Please wait a minute...
Frontiers of Earth Science

ISSN 2095-0195

ISSN 2095-0209(Online)

CN 11-5982/P

Postal Subscription Code 80-963

2018 Impact Factor: 1.205

Front. Earth Sci.    2023, Vol. 17 Issue (1) : 71-86    https://doi.org/10.1007/s11707-022-0992-3
RESEARCH ARTICLE
Factors influencing methane diffusion behaviors in micro-nano coal pores: a comprehensive study
Xianglong FANG1,2, Dameng LIU1,2, Yingfang ZHOU3, Xiaobo LIU4(), Yidong CAI1,2()
1. School of Energy Resources, China University of Geosciences, Beijing 100083, China
2. Coal Reservoir Laboratory of National Engineering Research Center of CBM Development & Utilization, China University of Geosciences, Beijing 100083, China
3. School of Engineering, Fraser Noble Building, King's College, University of Aberdeen, AB24 3UE Aberdeen, UK
4. Postdoctoral Workstation of Applied Technology Research Institute, Northeast Petroleum University, Daqing 163318, China
 Download: PDF(7768 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Gas diffusion in the coal matrix plays a significant role in forecasting the production performance of coalbed methane (CBM) wells. To better understand methane diffusion behavior, a systematic study was performed on various rank coals with vitrinite reflectance (Ro,m) ranging from 0.46% to 2.79%. Multiple experiments, including coal petrographic analysis, field emission scanning electron microscopy (FESEM), low-temperature N2 adsorption/desorption, and mercury intrusion porosimetry (MIP), were conducted to quantitatively characterize the multiscale micro-nano pore system in different rank coals, which showed that the pore structure of coals exhibited a multimodal pore size and volume distribution. Isothermal adsorption-diffusion experiments using the volumetric method were also performed to understand the methane diffusion characteristics in the micro-nano pores of the coal reservoir. The applicability of the multiporous diffusion model is verified, and methane diffusion in the multi-scale pores of coal reservoirs exhibits the characteristics of early fast diffusion, transitional diffusion in the medium term, and slow diffusion in the later period. In addition, the factors affecting methane diffusion in coals were systematically analyzed, and gray relational analysis (GRA) was employed to analyze and identify the importance of these factors on methane diffusion. The results show the impact ranking of factors, in order from the most important to the least: particle size > moisture > surface area > pore volume > pressure > coal rank > temperature in all of three diffusion stages. These findings are helpful for forecasting production performance and enhancing the production efficiency of CBM.

Keywords coalbed methane reservoir      micro-characteristic      diffusion coefficient      grey relational analysis     
Corresponding Author(s): Xiaobo LIU,Yidong CAI   
About author:

* These authors contributed equally to this work.

Online First Date: 15 March 2023    Issue Date: 03 July 2023
 Cite this article:   
Xianglong FANG,Dameng LIU,Yingfang ZHOU, et al. Factors influencing methane diffusion behaviors in micro-nano coal pores: a comprehensive study[J]. Front. Earth Sci., 2023, 17(1): 71-86.
 URL:  
https://academic.hep.com.cn/fesci/EN/10.1007/s11707-022-0992-3
https://academic.hep.com.cn/fesci/EN/Y2023/V17/I1/71
Sample No.Ro,m/%Maceral and mineral/(vol%)Prox/(wt%, ad)Low-temperature N2 analysisMercury injection analysis
VIEMMoAVoFCSBET/(m2·g?1)VBJH/(10?3cm3·g?1)da/nmФ/%Sa/%Eex/%dm/μmVn/(cm3·g?1)Curve types
LHJ 4# 0.46 78.80 5.40 12.1 3.8 6.46 6.09 39.11 48.34 0.559 2.282 18.03 6.17 89.75 43.02 0.431 0.104 I
FL 1# 0.65 78.00 12.20 7.00 2.8 5.78 15.8 16.2 62.20 0.116 0.467 15.38 4.31 76.38 34.6 0.250 0.088 II
HDG 6# 0.68 72.30 11.00 16.2 0.5 6.38 11.3 15.02 67.30 0.867 4.207 21.02 8.92 82.77 65.84 0.323 0.049 I
BD 2# 0.68 69.90 18.30 11.6 0.2 8.63 5.38 17.93 68.06 0.301 1.701 11.21 4.86 73.42 54.63 0.239 0.062 II
YT 5# 1.19 57.81 32.19 2.50 7.5 0.71 12 26.77 60.48 0.477 2.546 16.99 3.46 70.76 45.04 0.182 0.048 II
HJG 5# 1.34 60.68 25.02 0 14.3 0.74 10.3 27.94 61.05 0.367 1.232 13.43 2.98 58.56 61.65 0.314 0.037 II
WJY 8# 1.44 40.03 56.67 0 3.3 0.57 9.9 26.8 62.73 0.347 1.574 13.82 1.48 31.64 31.88 0.149 0.042 III
DQ 4# 1.68 59.69 34.61 0 5.7 0.63 11.1 21.3 66.97 0.378 1.279 10.60 3.1.3 89.04 30.65 0.329 0.031 I
SY 15# 2.05 76.97 16.33 0 6.7 0.71 11.6 48.97 38.75 0.487 2.339 16.52 1.58 30.72 15.51 0.244 0.023 III
XY 15# 2.54 77.98 15.52 0 6.5 1.43 11.1 12.46 75.05 0.246 0.867 15.22 1.79 31.77 23.77 0.125 0.016 III
DY 6# 2.56 49.51 7.99 0 42.5 0.62 38.1 15.94 45.36 0.375 1.595 15.20 4.66 90.37 33.52 0.355 0.015 I
GZ 15# 2.79 83.55 12.15 0 4.3 1.2 13.3 12.49 73.01 0.202 1.662 18.77 1.92 27.67 39.62 0.125 0.018 III
Tab.1  Sample basic information and structure analysis results of the selected coals
Fig.1  Oil-immersed photographs of maceral and minerals and FESEM images of pore structure in different rank coals. (a) HJG 5#, Ro,m = 1.34%, 200 × ; (b) DQ 4#, Ro,m = 1.52%, 200 × ; (c) DY 6#, Ro,m = 2.56%, 200 × ; (d) GZ 15#, Ro,m = 2.79%, 200 × ; (e) YT 5#, Ro,m = 1.19%, 10650 × ; (f) SY 15#, Ro,m = 2.05%, 4140 × ; (g) XY 15#, Ro,m = 2.54%, 6350 × ; (h) DY 6#, Ro,m = 2.56%, 14940 × .
Fig.2  (a) The relationship between pore surface area and coal rank; (b) The relationship between total pore volume and pore surface area.
Fig.3  The mercury intrusion-extrusion curves of different rank coals.
Fig.4  Fitting curves of experimental data using bidisperse and multiporous diffusion model.
Fig.5  Schematic of diffusion influencing factors (a) morphology of pore-fractures from FESEM images; (b) relationship between coal rank and adsorption capacity or pore surface area; (c) diffusivity in coals with different particle size; (d) clay minerals swelling when absorbing moisture; (e) molecular motion at high temperature; (f) molecular motion at high pressure.
Sample No.Integrated pore volume distribution/(10?3 cm3·g?1)Integrated pore surface area distribution/(m2·g?1)
< 10 nm10–102 nm102–103 nm> 103 nm< 10 nm10–102 nm102–103 nm> 103 nm
LHJ 4#0.3081.11229.4847.1860.3730.1630.0010.016
FL 1#0.1580.6671.40611.0320.0860.0250.1050.826
HDG 6#0.4862.01912.8182.3320.5530.2700.1590.029
BD 2#0.4750.8755.33216.2750.2300.0670.0890.272
YT 5#0.3481.2843.61721.2650.3290.1300.0790.466
HJG 5#0.2020.5672.7419.2740.2860.0700.0350.119
WJY 8#0.2630.7201.76426.4450.2710.0650.0470.710
DQ 4#0.2850.48111.8131.5970.3230.0450.1430.019
SY 15#0.3211.1812.04816.6920.3430.1260.0330.270
XY 15#0.0460.4870.93410.9920.0990.1290.0310.361
DY 6#0.2410.7458.0690.6320.2790.0830.0940.007
GZ 15#0.2570.8271.5128.8910.0070.1650.0470.278
Tab.2  The integrated data of pore volume and pore surface area by MIP and low-temperature nitrogen analysis
Fig.6  (a) Composite graph of diffusion coefficient ratio and pore volume fraction of different diffusion stage; (b) redraw the micropore diffusion stage in (a); (c) composite graph of diffusion coefficient ratio and pore surface area fraction of different diffusion stage.
Fig.7  (a) Methane diffusivities of different rank coal samples using multiporous model; (b) methane diffusivities with pressure using multiporous model. Notes: Dae: the macropore effective diffusion coefficient; Dee: the transition pore and mesopore effective diffusion coefficient; Die: the micropore effective diffusion coefficient.
Fig.8  (a) Methane diffusivities with particle size; (b) methane diffusivities with moisture content; (c) methane diffusivities with temperature using multiporous model. Notes: Dae: macropore effective diffusion coefficient; Dee: transition pore and mesopore effective diffusion coefficients; Die: micropore effective diffusion coefficient.
Sample No.Methane diffusion coefficientsRo,m/%SBET/(m2·g?1)VBJH/( × 10?3cm3·g?1)P/MPaA/mmM/%T/°C
Dae/s?1Dee/s?1Die/s?1
LHJ 4#-01 6.44E-03 2.18E-04 2.95E-05 0.46 0.559 2.282 0.78 0.215 0 30
LHJ 4#-02 1.20E-03 5.43E-05 7.51E-06 0.46 0.559 2.282 1.48 0.215 3.3 30
LHJ 4#-03 3.53E-04 1.04E-05 2.47E-06 0.46 0.559 2.282 4.76 0.215 5.9 30
FL 1#-01 3.90E-03 1.29E-04 1.25E-05 0.65 0.116 0.467 1.99 0.215 0 30
FL 1#-02 2.91E-03 8.10E-05 9.15E-06 0.65 0.116 0.467 2.52 2.525 0 30
FL 1#-03 1.47E-03 4.26E-05 5.73E-06 0.65 0.116 0.467 4.16 7.35 0 30
HDG 6# 4.03E-03 1.22E-04 1.68E-05 0.68 0.867 4.207 1.46 0.215 0 30
BD 2#-01 3.66E-03 1.03E-04 1.40E-05 0.68 0.301 1.701 0.9 0.215 0 30
BD 2#-02 5.14E-03 1.93E-04 3.21E-05 0.68 0.301 1.701 0.83 0.215 0 40
YT 5# 1.63E-03 7.27E-05 7.22E-06 1.19 0.477 2.546 3.5 0.215 0 30
HJG 5# 1.09E-03 5.14E-05 6.97E-06 1.34 0.367 1.232 3.38 0.215 0 30
WJY 8# 9.41E-04 5.16E-05 6.53E-06 1.44 0.347 1.574 3.57 0.215 0 30
DQ 4# 2.12E-04 2.31E-05 3.76E-06 1.68 0.378 1.279 7.28 0.215 0 30
SY 15#-01 3.15E-03 1.37E-04 1.15E-05 2.05 0.487 2.339 0.46 0.215 0 30
SY 15#-02 3.75E-03 2.00E-04 2.54E-05 2.05 0.487 2.339 2.61 0.215 0 40
XY 15# 3.25E-03 8.32E-05 1.00E-05 2.54 0.246 0.867 5.54 0.215 0 30
DY 6# 3.83E-03 1.01E-04 1.09E-05 2.56 0.375 1.595 5.54 0.215 0 30
GZ 15#-01 3.75E-03 7.14E-05 1.02E-05 2.79 0.202 1.662 7.5 0.215 0 30
GZ 15#-02 2.94E-03 8.18E-05 1.06E-05 2.79 0.202 1.662 1.35 2.525 0 30
GZ 15#-03 1.59E-03 4.23E-05 4.54E-06 2.79 0.202 1.662 3.74 7.35 0 30
GZ 15#-04 1.26E-03 4.29E-05 5.12E-06 2.79 0.202 1.662 2.6 0.215 2.3 30
GZ 15#-05 1.24E-04 1.06E-05 2.00E-06 2.79 0.202 1.662 7.14 0.215 4.1 30
Tab.3  Methane diffusion coefficients and test data of each influencing factor
Fig.9  The gray relational grade for seven comparability sequences with three diffusion stage.
1 L H Bai, B Liu, Y J Du, B Y Wang, S S Tian, L Wang, Z Q Xue (2021). Distribution characteristics and oil mobility thresholds in lacustrine shale reservoir: insights from N2 adsorption experiments on samples prior to and following hydrocarbon extraction. Petrol Sci, 19(2): 486–497
https://doi.org/10.1016/j.petsci.2021.10.018
2 A, Busch Y, Gensterblum B M, Krooss R Littke (2004). Methane and carbon dioxide adsorption-diffusion experiments on coal: upscaling and modeling.Int J Coal Geol, 60(2–4): 151–168
https://doi.org/10.1016/j.coal.2004.05.002
3 Y D, Cai Q, Li D M, Liu Y F, Zhou D Lv (2018). Insights into matrix compressibility of coals by mercury intrusion porosimetry and N2 adsorption.Int J Coal Geol, 200: 199–212
https://doi.org/10.1016/j.coal.2018.11.007
4 Y D, Cai Z J, Pan D M, Liu G Q, Zheng S H, Tang L D, Connell Y B, Yao Y F Zhou (2014). Effects of pressure and temperature on gas diffusion and flow for primary and enhanced coalbed methane recovery.Energy Explor Exploit, 32(4): 601–619
https://doi.org/10.1260/0144-5987.32.4.601
5 D, Charrière Z, Pokryszka P Behra (2010). Effect of pressure and temperature on diffusion of CO2 and CH4 into coal from the Lorraine Basin (France).Int J Coal Geol, 81(4): 373–380
https://doi.org/10.1016/j.coal.2009.03.007
6 S B, Chen X Y, Li S, Chen Y, Wang Z, Gong Y K Zhang (2021). A new application of atomic force microscopy in the characterization of pore structure and pore contribution in shale gas reservoirs.J Nat Gas Sci Eng, 88: 103802
https://doi.org/10.1016/j.jngse.2021.103802
7 C R, Clarkson R M Bustin (1999). The effect of pore structure and gas pressure upon the transport properties of coal: a laboratory and modeling study. 2. Adsorption rate modeling.Fuel, 78(11): 1345–1362
https://doi.org/10.1016/S0016-2361(99)00056-3
8 J Crank (1956). The Mathematics of Diffusion. Oxford: The Clarendon Press
9 P J, Crosdale B B, Beamish M Valix (1998). Coalbed methane sorption related to coal composition.Int J Coal Geol, 35(1–4): 147–158
https://doi.org/10.1016/S0166-5162(97)00015-3
10 G, Desbois J L, Urai P A, Kukla J, Konstanty C Baerle (2011). High-resolution 3D fabric and porosity model in a tight gas sandstone reservoir: a new approach to investigate microstructures from mm- to nm-scale combining argon beam cross-sectioning and SEM imaging.J Petrol Sci Eng, 78(2): 243–257
https://doi.org/10.1016/j.petrol.2011.06.004
11 X L, Fang Y D, Cai D M, Liu Y F Zhou (2018). A mercury intrusion porosimetry method for methane diffusivity and permeability evaluation in coals: a Comparative analysis.Appl Sci (Basel), 8(6): 860
https://doi.org/10.3390/app8060860
12 J C, Groen L A A, Peffer J Pérez-Ramírez (2003). Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis.Microporous Mesoporous Mater, 60(1–3): 1–17
https://doi.org/10.1016/S1387-1811(03)00339-1
13 H J, Guo L, Yuan Y P, Cheng K, Wang C, Xu A, Zhou J, Zang J J Liu (2018). Effect of moisture on the desorption and unsteady-state diffusion properties of gas in low-rank coal.J Nat Gas Sci Eng, 57: 45–51
https://doi.org/10.1016/j.jngse.2018.06.045
14 K Bytee (2004). Coalbed-methane reservoir simulation: an evolving science.J Pet Technol, 56(4): 61–63
https://doi.org/10.2118/0404-0061-JPT
15 H X, Hu X C, Li Z M, Fang N, Wei Q S Li (2010). Small-molecule gas sorption and diffusion in coal: molecular simulation.Energy, 35(7): 2939–2944
https://doi.org/10.1016/j.energy.2010.03.028
16 T, Jia C, Liu G, Wei J, Yan Q, Zhang L, Niu X, Liu M, Zhang Y, Ju Y Zhang (2021). Micro-nanostructure of coal and adsorption-diffusion characteristics of methane.J Nanosci Nanotechnol, 21(1): 422–430
https://doi.org/10.1166/jnn.2021.18733 pmid: 33213641
17 C Ö, Karacan E Okandan (2001). Adsorption and gas transport in coal microstructure: investigation and evaluation by quantitative X-ray CT imaging.Fuel, 80(4): 509–520
https://doi.org/10.1016/S0016-2361(00)00112-5
18 Z T, Li D M, Liu Y D, Cai Y L Shi (2016). Investigation of methane diffusion in low-rank coals by a multiporous diffusion model.J Nat Gas Sci Eng, 33: 97–107
https://doi.org/10.1016/j.jngse.2016.05.012
19 J, Liu Y P, Qin S, Zhang C He (2019a). Numerical solution for borehole methane flow in coal seam based on a new dual-porosity model.J Nat Gas Sci Eng, 68: 102916
https://doi.org/10.1016/j.jngse.2019.102916
20 P, Liu Y P, Qin S M, Liu Y J Hao (2018b). Non-linear gas desorption and transport behavior in coal matrix: experiments and numerical modeling.Fuel, 214: 1–13
https://doi.org/10.1016/j.fuel.2017.10.120
21 S F, Liu J, Forrest Y J Yang (2012). A brief introduction to grey systems theory.Grey Syst, 2(2): 89–104
https://doi.org/10.1108/20439371211260081
22 X F, Liu D Z, Song X Q, He B S, Nie L K Wang (2019b). Insight into the macromolecular structural differences between hard coal and deformed soft coal.Fuel, 245: 188–197
https://doi.org/10.1016/j.fuel.2019.02.070
23 Z S, Liu D M, Liu Y D, Cai Z J Pan (2018a). The impacts of flow velocity on permeability and porosity of coals by core flooding and nuclear magnetic resonance: implications for coalbed methane production.J Petrol Sci Eng, 171: 938–950
https://doi.org/10.1016/j.petrol.2018.08.037
24 X, Lu R T, Armstrong P Mostaghimi (2020). Analysis of gas diffusivity in coal using micro-computed tomography.Fuel, 261: 116384
https://doi.org/10.1016/j.fuel.2019.116384
25 I Medveď , R Černý (2011).Surface diffusion in porous media: a critical review. Microporous Mesoporous Mater. 142: 405–422
https://doi.org/10.1016/j.micromeso.2011.01.015
26 Y, Meng Z P Li (2016). Experimental study on diffusion property of methane gas in coal and its influencing factors.Fuel, 185: 219–228
https://doi.org/10.1016/j.fuel.2016.07.119
27 T A Moore (2012). Coalbed methane: a review.Int J Coal Geol, 101(1): 36–81
https://doi.org/10.1016/j.coal.2012.05.011
28 Z J, Pan L D, Connell M, Camilleri L Connelly (2010). Effects of matrix moisture on gas diffusion and flow in coal.Fuel, 89(11): 3207–3217
https://doi.org/10.1016/j.fuel.2010.05.038
29 M, Pillalamarry S, Harpalani S M Liu (2011). Gas diffusion behavior of coal and its impact on production from coalbed methane reservoirs.Int J Coal Geol, 86(4): 342–348
https://doi.org/10.1016/j.coal.2011.03.007
30 F K, Quan C T, Wei J J, Zhang S L, Feng S Q, Hao G W, Lu Y B Hu (2020). Study on desorption and diffusion dynamics of coal reservoir through step-by-step depressurization simulation——an experimental simulation study based on LF-NMR technology.J Nat Gas Sci Eng, 75: 103149
https://doi.org/10.1016/j.jngse.2020.103149
31 S P Rigby (2005). Predicting surface diffusivities of molecules from equilibrium adsorption isotherms.Colloids Surf A Physicochem Eng Asp, 262(1–3): 139–149
https://doi.org/10.1016/j.colsurfa.2005.04.021
32 E, Ruckenstein A S, Vaidyanathan G R Youngquist (1971). Sorption by solids with bidisperse pore structures.Chem Eng Sci, 26(9): 1305–1318
https://doi.org/10.1016/0009-2509(71)80051-9
33 A, Salmachi M R, Bonyadi M, Sayyafzadeh M Haghighi (2014). Identification of potential locations for well placement in developed coalbed methane reservoirs.Int J Coal Geol, 131: 250–262
https://doi.org/10.1016/j.coal.2014.06.018
34 R, Sander L D, Connell M, Camilleri Z J Pan (2020). CH4, CO2, N2 diffusion in Bowen Basin (Australia) coal: relationship between sorption kinetics of coal core and crushed coal particles.J Nat Gas Sci Eng, 81: 103468
https://doi.org/10.1016/j.jngse.2020.103468
35 L L, Si H T, Zhang J P, Wei B, Li H K Han (2021). Modeling and experiment for effective diffusion coefficient of gas in water-saturated coal.Fuel, 284: 118887
https://doi.org/10.1016/j.fuel.2020.118887
36 D M, Smith F L Williams (1984). Diffusional effects in the recovery of methane from coalbeds.Soc Pet Eng J, 24(5): 529–535
https://doi.org/10.2118/10821-PA
37 G Staib, R Sakurovs, E A Gray (2013). A pressure and concentration dependence of CO2 diffusion in two Australian bituminous coals. Int J Coal Geol, 116–117: 106–116
https://doi.org/10.1016/j.coal.2013.07.005
38 N Tosun (2006). Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis.Int J Adv Manuf Technol, 28(5–6): 450–455
https://doi.org/10.1007/s00170-004-2386-y
39 X L, Wang D M, Zhang E L, Su Z G, Jiang C Y, Wang Y P, Chu C Ye (2020). Pore structure and diffusion characteristics of intact and tectonic coals: implications for selection of CO2 geological sequestration site.J Nat Gas Sci Eng, 81: 103388
https://doi.org/10.1016/j.jngse.2020.103388
40 J E, Warren P J Root (1963). The behavior of naturally fractured reservoirs.Soc Pet Eng J, 3: 245–255
https://doi.org/10.2118/426-PA
41 H, Xu D Z, Tang J L, Zhao S, Li S Tao (2015). A new laboratory method for accurate measurement of the methane diffusion coefficient and its influencing factors in the coal matrix.Fuel, 158: 239–247
https://doi.org/10.1016/j.fuel.2015.05.046
42 S P, Xu E F, Hu X C, Li Y Xu (2021). Quantitative analysis of pore structure and its impact on methane adsorption capacity of coal.Nat Resour Res, 30(1): 605–620
https://doi.org/10.1007/s11053-020-09723-2
43 R, Yang T R, Ma H, Xu W Q, Liu Y, Hu S Sang (2019). A model of fully coupled two-phase flow and coal deformation under dynamic diffusion for coalbed methane extraction.J Nat Gas Sci Eng, 72: 103010
https://doi.org/10.1016/j.jngse.2019.103010
44 Y B, Yao D M, Liu D Z, Tang S H, Tang W H Huang (2008). Fractal characterization of adsorption-pores of coals from north China: an investigation on CH4 adsorption capacity of coals.Int J Coal Geol, 73(1): 27–42
https://doi.org/10.1016/j.coal.2007.07.003
45 F H, Zeng F, Peng J C, Guo D Y, Wang S R, Zhang P, Zhang B Zhang (2019). Gas transport study in the confined microfractures of coal reservoirs.J Nat Gas Sci Eng, 68: 102920
https://doi.org/10.1016/j.jngse.2019.102920
46 H L, Zhang J, Wang H Y Zhang (2016). Investigation of the main factors during shale-gas production using grey relational analysis.Open Petrol Eng J, 9(1): 207–215
https://doi.org/10.2174/1874834101609160207
47 H Zhang (2001). Genetical type of proes in coal reservoir and its research significance.J China Coal Soc, 26: 40–44
48 K Z, Zhang Y P, Cheng L, Wang J, Dong C M, Hao J Y Jiang (2020). Pore morphology characterization and its effect on methane desorption in water-containing coal: an exploratory study on the mechanism of gas migration in water-injected coal seam.J Nat Gas Sci Eng, 75: 103152
https://doi.org/10.1016/j.jngse.2020.103152
49 S H, Zhang S H, Tang D Z, Tang Z J, Pan F Yang (2010). The characteristics of coal reservoir pores and coal facies in Liulin District, Hedong Coal Field of China.Int J Coal Geol, 81(2): 117–127
https://doi.org/10.1016/j.coal.2009.11.007
50 J L, Zhao H, Xu D Z, Tang J P, Mathews S, Li S Tao (2016). A comparative evaluation of coal specific surface area by CO2 and N2 adsorption and its influence on CH4 adsorption capacity at different pore sizes.Fuel, 183: 420–431
https://doi.org/10.1016/j.fuel.2016.06.076
51 Y X, Zhao T, Liu N N, Danesh Y F, Sun S M, Liu Y Wang (2020). Quantification of pore modification in coals due to pulverization using synchrotron small angle X-ray scattering.J Nat Gas Sci Eng, 84: 103669
https://doi.org/10.1016/j.jngse.2020.103669
52 S J, Zheng Y B, Yao D M, Liu Y D, Cai Y Liu (2018). Characterizations of full-scale pore size distribution, porosity and permeability of coals: a novel methodology by nuclear magnetic resonance and fractal analysis theory.Int J Coal Geol, 196: 148–158
https://doi.org/10.1016/j.coal.2018.07.008
[1] FES-22992-OF-CYD_suppl_1 Download
[1] Wei JU, Zhaobiao YANG, Yulin SHEN, Hui YANG, Geoff WANG, Xiaoli ZHANG, Shengyu WANG. Mechanism of pore pressure variation in multiple coal reservoirs, western Guizhou region, South China[J]. Front. Earth Sci., 2021, 15(4): 770-789.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed