Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (4) : 956-969    https://doi.org/10.1007/s11707-023-1092-8
Dust transport information and paleoclimatic changes revealed by the loess in Ranwu, south-eastern Xizang
Meihui PAN1,2(), Huimin ZHAO1,2, Anna YANG3, Yougui CHEN1,2, Chenlu LI1,2
1. College of Geography and Environment Science, Northwest Normal University, Lanzhou 730070, China
2. Key Laboratory of Resource Environment and Sustainable Development of Oasis, Northwest Normal University, Lanzhou 730070, China
3. CAS Key Laboratory of Mountain Hazards and Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences (CAS), Chengdu 610041, China
 Download: PDF(25537 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The loess accumulation process has great potential to record patterns of atmospheric circulation change, paleoclimate, and paleoenvironmental evolution. South-eastern Xizang is a climatically sensitive region and here, we analyze a loess profile at Ranwu in order to explore the processes and interactions of dust transport and paleoclimate evolution in the region. Based on parametric grain size end-member analysis, optically stimulated luminescence (OSL) dating, and environmental proxies we show that the Ranwu loess profile comprises five end members (EMs). EM1 represents the fine silt fraction transported by high-altitude westerly winds over long distances; EM2 represents the medium silt fraction accumulated by glacier winds; EM3 is the coarse silt fraction transported by local dust storms under the action of strong glacier winds; EM4 represents the very fine sand fraction transported by strong local dust storms, different wind strengths controls the relative proportion of EM3 and EM4 over time. EM5 is the coarse sand fraction formed from the product of strong weathering of gravels. OSL dating shows loess sedimentation at Ranwu started around 11.16 ka. The prevailing climate was generally warm and wet between 11.6 and 4.2 ka, with four cooling events at 10.50, 9.18, 7.85, and 6.37 ka. Extensive paleosol development between 8.2 and 4.2 ka, a change to dry and cold climate conditions was favorable for loess formation after 4.2 ka. The palaeoenvironmental changes and abrupt climate events recorded in the Ranwu loess sequence are consistent with Holocene global environmental changes.

Keywords loess      grain size end member      the optically stimulated luminescencethe      dust transport information      environmental evolution      southeastern Xizang region     
Corresponding Author(s): Meihui PAN   
Online First Date: 12 January 2024    Issue Date: 06 February 2024
 Cite this article:   
Meihui PAN,Huimin ZHAO,Anna YANG, et al. Dust transport information and paleoclimatic changes revealed by the loess in Ranwu, south-eastern Xizang[J]. Front. Earth Sci., 2023, 17(4): 956-969.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-023-1092-8
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I4/956
Fig.1  Location of the Ranwu profile (about 160 cm in depth, 29°26'10.14”N, 96°48′30.06”E).
Fig.2  The depositional environment of the Ranwu loess.
Fig.3  Field sampling map (a) Sampling profile; (b) White circles denoting the OSL dating sampling site.
Fig.4  OSL characteristics of aliquots of samples. (a), (b), (c) Decay curve of OSL signal of RW-OSL-1, RW-OSL-2, RW-OSL-3; (d), (e), (f) Growth curves of the OSL signals obtained using the SAR protocol for RW-OSL-1, RW-OSL-2, RW-OSL-3.
Depth/cmU/(μg·g?1)Th/(μg·g?1)K/%Actual water content/%Dose rate/(Gy·ka?1)AliquotnumbersOSL age/ka
203.12 ± 0.429.35 ± 0.83.15 ± 0.048 ± 56.29 ± 0.448a) + 12b)0.56 ± 0.13
604.05 ± 0.434.39 ± 0.83.09 ± 0.048 ± 56.84 ± 0.488a) + 12b)2.44 ± 0.17
1403.53 ± 0.421.93 ± 0.82.36 ± 0.048 ± 55.05 ± 0.368a) + 12b)10.00 ± 0.80
Tab.1  Dating results of OSL samples from the Ranwu profile
Fig.5  Age-depth relationship of the Ranwu loess profile.
Fig.6  Results of end member analysis of Ranwu loess profile: (a) linear correlation coefficient; (b) angular deviation; (c) frequency distribution curve of end member.
EndmemberMean grain size/(Mz·μm?1)Sorting coefficientSkewness (Sk)Kurtosis/kgClay particle/%Silt/%Sand/%Gravel/%
EM17.723.910.080.9632.4460.157.410
EM225.181.52?0.161.020.0699.780.160
EM342.731.59?0.151.020.0179.6820.310
EM485.651.34?0.181.06015.3984.610
EM5641.951.68?0.1210099.640.35
Tab.2  Grain size feature of each end member
Fig.7  Grain size distribution curves of Ranwu loess profile (the grain size distribution curves of Ranwu loess, paleosol and transitional soil were compared with the loess in the same region and the Loess Plateau of China).
Fig.8  Changes in xfd, a*, and Rb/Sr in the Holocene.
Fig.9  The correlation between each end member and Md, xfd, a*, Rb/Sr.
EM1EM2EM3EM4EM5
Late Holocene23.9116.1653.556.280.11
Middle Holocene43.178.3939.485.982.98
Early Holocene37.458.1342.747.234.44
Tab.3  Contents of different telomeres in the early, middle and late Holocene
Fig.10  Comparison of the content of each end member component, xfd, Md, a*, and Rb/Sr in the Ranwu loess profile.
Profile layeringSample depth/cmColorProfile description
10?10Off-whiteModern soil, silty sand, modern root development
210?60Light tawnyLoess layer, massive, silty, no structure, relatively loose
360?72Brownish redtransitional soil, massive, clay silt, with roots, developing calcareous mycelium
472?120Blackpaleosol layer, clumps, clay silt, root development, calcareous mycelium development
5126?140Dark Brown Redtransitional soil, blocky, slightly more colored than the upper layer Shallow, clay silty sand, relatively compact
6140?160Tawnytransitional soil, powdery fine sand, harder
  Table A1 Stratigraphic description of the Ranwu loess profile
Fig.11  Class-wise R2 of the end-member models with varying numbers of end-members.
Fig.12  Variation of frequency-dependent magnetic susceptibility and carbonate content in Ranwu profile in Holocene.
1 F Y, An H Z, Ma H C, Wei Z P Lai (2012). Distinguishing aeolian signature from lacustrine sediments of the Qaidam Basin in northeastern Qinghai-Tibetan Plateau and its palaeoclimatic implications.Aeolian Res, 4: 17–30
https://doi.org/10.1016/j.aeolia.2011.12.004
2 Z S, An G, Kukla S C, Porter J L Xiao (1991). Late Quaternary dust flow on the Chinese Loess Plateau.Catena, 18(2): 125–132
https://doi.org/10.1016/0341-8162(91)90012-M
3 Z S An, Y B Sun, W J Zhou, W G Liu, X K Qiang, X L Wang, F Xian, P Cheng, G S Burr (2014). Chinese loess and the East Asian Monsoon. In: An Z, ed. Late Cenozoic Climate Change in Asia. Springer: 23–143
4 M Bai, R J Lu, Z Y Ding, L D Wang (2020). Particle size end meta-analysis of the Qinghai Lake East Sandy and its indicative significance. Quat Res, 40(5): 1203–1215 (in Chinese)
5 M P, Bokhorst J, Vandenberghe P, Sümegi M, Łanczont N P, Gerasimenko Z N, Matviishina S B, Markovi M Frechen (2011). Atmospheric circulation patterns in central and eastern Europe during the weichse-lian pleniglacial inferred from loess grain-size records.Quat Int, 234(1–2): 62–74
https://doi.org/10.1016/j.quaint.2010.07.018
6 J N, Chai X C, Cha C C, Huang Y L, Zhou R W, Pang Y Z, Zhang N, Wang Y, Cook X Q, Rong R Q Shang (2021). Identification of the genesis of riparian sediments in the Jiaman section of the Yellow River in the Ruoerge Basin.J Lanzhou U (Nat Sci Ed), 57(5): 600–607 (in Chinese)
7 H T Chen, F B Kong, S J Xu, X D Miao (2021). Dust accumulation processes revealed by loess grain size end metas since the Late Pleistocene in the Miaodao Islands. Quat Res, 41(5): 1306–1316 (in Chinese)
8 L Q Cheng, Y G Song, Y Li, Z P Zhang (2018). Preliminary application of particle size end-member model in the study of dust sources and paleoclimate of loess in Xinjiang. J Sedimentol, 36(6): 1148–1156 (in Chinese)
9 L Q, Cheng L H, Yang H, Long Y G, Song Z, Chen M W, Lan M P, Xie Z B Dong (2023a). Early Holocene dust activity variation in the southern Tibetan Plateau and its response to solar irradiance.Palaeogeogr Palaeoclimatol Palaeoecol, 620: 111561
https://doi.org/10.1016/j.palaeo.2023.111561
10 L Q, Cheng L H, Yang H, Long Y G, Song X D, Miao J R, Zhang Y B, Wu M W, Lan M P, Xie Z B Dong (2023b). Milankovitch-paced South Asian monsoons during Marine Isotope Stage 5.Global Planet Change, 225: 104132
https://doi.org/10.1016/j.gloplacha.2023.104132
11 L Q, Cheng L H, Yang H, Long J R, Zhang X D, Miao Y B, Wu M W, Lan Y G, Song Z B Dong (2023c). Late Holocene change in South Asian monsoons and their influences on human activities in the southern Tibetan Plateau.Catena, 228: 107153
https://doi.org/10.1016/j.catena.2023.107153
12 E J Dasch (1969). Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks.Geochim Cosmochim Acta, 33(12): 1521–1552
https://doi.org/10.1016/0016-7037(69)90153-7
13 Z L Ding, E Derbyshire, S L Yang, Z W Yu, S F Xiong, T S Liu (2002). Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography, 17(3): 5-1−5-21 10.1029/2001PA000725
14 Z, Ding R, Lu Z, Lyu X Liu (2019). Geochemical characteristics of Holocene aeolian deposits east of Qinghai Lake, China, and their paleoclimatic implications.Sci Total Environ, 692: 917–929
https://doi.org/10.1016/j.scitotenv.2019.07.099
15 X M, Fang Y X, Han J H, Ma L C, Song S L, Yang X H Zhang (2004). Dust storms and loess accumulation on the Tibetan Plateau: a case study of dust event on 4 March 2003 in Lhasa.Chin Sci Bull, 49(9): 953–960
https://doi.org/10.1007/BF03184018
16 F Y, Gao J H, Yang S Y, Wang Y J, Wang K M, Li F, Wang Z Y Ling (2021). Variation of the winter mid-latitude Westerlies in the Northern Hemisphere during the Holocene revealed by aeolian deposits in the southern Tibetan Plateau.Quat Res, 107: 104–112
17 S W Gou, Y Q Wu, D D Xia, J Pan (2012). Spatial and temporal distribution characteristics of winter and spring dust storm frequency and its circulation background on the Qinghai-Tibet Plateau. J Natural Hazards, 21(5): 9 (in Chinese)
18 R V, Heermance A, Pullen P, Kapp C N, Garzione S, Bogue L, Ding P P Song (2013). Climatic and tectonic controls on sedimentation and erosion during the Pliocene–Quaternary in the Qaidam Basin (China).Geol Soc Am Bull, 125(5–6): 833–856
19 P M, Jacobs J A, Mason P R Hanson (2011). Mississippi Valley regional source of loess on the southern Green Bay Lobe land surface, Wisconsin.Quat Res, 75(3): 574–583
https://doi.org/10.1016/j.yqres.2011.02.003
20 P, Kapp J D, Pelletier A, Rohrmann R, Heermance J, Russell L Ding (2011). Wind erosion in the Qaidam basin, central Asia: implications for tectonics, paleoclimate, and the source of the Loess Plateau.GSA Today, 21(4/5): 4–10
https://doi.org/10.1130/GSATG99A.1
21 F B Kong, H T Chen, S J Xu (2021). Dust accumulation processes and paleoclimatic significance of particle size indication of loess in Zhangqiu, Shandong. J Geog, 76(5): 14 (in Chinese)
22 X, Kong W, Zhou J W, Beck F, Xian X, Qiang H, Ao Z, Wu Z An (2020). Loess magnetic susceptibility flux: a new proxy of East Asian monsoon precipitation.J Asian Earth Sci, 201(2): 104489
https://doi.org/10.1016/j.jseaes.2020.104489
23 Z P Lai (2006). Testing the use of an OSL Standardised Growth Curve (SGC) for De determination on quartz from the Chinese Loess Plateau.Radiat Meas, 41(1): 9–16
https://doi.org/10.1016/j.radmeas.2005.06.031
24 F, Lehmkuhl P, Schulte H, Zhao D, Hülle J, Protze G Stauch (2014). Timing and spatial distribution of loess and loess-like sediments in the mountain areas of the northeastern Tibetan Plateau.Catena, 117: 23–33
https://doi.org/10.1016/j.catena.2013.06.008
25 L Li, C Xu, Z J Zhang, Y D Huang (2021). A review of landslide hazard research on the Loess Plateau. J College Disaster Prevention Sci Techn, 23(4): 11 (in Chinese)
26 S Li, S L Yang, M H Liang, T Cheng, H Chen, N N Liu (2018). An end-member model study on the particle size distribution of loess on the eastern Qinghai-Tibet Plateau. Earth and Environment, 46(4): 8 (in Chinese)
27 Y, Li W, Shi A, Aydin M A, Beroya-Eitner G Gao (2020). Loess genesis and worldwide distribution.Earth Sci Rev, 201: 102947
https://doi.org/10.1016/j.earscirev.2019.102947
28 A M Liang, J J Qu, Z B Dong, Z Z Su, B Wu, Z Y Zhang, G Q Qian, J L Gao, Y J Pang, C X Zhang (2020). Particle size end-membership of sediments in the Kumtag Desert and its source insights. China Desert, 40(2): 10 (in Chinese)
29 Z Y, Ling J H, Yang Z Q, Wang J H, Jin D S, Xia S L, Yang X, Wang F H Chen (2023). Spatiotemporal differences in Holocene climate change in the Yarlung Tsangpo catchment, southern Tibetan Plateau, reconstructed from two sandy loess sequences.Palaeogeogr Palaeoclimatol Palaeoecol, 616: 111473
https://doi.org/10.1016/j.palaeo.2023.111473
30 K, Liu Z P Lai (2012). Chronology of Holocene sediments from the archaeological Salawusu site in the Mu Us desert in China and its palaeoenvironmental implications.J Asian Earth Sci, 45: 247–255
https://doi.org/10.1016/j.jseaes.2011.11.002
31 H, Long N, Wang H Z, Ma Y Li (2007). Regional wind and sand characteristics of the lake sedimentary record at the northwest margin of the Tengri Desert.J Sedimentol, 25(4): 626–631 (in Chinese)
32 A S, Murray A G Wintle (2000). Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol.Radiation Measure, 32(1): 57–73
https://doi.org/10.1016/S1350-4487(99)00253-X
33 V, Nottebaum G, Stauch K, Hartmann J R, Zhang F Lehmkuhl (2015). Unmixed loess grain size populations along the northern Qilian Shan (China): relationships between geomorphologic, sedimentologic and climatic controls.Quat Int, 372: 151–166
https://doi.org/10.1016/j.quaint.2014.12.071
34 G A, Paterson D Heslop (2015). New methods for unmixing sediment grain size data.Geochem Geophys Geosyst, 16(12): 4494–4506
https://doi.org/10.1002/2015GC006070
35 J A, Peck J W, King S M, Colman V A Kravchinsky (1994). A rock-magnetic record from Lake Baikal, Siberia: evidence for Late Quaternary climate change.Earth Planet Sci Lett, 122(1–2): 221–238
https://doi.org/10.1016/0012-821X(94)90062-0
36 M A, Prins M, Vriend G, Nugteren J, Vandenberghe H, Lu H, Zheng G J Weltje (2007). Late Quaternary aeolian dust input variability on the Chinese Loess Plateau: inferences from unmixing of loess grain-size records.Quat Sci Rev, 26(1–2): 230–242
https://doi.org/10.1016/j.quascirev.2006.07.002
37 K Pye (1987). Aeolian Dust and Dust Deposits. London: Academic Press
38 D K, Rea M, Leinen T R Janecek (1985). Geologic approach to the long-term history of atmospheric circulation.Science, 227(4688): 721–725
https://doi.org/10.1126/science.227.4688.721
39 H M, Roberts G A T Duller (2004). Standardised growth curves for optical dating of sediment using multiple-grain aliquots.Radiat Meas, 38(2): 241–252
https://doi.org/10.1016/j.radmeas.2003.10.001
40 C M Shen (2003). Millennial-scale variations and centennial-scale events in the southwest Asian Monsoon: pollen evidence from Tibet. Dissertation for Doctoral Degree. Baton Rouge: Louisiana State University
41 J, Song X, Chun X M, Bai B Sichin (2016). A review of research on particle size analysis in Chinese deserts.Deserts China, 36(3): 597–603 (in Chinese)
42 C C Sun, L M Zhou, X M Zheng, R Niu, Q H Meng, L Wang, D D Du, H Y Xu, Z Wang, H M Chu (2016). Peat record of climate change since the Holocene in the Yangbajing Basin, Qinghai-Tibet Plateau. Marine Geol Quat Geol, 36(5): 7 (in Chinese)
43 D, Sun J, Bloemendal D, Rea Z S, An J, Vandenberghe H Y, Lu R X, Su T S Liu (2004). Bimodal grain-size distribution of Chinese loess, and its palaeoclimatic implications.Catena, 55(3): 325–340
https://doi.org/10.1016/S0341-8162(03)00109-7
44 Y, Sun L, He L, Liang Z An (2011). Changing color of Chinese loess: geochemical constraint and paleoclimatic significance.J Asian Earth Sci, 40(6): 1131–1138
https://doi.org/10.1016/j.jseaes.2010.08.006
45 Z X , Sun Y Y , Jiang Q B ,Owens P R Wang (2018). A fractal evaluation of particle size distributions in an eolian loess-paleosol sequence and the linkage with pedogenesis.Catena, 165: 80–91
https://doi.org/10.1016/j.catena.2018.01.030
46 M R, Sweeney J A Mason (2013). Mechanisms of dust emission from Pleistocene loess deposits, Nebraska, USA.J Geophys Res Earth Surf, 118(3): 1460–1471
https://doi.org/10.1002/jgrf.20101
47 L G, Thompson T, Yao E, Mosley-Thompson M E, Davis K A, Henderson P N Lin (2000). A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores.Science, 289(5486): 1916–1919
https://doi.org/10.1126/science.289.5486.1916
48 , Újvári J F, Kok G, Varga J Kovács (2016). The physics of wind-blown loess: implications for grain size proxy interpretations in Quaternary paleoclimate studies.Earth Sci Rev, 154: 247–278
https://doi.org/10.1016/j.earscirev.2016.01.006
49 Hateren J A, van M A, Prins Balen R T van (2018). On the genetically meaningful decomposition of grain-size distributions: a comparison of different end-member modelling algorithms.Sediment Geol, 375: 49–71
https://doi.org/10.1016/j.sedgeo.2017.12.003
50 J Vandenberghe (2013). Grain size of fine-grained windblown sediment: a powerful proxy for process identification.Earth Sci Rev, 121: 18–30
https://doi.org/10.1016/j.earscirev.2013.03.001
51 J M, Wang B T Pan (1997). Basic characteristics of loess deposition and its environment in the eastern Qinghai-Tibet Plateau.Desert China, 17(4): 395–402 (in Chinese)
52 N L Wang, T D Yao, L G Thompson, K A Henderson (2002). Evidence from the Guria ice core record of an early Holocene intense cooling event. Sci Bull (Beijing), 47(11): 6 (in Chinese)
53 Q S Wang, Y G Song, J J Li, Z J Zhao, P Rong (2015). Color characteristics and paleoclimatic significance of late glacial-interglacial cyclonic Chaona loess. Geoscience, 35(11): 1489–1494 (in Chinese)
54 Z D, Wang C C, Huang H J, Yang X C, Zha Y L Zhou (2018). Physical source characteristics and evolution of loess grain size indication since the Late Pleistocene in the eastern foothills of Liupan Mountain.Geoscience, 38(5): 818–826 (in Chinese)
55 Z J Wang, S T Chen, X Q Zhou, Y J Liang, Y J Wang (2020). Spectral characteristics of millennial scale events of Asian monsoon during the last Glacial Period. Quat Res, 40(4): 13 (in Chinese)
56 G J Weltje (1997). End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem.Math Geol, 29(4): 503–549
https://doi.org/10.1007/BF02775085
57 J L Xiong, X M Fan, X Y Dou, Y H Yang (2021). Seasonal variation of Yalong glacier flow velocity in the Ranwu Lake basin, southeast Tibet. J Wuhan U (Inform Sci Ed), 46(10): 1579–1588 (in Chinese)
58 L Y, Xu L H, Yang S, Zhang T C Zhai (2021). Particle size end meta-analysis and indicative significance of reticulated laterite in Xuancheng Xiangyang profile.Earth Environ, 49(6): 646–654 (in Chinese)
59 X W, Xu X K, Qiang Z S, An X B, Li P, Li Y F Sun (2010). Magnetic susceptibility records of lacustrine core in Heqing Basin and its paleoenvironmental significance.Chinese J Geomech, 16(4): 372–382 (in Chinese)
60 F, Yang G L, Zhang F, Yang R M Yang (2016). Pedogenetic interpretations of particle-size distribution curves for an alpine environment.Geoderma, 282: 9–15
https://doi.org/10.1016/j.geoderma.2016.07.003
61 J H, Yang D S, Xia F Y, Gao S Y, Wang D X, Li Y J, Fan Z X, Chen W D, Tian X Y, Liu X Y, Sun Z Q, Wang F Wang (2021). Holocene moisture evolution and its response to atmospheric circulation recorded by aeolian deposits in the southern Tibetan Plateau.Quat Sci Rev, 270: 107169
https://doi.org/10.1016/j.quascirev.2021.107169
62 L J, Yang X C, Ma J J, Jia J, Yan Z D Luan (2020). Effects of Yellow River diversion and sand transport changes on the particle size characteristics of muddy wedge sediments in Shandong Peninsula over the past 100 years.J Oceanogr, 42(1): 78–89 (in Chinese)
63 S L, Yang Z X, Chen H, Chen Y L, Luo L, Liu X J, Liu Q, Li J T, Zhou P U Li (2022). Magnetic properties of the Ganzi Loess and their implications for precipitation history in the Eastern Tibetan Plateau since the Last Interglacial.Paleoceanogr Paleoclimatol, 37(2): e2021PA004322
https://doi.org/10.1029/2021PA004322
64 S L, Yang Z Ding (2014). A 249 kyr stack of eight loess grain size records from northern China documenting millennial-scale climate variability.Geochem Geophys Geosyst, 15(3): 798–814
https://doi.org/10.1002/2013GC005113
65 S, Yang Z L Ding (2003). Color reflectance of Chinese loess and its implications for climate gradient changes during the last two glacial-interglacial cycles- art. no. 2058.Geophys Res Lett, 30(20): 2003GL018346
https://doi.org/10.1029/2003GL018346
66 J B Zan, X M Fang, S L Yang, M D Yan (2013). Evolution of the arid climate in high Asia since 1 Ma: evidence from loess deposits on the surface and rims of the Tibetan Plateau. Quat Intern, 313–314: 210–217
67 J B, Zan X J, Li J, Kang Z G, Guo Z Q Mao (2020). Intensified pedogenesis caused the increase in the fine particle content of late Cenozoic fluvial and lacustrine deposits in the NE Tibetan Plateau.Sediment Geol, 398: 105587
https://doi.org/10.1016/j.sedgeo.2019.105587
68 , Zhang F, J J L, Feng G, Hua J B, Wang Y B, Yang Y C, Lin T, Jiang L P Zhu (2015). Holocene proglacial loess in the Ranwu valley, southeastern Tibet, and its paleoclimatic implications.Quat Intern, 372: 9–22
https://doi.org/10.1016/j.quaint.2014.04.016
69 C Zhao, J T Liang, J C Wang, L Yang, S Zhang (2019). Remote sensing analysis of glacier dynamics changes in the Palungzangbu basin (Bomi-Ranwu profile). Sci Techn Eng, 19(21): 7 (in Chinese)
70 N, Zhong H C, Jiang H B, Li H Y, Xu L J, Liang W Shi (2020). Particle size end-member inversion of lacustrine sediments from Xinmacun in the upper Minjiang River and its recorded tectonic and climatic events.J Geol, 94(3): 968–981 (in Chinese)
[1] Panxing HE, Zongjiu SUN, Dongxiang XU, Huixia LIU, Rui YAO, Jun MA. Combining gradual and abrupt analysis to detect variation of vegetation greenness on the loess areas of China[J]. Front. Earth Sci., 2022, 16(2): 368-380.
[2] Ziyang DAI, Fayuan LI, Mingwei ZHAO, Lanhua LUO, Haoyang JIAO. Extraction of lacunarity variation index for revealing the slope pattern in the Loess Plateau of China[J]. Front. Earth Sci., 2021, 15(1): 94-105.
[3] Yongjuan LIU, Jianjun CAO, Liping WANG, Xuan FANG, Wolfgang WAGNER. Regional features of topographic relief over the Loess Plateau, China: evidence from ensemble empirical mode decomposition[J]. Front. Earth Sci., 2020, 14(4): 695-710.
[4] Junhua ZHU, Jianwei QIAO, Feiyong WANG, Quanzhong LU, Yuyun XIA, Ransheng CHEN, Haiyuan ZHAO, Jingliang DONG. Development characteristics and formation analysis of the Liangjia Village earth fissure in the Weihe Basin, China[J]. Front. Earth Sci., 2020, 14(4): 758-769.
[5] Chang Dok WON, HanLie HONG, Kum Ryong PAK. Origin of clay minerals on section of Luochuan loess-palaeosol in Shaanxi Province, northwest China[J]. Front. Earth Sci., 2020, 14(4): 684-694.
[6] Jinzhao LIU, Zhisheng AN. Comparison of different chain n-fatty acids in modern plants on the Loess Plateau of China[J]. Front. Earth Sci., 2020, 14(3): 615-624.
[7] Guowei PANG, Qinke YANG, Chunmei WANG, Rui LI, Lu ZHANG. Quantitative assessment of the influence of terrace and check dam construction on watershed topography[J]. Front. Earth Sci., 2020, 14(2): 360-375.
[8] Jingwei LI, Liyang XIONG, Guo’an TANG. Combined gully profiles for expressing surface morphology and evolution of gully landforms[J]. Front. Earth Sci., 2019, 13(3): 551-562.
[9] Jianjun CAO, Guoan TANG, Xuan FANG, Jilong LI, Yongjuan LIU, Yiting ZHANG, Ying ZHU, Fayuan LI. Terrain relief periods of loess landforms based on terrain profiles of the Loess Plateau in northern Shaanxi Province, China[J]. Front. Earth Sci., 2019, 13(2): 410-421.
[10] Xin YANG, Jiaming NA, Guoan TANG, Tingting WANG, Axing ZHU. Bank gully extraction from DEMs utilizing the geomorphologic features of a loess hilly area in China[J]. Front. Earth Sci., 2019, 13(1): 151-168.
[11] Changdok WON, Hanlie HONG, Feng CHENG, Qian FANG, Chaowen WANG, Lulu ZHAO, Gordon Jock CHURCHMAN. Clay mineralogy and its palaeoclimatic significance in the Luochuan loess-palaeosols over ~1.3 Ma, Shaanxi, northwestern China[J]. Front. Earth Sci., 2018, 12(1): 134-147.
[12] Fayuan LI,Guoan TANG,Chun WANG,Lingzhou CUI,Rui ZHU. Slope spectrum variation in a simulated loess watershed[J]. Front. Earth Sci., 2016, 10(2): 328-339.
[13] Zongli WANG,Hui ZHAO,Guanghui DONG,Aifeng ZHOU,Jianbao LIU,Dongju ZHANG. Reliability of radiocarbon dating on various fractions of loess-soil sequence for Dadiwan section in the western Chinese Loess Plateau[J]. Front. Earth Sci., 2014, 8(4): 540-546.
[14] Dan JIAO, Huan YANG, Xinjun WANG, Shucheng XIE, Shuyuan XIANG, . Paleofire indicated by triterpenes and charcoal in a culture bed in eastern Kunlun Mountain, Northwest China[J]. Front. Earth Sci., 2009, 3(4): 452-456.
[15] CHUN Xi, CHEN Fahu, FAN Yuxin, XIA Dunsheng, ZHAO Hui. Formation of Ulan Buh desert and its environmental changes during the Holocene[J]. Front. Earth Sci., 2008, 2(3): 327-332.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed