Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2022, Vol. 16 Issue (4) : 916-933    https://doi.org/10.1007/s11707-022-0969-2
RESEARCH ARTICLE
Fractal characterization of pore structure and its influence on CH4 adsorption and seepage capacity of low-rank coals
Guangyuan MU1, Haihai HOU2, Jiaqiang ZHANG3, Yue TANG3, Ya-nan LI1, Bin SUN4, Yong LI1, Tim JONES5, Yuan YUAN3, Longyi SHAO1()
1. State Key Laboratory of Coal Resources and Safe Mining and College of Geoscience and Surveying Engineering, China University of Mining and Technology, Beijing 100083, China
2. College of Mining, Liaoning Technical University, Fuxin 123000, China
3. Oil & Gas Resource Survey Center, China Geological Survey, Ministry of Land and Resource, Beijing 100029, China
4. Department of Coalbed Methane, Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
5. School of Earth and Environmental Sciences, Cardiff University, Cardiff CF103YE, UK
 Download: PDF(27012 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The pore structures of coal can directly affect the adsorption and seepage capacity of coalbed methane (CBM), which therefore is an important influence on CBM exploration and development. In this study, the pore structures of low-rank coals from the Middle Jurassic Xishanyao Formation in the southern Junggar Basin were analyzed, and the fractal dimensions (D1, D2, D3 and D4 corresponding to pore sizes of 0−5 nm, 5−100 nm, 100−1000 nm and 1000−20000 nm, respectively) were calculated to quantitatively describe these coal pore structures. The results show that Xishanyao coal is characterized by open pore morphology, good pore connectivity and well-developed seepage pores and microfractures, which is beneficial to CBM seepage. The D1 and D2 can be used to characterize the pore surface and structure of adsorption pores respectively. The D3 and D4 can be used to represent the pore structure of seepage pores. Compared with adsorption pores, the structure of seepage pores is more affected by the change of coal rank. The D1 is better than D2 in characterizing the methane adsorption capacity. When D1 > 2.2, D1 is positively correlated with Langmuir volume (VL) and negatively correlated with Langmuir pressure (PL), while D2 shows a weak opposite trend. The coals with the higher D1 and lower D2 are associated with a higher VL, indicating the coal reservoir with more complex pore surfaces and simpler pore structures has stronger methane adsorption capacity. D4 is better than D3 in characterizing the methane seepage capacity. The porosity and permeability of coal reservoirs increases with the increase of D4, while D3 displays an opposite trend, which is mainly related to the well-developed microfractures. The well-developed fracture system enhances the seepage capacity of the Xishanyao coal reservoir. This study reveals the fractal characteristics of pore structure and its significant influence on adsorption and seepage capacity of low-rank coal.

Keywords southern Junggar Basin      Middle Jurassic      low-rank coal      coalbed methane      pore structure      fractal dimensions     
Corresponding Author(s): Longyi SHAO   
Online First Date: 27 June 2022    Issue Date: 11 January 2023
 Cite this article:   
Guangyuan MU,Haihai HOU,Jiaqiang ZHANG, et al. Fractal characterization of pore structure and its influence on CH4 adsorption and seepage capacity of low-rank coals[J]. Front. Earth Sci., 2022, 16(4): 916-933.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-0969-2
https://academic.hep.com.cn/fesci/EN/Y2022/V16/I4/916
Fig.1  (a) Position of the study area in Junggar Basin (modified from Fu et al., 2016b). (b) Distribution of sampling points in the southern Junggar Basin. (c) Stratigraphic column for the coal-bearing strata in southern Junggar Basin.
Sample No. Coal lithotype Ro,max/% Proximate analysis/wt% Coal macerals/% CH4 isothermal adsorption
Mad Aad Vad FCad V I L VL/(m3·t−1) PL /MPa
NS-1 semi-bright 0.62 4.74 13.87 31.10 50.29 45.61 48.92 5.47 9.76 5.05
NS-2 semi-bright 0.59 4.54 10.92 32.98 51.56 54.61 38.32 7.07 n n
MM2-1 bright 0.58 2.29 16.38 37.73 43.60 77.23 7.67 10.89 n n
MM2-2 bright 0.62 2.26 11.69 - - 74.00 11.48 10.54 n n
MM2-3 semi-bright 0.72 1.75 26.45 - - 81.16 7.73 0.97 n n
MM2-4 semi-bright 0.64 2.08 13.69 37.73 46.50 90.32 4.15 4.61 n n
MM2-5 bright 0.65 2.27 8.07 38.00 51.66 89.43 4.07 4.88 n n
MM2-6 semi-dull 0.66 2.10 7.00 34.15 56.75 78.28 17.21 4.51 n n
MM2-7 semi-bright 0.65 1.84 12.63 38.32 47.21 79.10 8.96 11.94 n n
TX-1 bright 0.68 3.59 6.94 30.02 59.45 56.93 40.67 2.40 15.43 5.11
TX-2 semi-bright 0.69 3.02 4.03 27.91 65.04 59.60 37.80 2.60 n n
XGG-1 bright 0.65 3.82 3.97 30.52 61.69 62.50 34.05 3.45 n n
KG-1-1 semi-dull 0.59 3.35 5.74 35.23 55.68 58.85 36.21 3.29 9.85 4.12
KG-1-2 semi-bright 0.64 3.49 3.03 34.19 59.29 53.38 42.62 1.48 11.22 4.74
KG-1-3 semi-bright 0.64 3.79 2.57 32.62 61.02 49.80 44.80 2.80 12.94 5.11
KG-1-4 semi-bright 0.60 3.69 2.80 32.95 60.56 59.50 38.39 0.58 14.12 5.82
KG-1-5 semi-dull 0.58 3.78 5.48 32.79 57.95 53.80 43.41 1.30 10.62 4.57
CXY-2 bright 0.57 2.24 5.08 34.15 58.53 65.62 32.08 2.31 18.16 3.79
Tab.1  Results of lithotype, maximum vitrinite reflectance, proximate analysis, maceral and CH4 isothermal adsorption of the coal samples from southern Junggar Basin
Sample No. PD1 /nm SBET /(m2·g−1) VBJH /(10−3cm3·g−1) Pore content /volume (%) P/P0: 0−0.5 (0−5 nm) P/P0: 0.5−1 (5−100 nm) Loop type
VN1 VN2 VN3 A1 D1 = 3 + A1 R2 A2 D2 = 3 + A2 R2
NS-1 7.81 0.756 1.477 43.96 49.83 6.20 − 0.8435 2.1565 0.9745 − 0.2478 2.7522 0.9539 C
NS-2 10.49 0.731 1.917 43.03 45.76 11.21 − 0.8133 2.1867 0.9680 − 0.2935 2.7065 0.9468 C
MM2-1 7.24 1.922 3.477 79.77 17.92 2.31 − 0.5951 2.4049 0.9861 − 0.2419 2.7581 0.9490 A
MM2-2 13.04 0.283 0.922 50.85 40.23 8.92 − 0.7480 2.2520 0.9839 − 0.3572 2.6428 0.9784 B
MM2-3 11.58 0.264 0.763 41.22 46.67 12.11 − 0.8443 2.1557 0.9727 − 0.3227 2.6773 0.9544 C
MM2-4 15.86 0.116 0.461 27.49 58.20 14.31 − 0.8758 2.1242 0.9801 − 0.4224 2.5776 0.9775 C
MM2-5 7.72 0.283 0.546 60.02 33.25 6.73 − 1.0758 1.9242 0.9712 − 0.2437 2.7563 0.9195 B
MM2-6 9.44 0.284 0.671 39.86 50.97 9.17 − 0.8195 2.1805 0.9703 − 0.2800 2.7200 0.9479 C
MM2-7 8.24 0.177 0.365 45.81 42.56 11.63 − 1.0417 1.9583 0.9782 − 0.2445 2.7555 0.9318 C
TX-1 8.46 1.417 2.995 51.62 40.36 8.02 − 0.7038 2.2962 0.9701 − 0.2571 2.7429 0.9297 B
TX-2 7.59 2.287 4.339 52.64 39.82 7.54 − 0.6647 2.3353 0.9640 − 0.2332 2.7668 0.9301 B
XGG-1 6.32 1.811 2.860 69.79 29.11 1.10 − 0.7029 2.2971 0.9604 − 0.2036 2.7964 0.8749 B
KG-1-1 7.59 1.114 2.113 56.55 39.84 3.61 − 0.7110 2.2890 0.9647 − 0.2454 2.7546 0.9121 B
KG-1-2 7.13 1.399 2.493 63.11 34.15 2.74 − 0.7068 2.2932 0.9567 − 0.2370 2.7630 0.8930 B
KG-1-3 6.85 1.950 3.340 64.96 30.82 4.22 − 0.7161 2.2839 0.9630 − 0.1824 2.8176 0.8258 B
KG-1-4 6.80 1.665 2.829 66.13 31.58 2.29 − 0.7587 2.2413 0.9550 − 0.2218 2.7782 0.8704 B
KG-1-5 6.41 1.342 2.151 64.25 32.28 3.48 − 0.7259 2.2741 0.9554 − 0.1978 2.8022 0.8681 B
CXY-2 9.26 0.305 0.705 41.50 46.15 12.35 − 0.8796 2.1204 0.9787 − 0.2647 2.7353 0.9256 C
Tab.2  Results of low-pressure nitrogen adsorption, fractal dimension and loop type of coal samples from southern Junggar Basin
Fig.2  Three types of nitrogen adsorption/desorption results and pore size distribution based on LTNA for typical Xishanyao coal samples. (a) Nitrogen adsorption/desorption curves. (b) BJH pore volume distribution. (c) BET specific surface area distribution.
Sample No. Φ/% Kair/mD PTD/nm PD2/nm Vin/mL MMS/% Eex/% Pore content/volume (%) 100−1000 nm 1000−20000 nm Curve type
VM1 VM2 VM3 VM4 D3 R2 D4 R2
NS-1 7.55 2.193 70 1238 0.77 91.71 48.85 13.27 37.43 27.69 21.61 2.9333 0.9951 3.8779 0.1259 B
NS-2 5.43 151.660 24 1378 0.55 88.49 67.76 18.24 45.39 13.81 22.56 3.1496 0.9872 3.4407 0.7197 C
MM2-4 4.48 0.010 30 1992 0.43 90.92 64.69 16.69 41.62 9.47 32.22 3.1272 0.9298 3.4048 0.4309 D
TX-1 6.97 2.448 54 680 0.75 91.55 50.39 12.77 42.47 27.75 17.01 3.3120 0.9730 3.7063 0.7350 B
TX-2 5.59 0.181 32 266 0.63 93.95 58.34 16.11 51.54 23.05 9.31 3.4470 0.9791 3.6623 0.6047 B
XGG-1 4.77 0.051 20 666 0.45 90.21 77.89 21.83 53.59 9.83 14.76 3.5192 0.9297 3.5303 0.7076 A
KG-1-1 3.17 0.130 24 666 0.31 85.54 82.87 10.53 63.04 10.62 15.81 3.6084 0.8771 3.4573 0.6852 C
KG-1-2 4.34 1.080 20 48 0.50 94.45 73.77 20.33 58.33 14.18 7.16 3.5868 0.9790 3.3311 0.8567 A
KG-1-3 4.28 0.001 18 26 0.46 90.05 86.23 24.16 60.52 8.67 6.65 3.6904 0.7986 3.2492 0.7861 A
KG-1-4 4.31 0.005 18 24 0.49 93.07 82.48 23.79 56.57 11.08 8.56 3.8566 0.5926 3.4618 0.5742 A
KG-1-5 4.48 0.002 18 44 0.47 93.95 81.67 23.23 59.56 10.38 6.83 3.6208 0.6909 3.5492 0.8517 A
CXY-2 5.08 36.482 24 52 0.57 92.99 73.99 19.51 57.14 15.73 7.61 3.6773 0.8852 3.5471 0.6786 A
Tab.3  Results of mercury intrusion porosimetry, fractal dimension and curve type of coal samples from southern Junggar Basin
Fig.3  Four types of mercury intrusion/extrusion curves based on MIP for typical Xishanyao coal samples from the southern Junggar Basin.
Fig.4  SEM images show pore and maceral characteristics of typical coal samples. (a) widely developed primary pores and sparse gas pores in fusinite; (b) many gas pores were developed in telocollinite; (c) primary pores and gas pores in the corpocollinite; (d) microfractures were widely developed in vitrinite; (e) primary pores infilled with clay minerals in deformed fusinite; (f) structural fractures in the vitrinite.
Fig.5  Diagrams showing representative examples of the relationship between ln(lnP0/P) and lnV for typical low-rank coal samples.
Fig.6  Relationship between fractal dimensions D1 and D2.
Fig.7  Diagrams showing representative examples of the relationship between lnP and ln(dV/dP) for typical low-rank coal samples.
Fig.8  Relationship between fractal dimensions D3 and D4.
Fig.9  Mercury intrusion/extrusion curves show coal matrix compression.
Fig.10  Comparison of the pore size distribution by (a) LTNA and MIP joint analysis and (b) NMR relaxation.
Sample No. Pore content/volume (%)
V1 V2 V3 V4
NS-1 1.92 2.29 53.88 41.91
NS-2 4.57 5.41 34.22 55.81
MM2-4 0.79 1.65 22.22 75.34
TX-1 5.37 4.28 55.83 34.52
TX-2 11.12 8.80 57.00 23.07
XGG-1 15.55 7.96 30.71 45.77
KG-1-1 13.25 11.15 30.47 45.13
KG-1-2 15.24 9.64 49.35 25.77
KG-1-3 24.23 14.01 34.71 27.05
KG-1-4 18.21 10.29 39.89 31.61
KG-1-5 16.05 9.71 44.66 29.58
CXY-2 2.41 3.17 63.63 30.78
Tab.4  Pore size distribution estimated by the combination of LTPA and MIP for coal samples from southern Junggar Basin
Fig.11  Relationship between fractal dimensions D1 and Ro,max, Mad, Vad, FCad and BET surface area (a, c, e, g, and i); and relationship between fractal dimensions D2 and Ro,max, Mad, vitrinite, Aad and average pore diameter (b, d, f, h, and j).
Fig.12  Relationship between fractal dimensions D1, D2 and Langmuir volume, Langmuir pressure.
Fig.13  Relationship between fractal dimension D3 and Ro, max, Vad, vitrinite and Aad (a, c, e, and g); and relationship between fractal dimension D4 and Ro,max, Vad, vitrinite and macropore content (b, d, f, and h).
Fig.14  Relationship between fractal dimension D3 and porosity (a) and permeability (b) and relationship between fractal dimension D4 and porosity (c) and permeability (d).
1 A R Ashraf, Y Sun, G Sun, D Uhl, V Mosbrugger, J Li, M Herrmann. ( 2010). Triassic and Jurassic palaeoclimate development in the Junggar Basin, Xinjiang, northwest China—a review and additional lithological data. Palaeobiodivers Palaeoenviron, 90( 3): 187– 201
https://doi.org/10.1007/s12549-010-0034-0
2 W B Jr Ayers. ( 2002). Coalbed gas systems, resources, and production and a review of contrasting cases from the San Juan and Powder River basins. AAPG Bull, 86( 11): 1853– 1890
3 E P Barrett, L G Joyner, P P Halenda. ( 1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc, 73( 1): 373– 380
https://doi.org/10.1021/ja01145a126
4 S Brunauer, P H Emmett, E Teller. ( 1938). Adsorption of gases in multimolecular layers. J Am Chem Soc, 60( 2): 309– 319
https://doi.org/10.1021/ja01269a023
5 Y D Cai D M Liu Y B Yao J Q Li Y K Qiu ( 2011). Geological controls on prediction of coalbed methane of No. 3 coal seam in Southern Qinshui Basin, north China. Int J Coal Geol, 88( 2−3): 101− 112
6 Y D Cai, D M Liu, Z J Pan, Y B Yao, J Q Li, Y K Qiu. ( 2013). Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from northeast China. Fuel, 103: 258– 268
https://doi.org/10.1016/j.fuel.2012.06.055
7 B Chen, Y Arakawa. ( 2005). Elemental and Nd-Sr isotopic geochemistry of granitoids from the West Junggar foldbelt (NW China), with implications for Phanerozoic continental growth. Geochim Cosmochim Acta, 69( 5): 1307– 1320
https://doi.org/10.1016/j.gca.2004.09.019
8 A G Cheng D Y Cao T X Yuan ( 2016). China Occurrence Regularity of Coal Resources and Resource Evaluation. Beijing: Science Press (in Chinese)
9 M Faiz, A Saghafi, N Sherwood, I Wang. ( 2007). The influence of petrological properties and burial history on coal seam methane reservoir characterisation, Sydney Basin, Australia. Int J Coal Geol, 70( 1−3): 193– 208
https://doi.org/10.1016/j.coal.2006.02.012
10 Y N Fang, C D Wu, Y Z Wang, L X Wang, Z J Guo, H W Hu. ( 2016). Stratigraphic and sedimentary characteristics of the upper jurassic-lower cretaceous strata in the Junggar basin, central Asia: tectonic and climate implications. J Asian Earth Sci, 129: 294– 308
https://doi.org/10.1016/j.jseaes.2016.09.001
11 R M Flores, C A Rice, G D Stricker, A Warden, M S Ellis. ( 2008). Methanogenic pathways of coal-bed gas in the Powder River Basin, United States: the geologic factor. Int J Coal Geol, 76( 1-2): 52– 75
https://doi.org/10.1016/j.coal.2008.02.005
12 W I Friesen, R J Mikula. ( 1987). Fractal dimensions of coal particles. J Colloid Interface Sci, 120( 1): 263– 271
https://doi.org/10.1016/0021-9797(87)90348-1
13 H J Fu, D Z Tang, H Xu, S Tao, T Xu, B L Chen, Z Y Yin. ( 2016a). Abrupt changes in reservoir properties of low-rank coal and Its control factors for methane adsorbability. Energy Fuels, 30( 3): 2084– 2094
https://doi.org/10.1021/acs.energyfuels.5b02866
14 H J Fu, D Z Tang, H Xu, T Xu, B L Chen, P Hu, Z Yin, P Wu, G He. ( 2016b). Geological characteristics and CBM exploration potential evaluation : a case study in the middle of the southern Junggar Basin, NW China. J Nat Gas Sci Eng, 30: 557– 570
https://doi.org/10.1016/j.jngse.2016.02.024
15 H J Fu, D Z Tang, T Xu, H Xu, S Tao, S Li, Z Y Yin, B L Chen, C Zhang, L Wang. ( 2017a). Characteristics of pore structure and fractal dimension of low-rank coal : a case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin, NW China. Fuel, 193: 254– 264
https://doi.org/10.1016/j.fuel.2016.11.069
16 H J Fu, D Z Tang, T Xu, H Xu, S Tao, J L Zhao, B Chen, Z Yin. ( 2017b). Preliminary research on CBM enrichment models of low-rank coal and its geological controls : a case study in the middle of the southern Junggar Basin. Mar Pet Geol, 83: 97– 110
https://doi.org/10.1016/j.marpetgeo.2017.03.007
17 X H Fu Y Qin X Q Xue G Z Li W F (2001) Wang. Research on fractals of pore and fracture-structure of coal reservoirs. J China Univ Min Technol, 03: 11− 14 (in Chinese)
18 H Giesche. ( 2006). Mercury porosimetry: a general (practical) overview. Part Part Syst Charact, 23( 1): 9– 19
https://doi.org/10.1002/ppsc.200601009
19 J Hassan. ( 2012). Pore size distribution calculation from 1H NMR signal and N2 adsorption-desorption techniques. Phys B Condens Matter, 407( 18): 3797– 3801
https://doi.org/10.1016/j.physb.2012.05.063
20 M N Heriawan, K Koike. ( 2015). Coal quality related to microfractures identified by CT image analysis. Int J Coal Geol, 140: 97– 110
https://doi.org/10.1016/j.coal.2015.02.001
21 B B Hodot. ( 1966). Outburst of Coal and Coalbed Gas. Beijing: China Industry Press, 23– 35
22 H H Hou, L Y Shao, Y H Li, Z Li, S Wang, W L Zhang, X T Wang. ( 2017). Influence of coal petrology on methane adsorption capacity of the Middle Jurassic coal in the Yuqia Coalfield, northern Qaidam Basin, China. J Petrol Sci Eng, 149: 218– 227
https://doi.org/10.1016/j.petrol.2016.10.026
23 H H Hou, L Y Shao, Y H Li, Z Li, W L Zhang, H J Wen. ( 2018). The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China. Front Earth Sci, 12( 1): 148– 159
https://doi.org/10.1007/s11707-016-0617-y
24 H H Hou, L Y Shao, Y Tang, S Zhao, Y Yuan, Y N Li, G Y Mu, Y Zhou, G D Liang, J Q Zhang. ( 2020a). Quantitative characterization of low-rank coal reservoirs in the southern Junggar Basin, NW China: implications for pore structure evolution around the first coalification jump. Mar Pet Geol, 113: 104165
https://doi.org/10.1016/j.marpetgeo.2019.104165
25 H H Hou L Y Shao Y Tang Y N Li G D Liang Y L Xin J Q Zhang ( 2020b). Coal seam correlation in terrestrial basins by sequence stratigraphy and its implications for palaeoclimate and palaeoenvironment evolution. J Earth Sci
26 H H Hou, G D Liang, L Y Shao, Y Tang, G Y Mu. ( 2021). Coalbed methane enrichment model of low-rank coals in multi-coals superimposed regions: a case study in the middle section of southern Junggar Basin. Front Earth Sci, 15( 2): 256– 271
https://doi.org/10.1007/s11707-021-0917-6
27 J Y Jiang, Q Zhang, Y P Cheng, K Jin, W Zhao, H J Guo. ( 2016). Influence of thermal metamorphism on CBM reservoir characteristics of low-rank bituminous coal. J Nat Gas Sci Eng, 36: 916– 930
https://doi.org/10.1016/j.jngse.2016.11.030
28 A Li, W L Ding, J H He, P Dai, S Yin, F Xie. ( 2016a). Investigation of pore structure and fractal characteristics of organic-rich shale reservoirs: a case study of Lower Cambrian Qiongzhusi formation in Malong block of eastern Yunnan Province, south China. Mar Pet Geol, 70: 46– 57
https://doi.org/10.1016/j.marpetgeo.2015.11.004
29 Y Li, C Zhang, D Z Tang, Q Gan, X L Niu, K Wang, R Y Shen. ( 2017). Coal pore size distributions controlled by the coalification process: an experimental study of coals from the Junggar, Ordos and Qinshui basins in China. Fuel, 206: 352– 363
https://doi.org/10.1016/j.fuel.2017.06.028
30 Y Li D Y Cao Y C Wei A M Wang Q Zhang P Wu ( 2016b). Middle to low rank coalbed methane accumulation and reservoiring in the southern margin of Junggar Basin. Acta Petrol Sin, 37( 12): 1472− 1482 (in Chinese)
31 Y N Li, L Y Shao, H H Hou, Y Tang, Y Yuan, J Q Zhang, X X Shang, J Lu. ( 2018). Sequence stratigraphy, palaeogeography, and coal accumulation of the fluvio-lacustrine Middle Jurassic Xishanyao Formation in central segment of southern Junggar Basin, NW China. Int J Coal Geol, 192: 14– 38
https://doi.org/10.1016/j.coal.2018.04.003
32 D L Ma, D F He, D Li, J Y Tang, Z Liu. ( 2015). Kinematics of syn-tectonic unconformities and implications for the tectonic evolution of the Hala’alat Mountains at the northwestern margin of the Junggar Basin, Central Asian Orogenic Belt. Geosci Front, 6( 2): 247– 264
https://doi.org/10.1016/j.gsf.2014.07.004
33 M M Mahamud. ( 2006). Textural characterization of active carbons using fractal analysis. Fuel Process Technol, 87( 10): 907– 917
https://doi.org/10.1016/j.fuproc.2006.06.006
34 M M Mahamud, M F Novo. ( 2008). The use of fractal analysis in the textural characterization of coals. Fuel, 87( 2): 222– 231
https://doi.org/10.1016/j.fuel.2007.04.020
35 B B Mandelbrot. ( 1975). Stochastic models for the Earth’s relief, the shape and the fractal dimension of the coastlines, and the number-area rule for islands. Proc Natl Acad Sci, 72( 10): 3825– 3828
https://doi.org/10.1073/pnas.72.10.3825
36 V A Mendhe, M Bannerjee, A K Varma, A D Kamble, S Mishra, B D Singh. ( 2017). Fractal and pore dispositions of coal seams with significance to coalbed methane plays of East Bokaro, Jharkhand, India. J Nat Gas Sci Eng, 38: 412– 433
https://doi.org/10.1016/j.jngse.2016.12.020
37 P W Mou, J N Pan, Q H Niu, Z Z Wang, Y B Li, D Y Song. ( 2021). Coal pores: methods, types, and characteristics. Energy Fuels, 35( 9): 7467– 7484
https://doi.org/10.1021/acs.energyfuels.1c00344
38 A V Neimark. ( 1990). Determination of surface fractal dimension from the results of an adsorption experiment. Russ J Phys Chem, 64: 1397– 1403
39 B S Nie, X F Liu, L L Yang, J Q Meng, X C Li. ( 2015). Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy. Fuel, 158: 908– 917
https://doi.org/10.1016/j.fuel.2015.06.050
40 J N Pan, Q H Niu, K Wang, X H Shi, M Li. ( 2016). The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption. Microporous Mesoporous Mater, 224: 245– 252
https://doi.org/10.1016/j.micromeso.2015.11.057
41 Z J Pan, L D Connell, M Camilleri. ( 2010). Laboratory characterisation of coal reservoir permeability for primary and enhanced coalbed methane recovery. Int J Coal Geol, 82( 3−4): 252– 261
https://doi.org/10.1016/j.coal.2009.10.019
42 P Pfeifer, D Avnir. ( 1983). Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. J Chem Phys, 79( 7): 3558– 3565
https://doi.org/10.1063/1.446210
43 P Pfeifer, Y J Wu, M W Cole, J Krim. ( 1989). Multilayer adsorption on a fractally rough surface. Phys Rev Lett, 62( 17): 1997– 2000
https://doi.org/10.1103/PhysRevLett.62.1997
44 Y Qin, T A Moore, J Shen, Z B Yang, Y L Shen, G Wang. ( 2018). Resources and geology of coalbed methane in China : a review. Int Geol Rev, 60( 5−6): 777– 812
https://doi.org/10.1080/00206814.2017.1408034
45 C F Rodrigues, M J Lemos de Sousa. ( 2002). The measurement of coal porosity with different gases. Int J Coal Geol, 48( 3−4): 245– 251
https://doi.org/10.1016/S0166-5162(01)00061-1
46 L Y Shao, P F Zhang, J Hilton, R Gayer, Y B Wang, C Y Zhao, Z Luo. ( 2003). Paleoenvironments and paleogeography of the Lower and lower Middle Jurassic coal measures in the Turpan-Hami oil-prone coal basin northwestern China. Am Assoc Pet Geol Bull, 87( 2): 335– 355
https://doi.org/10.1306/09160200936
47 L Y Shao, H H Hou, Y Tang, J Lu, H J Qiu, X T Wang, J Q Zhang. ( 2015). Selection of strategic replacement areas for CBM exploration and development in China. Nat Gas Ind B, 2( 2−3): 211– 221
https://doi.org/10.1016/j.ngib.2015.07.013
48 P Shen, H D Pan, Y C Shen, Y H Yan, S H Zhong. ( 2015). Main deposit styles and associated tectonics of the West Junggar region, NW China. Geosci Front, 6( 2): 175– 190
https://doi.org/10.1016/j.gsf.2014.05.001
49 F J Sun W Z Li Q P Sun B Sun W G Tian Y J Chen Z H Chen ( 2017). Low-rank coalbed methane exploration in Jiergalangtu Sag, Erlian Basin. Acta Petrol Sin, 38( 5): 485− 492 (in Chinese)
50 X X Sun, Y B Yao, D M Liu, Y F Zhou. ( 2018). Investigations of CO2-water wettability of coal: NMR relaxation method. Int J Coal Geol, 188: 38– 50
https://doi.org/10.1016/j.coal.2018.01.015
51 J Y Tang, D F He, D Li, D L Ma. ( 2015). Large-scale thrusting at the northern Junggar Basin since Cretaceous and its implications for the rejuvenation of the Central Asian Orogenic Belt. Geoscience Frontiers, 6( 2): 227– 246
https://doi.org/10.1016/j.gsf.2014.07.003
52 S Tao D Z Tang H Xu L J Gao Y (2014) Fang. Factors controlling high-yield coalbed methane vertical wells in the Fanzhuang Block, southern Qinshui Basin. Int J Coal Geol, 134−135: 38− 45
53 S Tao, S D Chen, D Z Tang, X Zhao, H Xu, S Li. ( 2018). Material composition, pore structure and adsorption capacity of low-rank coals around the first coalification jump: a case of eastern Junggar Basin, China. Fuel, 211: 804– 815
https://doi.org/10.1016/j.fuel.2017.09.087
54 M Thommes, K Kaneko, A V Neimark, J P Olivier, F Rodriguez-reinoso, J Rouquerol, K S W Sing. ( 2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem, 87( 9−10): 1051– 1069
https://doi.org/10.1515/pac-2014-1117
55 F Wang, Y P Cheng, S Q Lu, K Jin, W Zhao. ( 2014). Influence of coalification on the pore characteristics of middle–high rank coal. Energy Fuels, 28( 9): 5729– 5736
https://doi.org/10.1021/ef5014055
56 M Wang, H T Xue, S S Tian, R W T Wilkins, Z W Wang. ( 2015). Fractal characteristics of Upper Cretaceous lacustrine shale from the Songliao Basin, NE China. Mar Pet Geol, 67: 144– 153
https://doi.org/10.1016/j.marpetgeo.2015.05.011
57 X L Wang, J N Pan, K Wang, T Y Ge, J Wei, W Wu. ( 2020). Characterizing the shape, size, and distribution heterogeneity of pore-fractures in high rank coal based on X-Ray CT image analysis and mercury intrusion porosimetry. Fuel, 282: 118754
https://doi.org/10.1016/j.fuel.2020.118754
58 Y B Yao, D M Liu, D Z Tang, S H Tang, W H Huang. ( 2008). Fractal characterization of adsorption-pores of coals from North China : an investigation on CH4 adsorption capacity of coals. Int J Coal Geol, 73( 1): 27– 42
https://doi.org/10.1016/j.coal.2007.07.003
59 Y B Yao, D M Liu, D Z Tang, S H Tang, W H Huang, Z H Liu, Y Che. ( 2009). Fractal characterization of seepage-pores of coals from China: an investigation on permeability of coals. Comput Geosci, 35( 6): 1159– 1166
https://doi.org/10.1016/j.cageo.2008.09.005
60 Y B Yao, D M Liu, Y Che, D Z Tang, S H Tang, W H Huang. ( 2010). Petrophysical characterization of coals by low-field nuclear magnetic resonance (NMR). Fuel, 89( 7): 1371– 1380
https://doi.org/10.1016/j.fuel.2009.11.005
61 Y B Yao, D M Liu. ( 2012). Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals. Fuel, 95: 152– 158
https://doi.org/10.1016/j.fuel.2011.12.039
62 S H Zhang, S H Tang, D Z Tang, W H Huang, Z J Pan. ( 2014). Determining fractal dimensions of coal pores by FHH model: problems and effects. J Nat Gas Sci Eng, 21: 929– 939
https://doi.org/10.1016/j.jngse.2014.10.018
63 J L Zhao, D Z Tang, Y Qin, H Xu. ( 2019). Fractal characterization of pore structure for coal macrolithotypes in the Hancheng area, southeastern Ordos Basin, China. J Petrol Sci Eng, 178: 666– 677
https://doi.org/10.1016/j.petrol.2019.02.060
64 S D Zhou, D M Liu, Y D Cai, Z Karpyn, Y B Yao. ( 2018). Petrographic controls on pore and fissure characteristics of coals from the southern Junggar Coalfield, northwest China. Energies, 11( 6): 1556
https://doi.org/10.3390/en11061556
65 J F Zhu, J Z Liu, Y M Yang, J Cheng, J H Zhou, K F Cen. ( 2016). Fractal characteristics of pore structures in 13 coal specimens: relationship among fractal dimension, pore structure parameter, and slurry ability of coal. Fuel Process Technol, 149: 256– 267
https://doi.org/10.1016/j.fuproc.2016.04.026
[1] Wei JU, Zhaobiao YANG, Yulin SHEN, Hui YANG, Geoff WANG, Xiaoli ZHANG, Shengyu WANG. Mechanism of pore pressure variation in multiple coal reservoirs, western Guizhou region, South China[J]. Front. Earth Sci., 2021, 15(4): 770-789.
[2] Xiaowei HOU, Yang WANG, Yanming ZHU, Jie XIANG. Pore structure complexity and its significance to the petrophysical properties of coal measure gas reservoirs in Qinshui Basin, China[J]. Front. Earth Sci., 2021, 15(4): 860-875.
[3] Qiang XU, Hangbing LIN, Yue ZHAO, Bo WANG, Bin MA, Rong DING, Jianxin WANG, Tao HOU. Evolution of pore structure in organic shale with type III kerogen and high kaolinite content in Ningwu Basin[J]. Front. Earth Sci., 2021, 15(4): 831-848.
[4] Wanchun ZHAO, Xin LI, Tingting WANG, Xuehai FU. Pore size distribution of high volatile bituminous coal of the southern Junggar Basin: a full-scale characterization applying multiple methods[J]. Front. Earth Sci., 2021, 15(2): 237-255.
[5] Xiangzeng WANG, Junping ZHOU, Xiao SUN, Shifeng TIAN, Jiren TANG, Feng SHEN, Jinqiao WU. The influences of composition and pore structure on the adsorption behavior of CH4 and CO2 on shale[J]. Front. Earth Sci., 2021, 15(2): 283-300.
[6] Weidong XIE, Meng WANG, Hua WANG, Ruying MA, Hongyue DUAN. Diagenesis of shale and its control on pore structure, a case study from typical marine, transitional and continental shales[J]. Front. Earth Sci., 2021, 15(2): 378-394.
[7] Weikai XU, Junhui LI, Xiang WU, Du LIU, Zhuangsen WANG. Desorption hysteresis of coalbed methane and its controlling factors: a brief review[J]. Front. Earth Sci., 2021, 15(2): 224-236.
[8] Aikuan WANG, Pei SHAO, Qinghui WANG. Biogenic gas generation effects on anthracite molecular structure and pore structure[J]. Front. Earth Sci., 2021, 15(2): 272-282.
[9] Minfang YANG, Zhaobiao YANG, Bin SUN, Zhengguang ZHANG, Honglin LIU, Junlong ZHAO. A study on the flowability of gas displacing water in low-permeability coal reservoir based on NMR technology[J]. Front. Earth Sci., 2020, 14(4): 673-683.
[10] Haihai HOU, Longyi SHAO, Shuai WANG, Zhenghui XIAO, Xuetian WANG, Zhen LI, Guangyuan MU. Influence of depositional environment on coalbed methane accumulation in the Carboniferous-Permian coal of the Qinshui Basin, northern China[J]. Front. Earth Sci., 2019, 13(3): 535-550.
[11] Chang’an SHAN, Tingshan ZHANG, Xing LIANG, Dongchu SHU, Zhao ZHANG, Xiangfeng WEI, Kun ZHANG, Xuliang FENG, Haihua ZHU, Shengtao WANG, Yue CHEN. Effects of nano-pore system characteristics on CH4 adsorption capacity in anthracite[J]. Front. Earth Sci., 2019, 13(1): 75-91.
[12] Wei JU, Jian SHEN, Yong QIN, Shangzhi MENG, Chao LI, Guozhang LI, Guang YANG. In-situ stress distribution and coalbed methane reservoir permeability in the Linxing area, eastern Ordos Basin, China[J]. Front. Earth Sci., 2018, 12(3): 545-554.
[13] Haihai HOU, Longyi SHAO, Yonghong LI, Zhen LI, Wenlong ZHANG, Huaijun WEN. The pore structure and fractal characteristics of shales with low thermal maturity from the Yuqia Coalfield, northern Qaidam Basin, northwestern China[J]. Front. Earth Sci., 2018, 12(1): 148-159.
[14] Nan WANG, Shanshan ZHAO, Jian HUI, Qiming QIN. Passive Super-Low Frequency electromagnetic prospecting technique[J]. Front. Earth Sci., 2017, 11(2): 248-267.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed