): 53–65
https://doi.org/10.1016/j.advwatres.2015.12.002
47 R, Liu L, Yu Y Jiang (2017). Quantitative estimates of normalized transmissivity and the onset of nonlinear fluid flow through rough rock fractures.Rock Mech Rock Eng, 50: 1063–1071
https://doi.org/10.1007/s00603-016-1147-1
48 G (1951) Lomize . Flow in Fractured Rock. Moscow: Gosemergoizdat, 127–129 (in Russian)
49 C, Louis Y Maini (1969). Determination of in-situ hydraulic parameters in jointed rock.International Society of Rock Mechanics Proceedings, 1: 1–19
50 K, Matsuki Y, Kimura K, Sakaguchi A, Kizaki A Giwelli (2010). Effect of shear displacement on the hydraulic conductivity of a fracture.Int J Rock Mech Min Sci, 47(3): 436e449
51 W S, McCulloch W Pitts (1943). A logical calculus of the ideas immanent in nervous activity.Bull Math Biophys, 5(4): 115–133
https://doi.org/10.1007/BF02478259
52 N O Myers (1962). Characterization of surface roughness.Wear, 5(3): 182–189
https://doi.org/10.1016/0043-1648(62)90002-9
53 A, Nowamooz G, Radilla M Fourar (2009). Non-Darcian two-phase flow in a transparent replica of a rough-walled rock fracture.Water Resour Res, 45(7): W07406
https://doi.org/10.1029/2008WR007315
54 N E Odling (1994). Natural fracture profiles, fractal dimension and joint roughness coefficients.Rock Mech Rock Eng, 27(3): 135–153
https://doi.org/10.1007/BF01020307
55 R, Olsson N Barton (2001). An improved model for hydromechanical coupling during shearing of rock joints.Int J Rock Mech Min Sci, 38(3): 317–329
https://doi.org/10.1016/S1365-1609(00)00079-4
56 N, Patir H S Cheng (1978). An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication.Int J Rock Mech Min Sci, 100(1): 12–17
https://doi.org/10.1115/1.3453103
57 W L, Power T E Tullis (1991). Euclidean and fractal models for the description of rock surface roughness.Int J Rock Mech Min Sci Geomech Abstr, 28(6): A344
https://doi.org/10.1016/0148-9062(91)91240-R
58 V, Rasouli A Hosseinian (2011). Correlations developed for estimation of hydraulic parameters of rough fractures through the simulation of JRC flow channels.Rock Mech Rock Eng, 44(4): 447–461
https://doi.org/10.1007/s00603-011-0148-3
59 C E Renshaw (1995). On the relationship between mechanical and hydraulic apertures in rough-walled fractures.J Geophys Res, 100(B12): 24629–24636
https://doi.org/10.1029/95JB02159
60 D E, Rumelhart G E, Hinton R J Williams (1986). Learning representations by back propagating errors.Nature, 323(6088): 533–536
https://doi.org/10.1038/323533a0
61 L, Scesi P Gattinoni (2007). Roughness control on hydraulic conductivity in fractured rocks.Hydrogeol J, 15(2): 201–211
https://doi.org/10.1007/s10040-006-0076-6
62 J Schmidhuber (2015). Deep learning in neural networks: an overview.Neural Netw, 61: 85–117
https://doi.org/10.1016/j.neunet.2014.09.003
63 J, Schmittbuhl A, Steyer L, Jouniaux R Toussaint (2008). Fracture morphology and viscous transport.Int J Rock Mech Min Sci, 45(3): 422–430
https://doi.org/10.1016/j.ijrmms.2007.07.007
64 D T Snow (1970). The frequency and apertures of fractures in rock.Int J Rock Mech Min Sci Geomech Abstr, 7(1): 23–40
https://doi.org/10.1016/0148-9062(70)90025-2
65 Z H, Sun L Q, Wang J Q, Zhou C S Wang (2020). A new method for determining the hydraulic aperture of rough rock fractures using the support vector regression.Eng Geol, 271: 105618
https://doi.org/10.1016/j.enggeo.2020.105618
66 J, Tan G, Rong H B, Zhan R H, He S, Sha B W Li (2020). An innovative method to evaluate hydraulic conductivity of a single rock fracture based on geometric characteristics.Rock Mech Rock Eng, 53(10): 4767–4786
https://doi.org/10.1007/s00603-020-02196-y
67 Y W Tsang, P A Witherspoon (1981). Hydromechanical behavior of a deformable rock fracture subject to normal stress. J Geophys Res, 86(B10 NB10): 9287–9298 10.1029/JB086iB10p09287
68 R, Tse D M Cruden (1979). Estimating joint roughness coefficients.Int J Rock Mech Min Sci Geomech Abstr, 16(5): 303–307
https://doi.org/10.1016/0148-9062(79)90241-9
69 M E, Waite S, Ge H Spetzler (1999). A new conceptual model for fluid flow in discrete fractures: an experimental and numerical study.J Geophys Res, 104: 13049–13059
https://doi.org/10.1029/1998JB900035
70 J Walsh (1981). Effect of pore pressure and confining pressure on fracture permeability.Int J Rock Mech Min Sci Geomech Abstr, 18(5): 429–435
https://doi.org/10.1016/0148-9062(81)90006-1
71 L C, Wang M B Cardenas (2014). Non-Fickian transport through two-dimensional rough fractures: assessment and prediction.Water Resour Res, 50(2): 871–884
https://doi.org/10.1002/2013WR014459
72 L C, Wang M B, Cardenas D T, Slottke R A, Ketcham J M Jr Sharp (2015a). Modification of the Local Cubic Law of fracture flow for weak inertia, tortuosity, and roughness.Water Resour Res, 51(4): 2064–2080
https://doi.org/10.1002/2014WR015815
73 L, Wang Y, Tian X Y, Yu C, Wang B W, Yao S H, Wang P H, Winterfeld X, Wang Z Z, Yang Y H, Wang J Y, Cui Y S Wu (2017). Advances in improved/enhanced oil recovery technologies for tight and shale reservoirs.Fuel, 210: 425–445
https://doi.org/10.1016/j.fuel.2017.08.095
74 M, Wang Y F, Chen G W, Ma J Q, Zhou C B Zhou (2016). Influence of surface roughness on nonlinear flow behaviors in 3D self-affine rough fractures: Lattice Boltzmann simulations.Adv Water Resour, 96: 373–388
https://doi.org/10.1016/j.advwatres.2016.08.006
75 Y K, Wang Z Y, Zhang X Q, Liu K S Xue (2023). Relative permeability of two-phase fluid flow through rough fractures: the roles of fracture roughness and confining pressure.Adv Water Resour, 175: 104426
https://doi.org/10.1016/j.advwatres.2023.104426
76 Z C, Wang S C, Li L P, Qiao Q S Zhang (2015b). Finite element analysis of the hydro-mechanical behavior of an underground crude oil storage facility in granite subject to cyclic loading during operation.Int J Rock Mech Min Sci, 73: 70–81
https://doi.org/10.1016/j.ijrmms.2014.09.018
77 P A, Witherspoon J S Y, Wang K, Iwai J E Gale (1980). Validity of cubic law for fluid-flow in a deformable rock fracture.Water Resour Res, 16(6): 1016–1024
https://doi.org/10.1029/WR016i006p01016
78 Z H, Wu S R, Pan F W, Chen G D, Long C Q, Zhang P S Yu (2021). A comprehensive survey on graph neural networks.IEEE Trans Neural Netw Learn Syst, 32(1): 4–24
https://doi.org/10.1109/TNNLS.2020.2978386
79 L Z, Xie C, Gao L, Ren C B Li (2015). Numerical investigation of geometrical and hydraulic properties in a single rock fracture during shear displacement with the Navier-Stokes equations.Environ Earth Sci, 73(11): 7061–7074
https://doi.org/10.1007/s12665-015-4256-3
80 X, Xiong B, Li Y, Jiang T, Koyama C Zhang (2011). Experimental and numerical study of the geometrical and hydraulic characteristics of a single rock fracture during shear.Int J Rock Mech Min Sci, 48: 1292–1302
https://doi.org/10.1016/j.ijrmms.2011.09.009
81 X, Xiong B, Li Y, Jiang T, Koyama C Zhang (2013). Experimental and numerical study of the geometrical and hydraulic characteristics of a single rock fracture during shear.Seismic Safety Evaluation of Concrete Dams, 22: 513–538
https://doi.org/10.1016/B978-0-12-408083-6.00022-2
82 Z Y, Yang S C, Lo C C Di (2001). Reassessing the joint roughness coefficient (JRC) estimation using Z2.Rock Mech Rock Eng, 34(3): 243–251
https://doi.org/10.1007/s006030170012
83 Z, Ye H H, Liu Q, Jiang C Zhou (2015). Two-phase flow properties of a horizontal fracture: the effect of aperture distribution.Adv Water Resour, 76(feb): 43–54
https://doi.org/10.1016/j.advwatres.2014.12.001
84 I W, Yeo Freitas M H, de R W Zimmerman (1998). Effect of shear displacement on the aperture and permeability of a rock fracture.Int J Rock Mech Min Sci, 35(8): 1051–1070
https://doi.org/10.1016/S0148-9062(98)00165-X
85 Q, Yin G W, Ma H W, Jing H D, Wang H J, Su Y C, Wang R C Liu (2017). Hydraulic properties of 3D rough-walled fractures during shearing: an experimental study.J Hydrol (Amst), 555: 169–184
https://doi.org/10.1016/j.jhydrol.2017.10.019
86 Q, Yin X X, Nie J Y, Wu Q, Wang K Q, Bian H W Jing (2023). Experimental study on unloading induced shear performances of 3D saw-tooth rock fractures.Int J Min Sci Technol, 33(4): 463–479
https://doi.org/10.1016/j.ijmst.2023.02.002
87 L, Yu J, Zhang R C, Liu S C, Li D, Liu X L Wang (2022). Estimation of the representative elementary volume of three-dimensional fracture networks based on permeability and trace map analysis: a case study.Eng Geol, 309: 106848
https://doi.org/10.1016/j.enggeo.2022.106848
88 Y, Zhang J R Chai (2020). Effect of surface morphology on fluid flow in rough fractures: a review.J Nat Gas Sci Eng, 79: 103343
https://doi.org/10.1016/j.jngse.2020.103343
89 X, Zhao W, Liu Z Q, Cai B, Han T W, Qian D Y Zhao (2016). An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation.Water Res, 100: 245–266
https://doi.org/10.1016/j.watres.2016.05.019
90 Y L, Zhao L Y, Zhang W J, Wang J Z, Tang H, Lin W Wan (2017). Transient pulse test and morphological analysis of single rock fractures.Int J Rock Mech Min Sci, 91: 139–154
https://doi.org/10.1016/j.ijrmms.2016.11.016
91 R W, Zimmerman G S Bodvarsson (1996). Hydraulic conductivity of rock fractures.Transp Porous Media, 23(1): 1–30
https://doi.org/10.1007/BF00145263
92 L C, Zou L, Jing V Cvetkovic (2015). Roughness decomposition and nonlinear fluid flow in a single rock fracture.Int J Rock Mech Min Sci, 75: 102–118
https://doi.org/10.1016/j.ijrmms.2015.01.016
93 L C, Zou L, Jing V Cvetkovic (2017). Shear-enhanced nonlinear flow in rough-walled rock fractures.Int J Rock Mech Min Sci, 97: 33–45
https://doi.org/10.1016/j.ijrmms.2017.06.001
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed